Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global exposure risk of frogs to increasing environmental dryness

Abstract

Compared with the risks associated with climate warming and extremes, the risks of climate-induced drying to animal species remain understudied. This is particularly true for water-sensitive groups, such as anurans (frogs and toads), whose long-term survival must be considered in the context of both environmental changes and species sensitivity. Here, we mapped global areas where anurans will face increasing water limitations, analysed ecotype sensitivity to water loss and modelled behavioural activity impacts under future climate change scenarios. Predictions indicate that 6.6–33.6% of anuran habitats will become arid like by 2080–2100, with 15.4–36.1% exposed to worsening drought, under an intermediate- and high-emission scenario, respectively. Arid conditions are expected to double water loss rates, and combined drought and warming will double reductions in anuran activity compared with warming impacts alone by 2080–2100. These findings underscore the pervasive synergistic threat of warming and environmental drying to anurans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relationship between the spatial distribution of anuran species and degree of climate dryness.
Fig. 2: Assemblage-level risk due to multiple scenarios of increasing drought events.
Fig. 3: Variation in EWL for a typical 8.7 g frog.
Fig. 4: Total hours for potential activity and change in activity under different climate conditions for a hypothetical 8.7 g frog in Queensland, Australia.
Fig. 5: Change in activity under different climate conditions, for a hypothetical 8.7 g frog in four representative biomes, is expected to increase with environmental drying.

Similar content being viewed by others

Data availability

Climate data were sourced from a public database published in Abatzoglou et al.87 and Zhao and Dai2. The species richness database was sourced from the IUCN Red List of Threatened Species platform91 (https://www.iucnredlist.org/resources/spatial-data-download). Phylogenetic data were sourced from Jetz and Pyron97. Water loss and uptake data used to reproduce the study are available via GitHub at https://github.com/nicholaswunz/global-frog-drought and Zenodo at https://doi.org/10.5281/zenodo.13743578 (ref. 113).

Code availability

Codes to reproduce the study are available via GitHub at https://github.com/nicholaswunz/global-frog-drought and Zenodo at https://doi.org/10.5281/zenodo.13743578 (ref. 113).

References

  1. Pokhrel, Y. et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Chang. 11, 226–233 (2021).

    Article  Google Scholar 

  2. Zhao, T. & Dai, A. CMIP6 model-projected hydroclimatic and drought changes and their causes in the twenty-first century. J. Clim. 35, 897–921 (2022).

    Google Scholar 

  3. Slette, I. J. et al. How ecologists define drought, and why we should do better. Glob. Chang. Biol. 25, 3193–3200 (2019).

    Article  Google Scholar 

  4. Lowe, W. H., Martin, T. E., Skelly, D. K. & Woods, H. A. Metamorphosis in an era of increasing climate variability. Trends Ecol. Evol. 36, 360–375 (2021).

    Article  Google Scholar 

  5. Zylstra, E. R., Swann, D. E., Hossack, B. R., Muths, E. & Steidl, R. J. Drought‐mediated extinction of an arid‐land amphibian: insights from a spatially explicit dynamic occupancy model. Ecol. Appl. 29, e01859 (2019).

    Article  Google Scholar 

  6. Lillywhite, H. B. Water relations of tetrapod integument. J. Exp. Biol. 209, 202–226 (2006).

    Article  Google Scholar 

  7. Hillman, S. S., Withers, P. C., Drewes, R. C. & Hillyard, S. D. Ecological and Environmental Physiology of Amphibians Vol. 1 (Oxford Univ. Press, 2009).

  8. Li, Y., Cohen, J. M. & Rohr, J. R. Review and synthesis of the effects of climate change on amphibians. Integr. Zool. 8, 145–161 (2013).

    Article  Google Scholar 

  9. Campbell Grant, E. H., Miller, D. A. & Muths, E. A synthesis of evidence of drivers of amphibian declines. Herpetologica 76, 101–107 (2020).

    Article  Google Scholar 

  10. Snyder, G. K. & Weathers, W. W. Temperature adaptations in amphibians. Am. Nat. 109, 93–101 (1975).

    Article  Google Scholar 

  11. Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. Lond. B Biol. Sci. 282, 20150401 (2015).

    Google Scholar 

  12. Pottier, P. et al. Vulnerability of amphibians to global warming. Preprint at EcoEvoRxiv https://doi.org/10.32942/X2T02T (2024).

    Article  Google Scholar 

  13. Murali, G., Iwamura, T., Meiri, S. & Roll, U. Future temperature extremes threaten land vertebrates. Nature 615, 461–467 (2023).

    Article  CAS  Google Scholar 

  14. Luedtke, J. A. et al. Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 622, 308–314 (2023).

    Article  CAS  Google Scholar 

  15. Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, e325 (2008).

    Article  Google Scholar 

  16. Rozen‐Rechels, D. et al. When water interacts with temperature: ecological and evolutionary implications of thermo‐hydroregulation in terrestrial ectotherms. Ecol. Evol. 9, 10029–10043 (2019).

    Article  Google Scholar 

  17. Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Chang. 4, 17–22 (2014).

    Article  Google Scholar 

  18. Park Williams, A. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3, 292–297 (2013).

    Article  Google Scholar 

  19. Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).

    Article  Google Scholar 

  20. Eamus, D., Boulain, N., Cleverly, J. & Breshears, D. D. Global change‐type drought‐induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecol. Evol. 3, 2711–2729 (2013).

    Article  Google Scholar 

  21. Kearney, M. R., Munns, S. L., Moore, D., Malishev, M. & Bull, C. M. Field tests of a general ectotherm niche model show how water can limit lizard activity and distribution. Ecol. Monogr. 88, 672–693 (2018).

    Article  Google Scholar 

  22. Lertzman‐Lepofsky, G. F., Kissel, A. M., Sinervo, B. & Palen, W. J. Water loss and temperature interact to compound amphibian vulnerability to climate change. Glob. Chang. Biol. 26, 4868–4879 (2020).

    Article  Google Scholar 

  23. Anderson, R. C. & Andrade, D. V. Trading heat and hops for water: dehydration effects on locomotor performance, thermal limits and thermoregulatory behavior of a terrestrial toad. Ecol. Evol. 7, 9066–9075 (2017).

    Article  Google Scholar 

  24. Galindo, C., Cruz, E. & Bernal, M. Evaluation of the combined temperature and relative humidity preferences of the Colombian terrestrial salamander Bolitoglossa ramosi (Amphibia: Plethodontidae). Can. J. Zool. 96, 1230–1235 (2018).

    Article  CAS  Google Scholar 

  25. Navas, C. A., Antoniazzi, M. M., Carvalho, J. E., Suzuki, H. & Jared, C. Physiological basis for diurnal activity in dispersing juvenile Bufo granulosus in the Caatinga, a Brazilian semi-arid environment. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 147, 647–657 (2007).

    Article  Google Scholar 

  26. Toledo, R. & Jared, C. Cutaneous adaptations to water balance in amphibians. Comp. Biochem. Physiol. A Physiol. 105, 593–608 (1993).

    Article  Google Scholar 

  27. Carvalho, J. E., Navas, C. A. & Pereira, I. C. in Aestivation: Molecular and Physiological Aspects (eds Navas, C. A. & Carvalho, J. E.) 141–169 (Springer, 2010).

  28. Withers, P. C. Cocoon formation and structure in the estivating Australian desert frogs, Neobatrachus and Cyclorana. Aust. J. Zool. 43, 429–441 (1995).

    Article  Google Scholar 

  29. Tracy, C. R., Reynolds, S. J., McArthur, L., Tracy, C. R. & Christian, K. A. Ecology of aestivation in a cocoon-forming frog, Cyclorana australis (Hylidae). Copeia 2007, 901–912 (2007).

    Article  Google Scholar 

  30. Amey, A. P. & Grigg, G. C. Lipid-reduced evaporative water loss in two arboreal hylid frogs. Comp. Biochem. Physiol. A Physiol. 111, 283–291 (1995).

    Article  Google Scholar 

  31. Stinner, J. N. & Shoemaker, V. H. Cutaneous gas exchange and low evaporative water loss in the frogs Phyllomedusa sauvagei and Chiromantis xerampelina. J. Comp. Physiol. B 157, 423–427 (1987).

    Article  Google Scholar 

  32. Shoemaker, V. H. & McClanahan, L. L. Nitrogen excretion and water balance in amphibians of Borneo. Copeia 3, 446–451 (1980).

    Article  Google Scholar 

  33. Pough, F. H., Taigen, T. L., Stewart, M. M. & Brussard, P. F. Behavioral modification of evaporative water loss by a Puerto Rican frog. Ecology 64, 244–252 (1983).

    Article  Google Scholar 

  34. Sodhi, N. S. et al. Measuring the meltdown: drivers of global amphibian extinction and decline. PLoS ONE 3, e1636 (2008).

    Article  Google Scholar 

  35. Ficetola, G. F. & Maiorano, L. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia 181, 683–693 (2016).

    Article  Google Scholar 

  36. Wassens, S., Walcott, A., Wilson, A. & Freire, R. Frog breeding in rain-fed wetlands after a period of severe drought: implications for predicting the impacts of climate change. Hydrobiologia 708, 69–80 (2013).

    Article  CAS  Google Scholar 

  37. Kohli, A. K. et al. Disease and the drying pond: examining possible links among drought, immune function and disease development in amphibians. Physiol. Biochem. Zool. 92, 339–348 (2019).

    Article  Google Scholar 

  38. Kupferberg, S. J. et al. Seasonal drought and its effects on frog population dynamics and amphibian disease in intermittent streams. Ecohydrology 15, e2395 (2022).

    Article  Google Scholar 

  39. Thorson, T. B. The relationship of water economy to terrestrialism in amphibians. Ecology 36, 100–116 (1955).

    Article  Google Scholar 

  40. Katz, U. & Graham, R. Water relations in the toad (Bufo viridis) and a comparison with the frog (Rana ridibunda). Comp. Biochem. Physiol. A Physiol. 67, 245–251 (1980).

    Article  Google Scholar 

  41. Withers, P. C., Hillman, S. S. & Drewes, R. C. Evaporative water loss and skin lipids of anuran amphibians. J. Exp. Zool. 232, 11–17 (1984).

    Article  Google Scholar 

  42. Wygoda, M. L. Low cutaneous evaporative water loss in arboreal frogs. Physiol. Zool. 57, 329–337 (1984).

    Article  Google Scholar 

  43. de Andrade, D. V. & Abe, A. S. Evaporative water loss and oxygen uptake in two casque-headed tree frogs, Aparasphenodon brunoi and Corythomantis greeningi (Anura, Hylidae). Comp. Biochem. Physiol. A Physiol. 118, 685–689 (1997).

    Article  Google Scholar 

  44. Schwarzkopf, L. & Alford, R. Desiccation and shelter-site use in a tropical amphibian: comparing toads with physical models. Funct. Ecol. 10, 193–200 (1996).

    Article  Google Scholar 

  45. Seebacher, F. & Alford, R. A. Shelter microhabitats determine body temperature and dehydration rates of a terrestrial amphibian (Bufo marinus). J. Herpetol. 36, 69–75 (2002).

    Article  Google Scholar 

  46. IPCC Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2021).

  47. Malhi, Y. et al. Climate Change, deforestation and the fate of the Amazon. Science 319, 169–172 (2008).

    Article  CAS  Google Scholar 

  48. Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    Article  CAS  Google Scholar 

  49. Mitchell, A. & Bergmann, P. J. Thermal and moisture habitat preferences do not maximize jumping performance in frogs. Funct. Ecol. 30, 733–742 (2016).

    Article  Google Scholar 

  50. Guevara-Molina, E. C., Gomes, F. R. & Camacho, A. Effects of dehydration on thermoregulatory behavior and thermal tolerance limits of Rana catesbeiana (Shaw, 1802). J. Therm. Biol. 93, 102721 (2020).

    Article  Google Scholar 

  51. Preest, M. & Pough, F. H. Interaction of temperature and hydration on locomotion of toads. Funct. Ecol. 3, 693–699 (1989).

    Article  Google Scholar 

  52. Walvoord, M. E. Cricket frogs maintain body hydration and temperature near levels allowing maximum jump performance. Physiol. Biochem. Zool. 76, 825–835 (2003).

    Article  Google Scholar 

  53. Feder, M. E. & Burggren, W. W. Environmental Physiology of the Amphibians (Univ. of Chicago Press, 1992).

  54. Wu, N. C. & Seebacher, F. Physiology can predict animal activity, exploration and dispersal. Commun. Biol. 5, 109 (2022).

    Article  Google Scholar 

  55. Hillman, S. S. Dehydrational effects on cardiovascular and metabolic capacity in two amphibians. Physiol. Zool. 60, 608–613 (1987).

    Article  Google Scholar 

  56. Hillman, S. S. The roles of oxygen delivery and electrolyte levels in the dehydrational death of Xenopus laevis. J. Comp. Physiol. 128, 169–175 (1978).

    Article  CAS  Google Scholar 

  57. Hillman, S. S. Dehydrational effects on brain and cerebrospinal fluid electrolytes in two amphibians. Physiol. Zool. 61, 254–259 (1988).

    Article  CAS  Google Scholar 

  58. Gatten, R. E. Jr. Activity metabolism of anuran amphibians: tolerance to dehydration. Physiol. Zool. 60, 576–585 (1987).

    Article  CAS  Google Scholar 

  59. Qiu, R. et al. Soil moisture dominates the variation of gross primary productivity during hot drought in drylands. Sci. Total Environ. 899, 165686 (2023).

    Article  CAS  Google Scholar 

  60. Janzen, D. H. & Schoener, T. W. Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season. Ecology 49, 96–110 (1968).

    Article  Google Scholar 

  61. Tracy, C. R. et al. Thermal and hydric implications of diurnal activity by a small tropical frog during the dry season. Austral Ecol. 38, 476–483 (2013).

    Article  Google Scholar 

  62. Forti, L. R., Hepp, F., de Souza, J. M., Protazio, A. & Szabo, J. K. Climate drives anuran breeding phenology in a continental perspective as revealed by citizen‐collected data. Divers. Distrib. 28, 2094–2109 (2022).

    Article  Google Scholar 

  63. Walpole, A. A., Bowman, J., Tozer, D. C. & Badzinski, D. S. Community-level response to climate change: shifts in anuran calling phenology. Herpetol. Conserv. Biol. 7, 249–257 (2012).

    Google Scholar 

  64. Miller, D. A. et al. Quantifying climate sensitivity and climate-driven change in North American amphibian communities. Nat. Commun. 9, 3926 (2018).

    Article  Google Scholar 

  65. Díaz-Paniagua, C. et al. Groundwater decline has negatively affected the well-preserved amphibian community of Doñana National Park (SW Spain). Amphib. Reptil. 45, 1–13 (2024).

    Article  Google Scholar 

  66. Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Chang. 5, 61–66 (2015).

    Article  Google Scholar 

  67. Wygoda, M. Adaptive control of water loss resistance in an arboreal frog. Herpetologica 44, 251–257 (1988).

    Google Scholar 

  68. Riddell, E. A., Roback, E. Y., Wells, C. E., Zamudio, K. R. & Sears, M. W. Thermal cues drive plasticity of desiccation resistance in montane salamanders with implications for climate change. Nat. Commun. 10, 4091 (2019).

    Article  Google Scholar 

  69. Chown, S. L., Sørensen, J. G. & Terblanche, J. S. Water loss in insects: an environmental change perspective. J. Insect Physiol. 57, 1070–1084 (2011).

    Article  CAS  Google Scholar 

  70. Hoffmann, A., Hallas, R., Dean, J. & Schiffer, M. Low potential for climatic stress adaptation in a rainforest Drosophila species. Science 301, 100–102 (2003).

    Article  CAS  Google Scholar 

  71. Sheridan, J. A., Mendenhall, C. D. & Yambun, P. Frog body size responses to precipitation shift from resource‐driven to desiccation‐resistant as temperatures warm. Ecol. Evol. 12, e9589 (2022).

    Article  Google Scholar 

  72. Guo, C., Gao, S., Krzton, A. & Zhang, L. Geographic body size variation of a tropical anuran: effects of water deficit and precipitation seasonality on Asian common toad from southern Asia. BMC Evol. Biol. 19, 208 (2019).

    Article  Google Scholar 

  73. Castro, K. M. et al. Water constraints drive allometric patterns in the body shape of tree frogs. Sci. Rep. 11, 1218 (2021).

    Article  CAS  Google Scholar 

  74. Gouveia, S. F. et al. Biophysical modeling of water economy can explain geographic gradient of body size in anurans. Am. Nat. 193, 51–58 (2019).

    Article  Google Scholar 

  75. Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).

    Article  CAS  Google Scholar 

  76. Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).

    Article  Google Scholar 

  77. Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Chang. 1, 401–406 (2011).

    Article  Google Scholar 

  78. Wu, N. C. & Seebacher, F. Bisphenols alter thermal responses and performance in zebrafish (Danio rerio). Conserv. Physiol. 9, coaa138 (2021).

    Article  CAS  Google Scholar 

  79. Kellermann, V., McEvey, S. F., Sgrò, C. M. & Hoffmann, A. A. Phenotypic plasticity for desiccation resistance, climate change and future species distributions: will plasticity have much impact? Am. Nat. 196, 306–315 (2020).

    Article  Google Scholar 

  80. Gerick, A. A., Munshaw, R. G., Palen, W. J., Combes, S. A. & O’Regan, S. M. Thermal physiology and species distribution models reveal climate vulnerability of temperate amphibians. J. Biogeogr. 41, 713–723 (2014).

    Article  Google Scholar 

  81. Wu, Y. et al. Hydrological projections under CMIP5 and CMIP6: sources and magnitudes of uncertainty. Bull. Am. Meterorol. Soc. 105, E59–E74 (2024).

    Article  Google Scholar 

  82. Li, H. et al. Drylands face potential threat of robust drought in the CMIP6 SSPs scenarios. Environ. Res. Lett. 16, 114004 (2021).

    Article  Google Scholar 

  83. Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 47, e2020GL087820 (2020).

    Article  Google Scholar 

  84. Spinoni, J. et al. Future global meteorological drought hot spots: a study based on CORDEX data. J. Clim. 33, 3635–3661 (2020).

    Article  Google Scholar 

  85. Dai, A., Trenberth, K. E. & Qian, T. A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 5, 1117–1130 (2004).

    Article  Google Scholar 

  86. Budyko, M. I. The heat balance of the earth’s surface. Sov. Geogr. 2, 3–13 (1961).

    Google Scholar 

  87. Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    Article  Google Scholar 

  88. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  89. Cook, B. I. et al. Megadroughts in the common era and the Anthropocene. Nat. Rev. Earth Environ. 3, 741–757 (2022).

    Article  Google Scholar 

  90. Qing, Y. et al. Accelerated soil drying linked to increasing evaporative demand in wet regions. NPJ Clim. Atmos. Sci. 6, 205 (2023).

    Article  Google Scholar 

  91. The IUCN Red List of threatened species. Version 2022-2 https://www.iucnredlist.org/ (2022).

  92. Moen, D. S. & Wiens, J. J. Microhabitat and climatic niche change explain patterns of diversification among frog families. Am. Nat. 190, 29–44 (2017).

    Article  Google Scholar 

  93. O’Dea, R. E. et al. Preferred reporting items for systematic reviews and meta‐analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev. 96, 1695–1722 (2021).

    Article  Google Scholar 

  94. Senzano, L. M. & Andrade, D. V. Temperature and dehydration effects on metabolism, water uptake and the partitioning between respiratory and cutaneous evaporative water loss in a terrestrial toad. J. Exp. Biol. 221, jeb188482 (2018).

    Article  Google Scholar 

  95. Pick, J. L., Nakagawa, S. & Noble, D. W. Reproducible, flexible and high‐throughput data extraction from primary literature: the metaDigitise R package. Methods Ecol. Evol. 10, 426–431 (2019).

    Article  Google Scholar 

  96. Schwanz, L. E. et al. Best practices for building and curating databases for comparative analyses. J. Exp. Biol. 225, jeb243295 (2022).

    Article  Google Scholar 

  97. Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).

    Article  Google Scholar 

  98. Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).

    Article  Google Scholar 

  99. Hoffman, M. D. & Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2014).

    Google Scholar 

  100. Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article  Google Scholar 

  101. Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    Article  Google Scholar 

  102. Riddell, E. A., Apanovitch, E. K., Odom, J. P. & Sears, M. W. Physical calculations of resistance to water loss improve predictions of species range models. Ecol. Monogr. 87, 21–33 (2017).

    Article  Google Scholar 

  103. Pottier, P. et al. New horizons for comparative studies and meta-analyses. Trends Ecol. Evol. 39, 435–445 (2024).

    Article  Google Scholar 

  104. Nakagawa, S., Noble, D. W., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).

    Article  Google Scholar 

  105. Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).

    Article  Google Scholar 

  106. Kearney, M. R. & Porter, W. P. NicheMapR—an R package for biophysical modelling: the ectotherm and dynamic energy budget models. Ecography 43, 85–96 (2020).

    Article  Google Scholar 

  107. Kearney, M. R. & Enriquez‐Urzelai, U. A general framework for jointly modelling thermal and hydric constraints on developing eggs. Methods Ecol. Evol. 14, 583–595 (2023).

    Article  Google Scholar 

  108. Greenberg, D. A. & Palen, W. J. Hydrothermal physiology and climate vulnerability in amphibians. Proc. Biol. Sci. 288, 20202273 (2021).

    Google Scholar 

  109. Beuchat, C. A., Pough, F. H. & Stewart, M. M. Response to simultaneous dehydration and thermal stress in three species of Puerto Rican frogs. J. Comp. Physiol. B 154, 579–585 (1984).

    Article  Google Scholar 

  110. Titon, B. Jr, Navas, C. A., Jim, J. & Gomes, F. R. Water balance and locomotor performance in three species of neotropical toads that differ in geographical distribution. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 156, 129–135 (2010).

    Article  Google Scholar 

  111. Bartelt, P. E. A Biophysical Analysis of Habitat Selection in Western Toads (Bufo boreas) in Southeastern Idaho. PhD thesis, Idaho State Univ. (2000).

  112. Christian, J. I. et al. Global projections of flash drought show increased risk in a warming climate. Commun. Earth Environ. 4, 165 (2023).

    Article  Google Scholar 

  113. Wu, N. C. et al. Global exposure risk of frogs to increasing environmental dryness (dataset). https://doi.org/10.5281/zenodo.13743578 (2024).

Download references

Acknowledgements

This paper is dedicated to the late Phillip J. Bishop (1957–2021), who was at the forefront of amphibian conservation research in the southern hemisphere. He dedicated more than 30 years to amphibian conservation, and this study was inspired partly by his research and his passion for amphibians demonstrated at the Word Congress of Herpetology in Dunedin, New Zealand, in 2020. This work was supported by the Institute of Vertebrate Biology of the Czech Academy of Sciences (no. RVO: 68081766) to U.E.U., the São Paulo Research Foundation—FAPESP (nos. 10/20061-6, 14/05624-5, 17/10338-0 and 19/04637-0 to R.P.B. and 14/16320-7 to C.A.N.) and the National Research Foundation of South Africa (incentive funding no. 28442 to S.C.-T).

Author information

Authors and Affiliations

Authors

Contributions

N.C.W. and C.A.N. conceived the study. N.C.W. and J.D.K. compiled the data. R.P.B., C.A.N. and S.C.-T. provided additional data for 39 species. M.R.K. and U.E.U. developed the model simulations. N.C.W. analysed the data, produced the figures and wrote the initial draft. All authors contributed to revisions.

Corresponding author

Correspondence to Nicholas C. Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks David Miller, Susan Walls and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Risk to increasing drought intensity for anurans by 2080–2100.

(a) Change in the Palmer Drought Severity Index (ΔPDSI) under a + 2 °C warming scenario (Shared Socioeconomic Pathways 2–4.5; SPP2–4.5) by 2080–2100 relative to the current scenario (1970–1999). A decrease ΔPDSI indicates higher drought occurrences, while an increase ΔPDSI indicates more extreme wetness. (b) Percentage of anuran species occupancy in each PDSI category grid cell (0.5°) under a + 2 °C warming scenario, where 21% of species are in areas that are at risk of increasing drought. (c) Change in ΔPDSI under a + 4 °C warming scenario (SPP5–8.5). (d) Percentage of anuran species occupancy in each PDSI category grid cell (0.5°) under a + 4 °C warming scenario, where 38% of species are in areas that are at risk of increasing drought.

Extended Data Fig. 2 Risk to increasing drought frequency for anurans by 2080–2100.

(a) Change in the drought frequency (ΔPDSI[frequency]) under a + 2 °C warming scenario (Shared Socioeconomic Pathways 2–4.5; SPP2–4.5) by 2080–2100 relative to the current scenario (1970–1999). ΔPDSI[frequency] was defined as change in monthly PDSI below −2 (moderate to extreme drought) within a 20 year period. (b) Percentage of anuran species occupancy in each frequency category grid cell (0.5°) under a + 2 °C warming scenario. (c) Change in the ΔPDSI[frequency] under a + 4 °C warming scenario (SPP5–8.5). (d) Percentage of anuran species occupancy in each frequency category grid cell (0.5°) under a + 4 °C warming scenario.

Extended Data Fig. 3 Risk to increasing drought duration for anurans by 2080–2100.

(a) Change in the drought duration (ΔPDSI[duration]) under a + 2 °C warming scenario (Shared Socioeconomic Pathways 2–4.5; SPP2–4.5) by 2080–2100 relative to the current scenario (1970–1999). ΔPDSI[duration] was defined as consecutive months under moderate to extreme drought (PDSI < −2) within a 20 year period. (b) Percentage of anuran species occupancy in each duration category grid cell (0.5°) under a + 2 °C warming scenario. (c) Change in the ΔPDSI[duration] under a + 4 °C warming scenario (SPP5–8.5). (d) Percentage of anuran species occupancy in each duration category grid cell (0.5°) under a + 4 °C warming scenario.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, methods and Tables 1–7.

Reporting Summary

Supplementary Code

Web page supplementary information with code used to reproduce the study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, N.C., Bovo, R.P., Enriquez-Urzelai, U. et al. Global exposure risk of frogs to increasing environmental dryness. Nat. Clim. Chang. 14, 1314–1322 (2024). https://doi.org/10.1038/s41558-024-02167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41558-024-02167-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing