Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Precision ecology for targeted conservation action

Abstract

Addressing the coupled threats of catastrophic climate change and biodiversity loss requires implementation of conservation and restoration actions globally. However, on-the-ground action is hindered by context dependency: the ubiquitous challenge that implementation outcomes vary from place to place due to complex dependencies among social and ecological drivers. Policymakers and practitioners recognize the need to tailor solutions to contexts, and target actions to places where they will work effectively. To provide information for decision-making, applied ecologists can learn from medicine and marketing, which aim to provide healthcare tailored to individual patients, and advertisements targeting individual tastes. These disciplines exploit big data and rapidly developing computational advances to predict treatment effects for individual units. Here we argue why and how ecological disciplines can begin to capitalize on these rich advances, to equip ecologists with a potentially powerful toolkit for applying big data to site-specific interventions, allowing effective conservation over large extents. We review approaches that hold promise for applied ecology, identify hurdles that must be overcome and propose a roadmap for establishing the conditions that will permit adoption of precision ecology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ITEs can differ in magnitude and sign from the ATE.
Fig. 2: The principles of uplift modelling, used in marketing, apply also to ecology to identify currently unmanaged units that should or should not be targeted for a specific management intervention.

Similar content being viewed by others

References

  1. IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019)

  2. Vira, B. & Adams, W. M. Ecosystem services and conservation strategy: beware the silver bullet. Conserv. Lett. 2, 158–162 (2009).

    Article  Google Scholar 

  3. Frischmann, B. M. Two enduring lessons from Elinor Ostrom. J. Institut. Econ. 9, 387–406 (2013).

    Article  Google Scholar 

  4. Spake, R. et al. An analytical framework for spatially targeted management of natural capital. Nat. Sustain. 2, 90–97 (2019).

    Article  Google Scholar 

  5. Bateman, I. J. et al. A review of planting principles to identify the right place for the right tree for ‘net zero plus’ woodlands: applying a place‐based natural capital framework for sustainable, efficient and equitable (SEE) decisions. People Nat. 5, 271–301 (2023).

    Article  Google Scholar 

  6. Matthews, K. B. et al. Not seeing the carbon for the trees? Why area-based targets for establishing new woodlands can limit or underplay their climate change mitigation benefits. Land Use Policy 97, 104690 (2020).

    Article  Google Scholar 

  7. Winqvist, C., Ahnström, J. & Bengtsson, J. Effects of organic farming on biodiversity and ecosystem services: taking landscape complexity into account. Ann. N. Y. Acad. Sci. 1249, 191–203 (2012).

    Article  PubMed  Google Scholar 

  8. Hong, P. et al. Biodiversity promotes ecosystem functioning despite environmental change. Ecol. Lett. 25, 555–569 (2022).

    Article  PubMed  Google Scholar 

  9. Tipton, E. Beyond generalization of the ATE: designing randomized trials to understand treatment effect heterogeneity. J. R. Stat. Soc. A 184, 504–521 (2021).

    Article  Google Scholar 

  10. Public Health England. A Brief Introduction to Realist Evaluation (Public Health England, 2021).

  11. Shackelford, G. E. et al. Dynamic meta-analysis: a method of using global evidence for local decision making. BMC Biol. 19, 33 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lamont, A. et al. Identification of predicted individual treatment effects in randomized clinical trials. Stat. Methods Med. Res. 27, 142–157 (2018).

    Article  PubMed  Google Scholar 

  13. Curth, A., Peck, R. W., McKinney, E., Weatherall, J. & van der Schaar, M. Using machine learning to individualize treatment effect estimation: challenges and opportunities. Clin. Pharmacol. Ther. 115, 710–719 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, W., Li, J. & Liu, L. A unified survey of treatment effect heterogeneity modelling and uplift modelling. ACM Comput. Surv. 54, 162 (2022).

    Article  Google Scholar 

  15. Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    Article  Google Scholar 

  16. Holland, P. W. Statistics and causal inference. J. Am. Stat. Assoc. 81, 945–960 (1986).

    Article  Google Scholar 

  17. Fisher, R. The Design of Experiments, 9th edn (Macmillan, 1971 [1935]).

  18. Blair, G. et al. Community policing does not build citizen trust in police or reduce crime in the global south. Science 374, eabd3446 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Pynegar, E. L., Gibbons, J. M., Asquith, N. M. & Jones, J. P. G. What role should randomized control trials play in providing the evidence base for conservation? Oryx 55, 235–244 (2021).

    Article  Google Scholar 

  20. Ruberg, S. J., Chen, L. & Wang, Y. The mean does not mean as much anymore: finding sub-groups for tailored therapeutics. Clin. Trials 7, 574–583 (2010).

    Article  PubMed  Google Scholar 

  21. Salditt, M., Eckes, T. & Nestler, S. A tutorial introduction to heterogeneous treatment effect estimation with meta-learners. Adm. Policy Ment. Health Ment. Health Serv. Res. 51, 650–673 (2024).

    Article  Google Scholar 

  22. Curth, A. Nonparametric estimation of heterogeneous treatment effects: from theory to learning algorithms. In Proc. 24th International Conference on Artificial Intelligence and Statistics (eds Banerjee, A. & Fukumizu, K.) 1810–1818 (PMLR, 2021).

  23. Wager, S. & Athey, S. Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. 113, 1228–1242 (2018).

    Article  CAS  Google Scholar 

  24. Bica, I., Alaa, A. M., Jordon, J. & van der Schaar, M. Estimating counterfactual treatment outcomes over time through adversarially balanced representations. In Proc. 8th International Conference on Learning Representations 11790–11817 (ICLR, 2020).

  25. Kreif, N., Grieve, R., Díaz, I. & Harrison, D. Evaluation of the effect of a continuous treatment: a machine learning approach with an application to treatment for traumatic brain injury. Health Econ. 24, 1213–1228 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).

    Article  Google Scholar 

  27. Kimmel, K., Dee, L. E., Avolio, M. L. & Ferraro, P. J. Causal assumptions and causal inference in ecological experiments. Trends Ecol. Evol. 36, 1141–1152 (2021).

    Article  PubMed  Google Scholar 

  28. Shalit, U., Johansson, F. D. & Sontag, D. Estimating individual treatment effect: generalization bounds and algorithms. In Proc. 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 3076–3085 (PMLR, 2017).

  29. Lu, M., Sadiq, S., Feaster, D. J. & Ishwaran, H. Estimating individual treatment effect in observational data using random forest methods. J. Comput. Graph. Stat. 27, 209–219 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Künzel, S. R., Sekhon, J. S., Bickel, P. J. & Yu, B. Metalearners for estimating heterogeneous treatment effects using machine learning. Proc. Natl Acad. Sci. USA 116, 4156–4165 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Caron, A., Baio, G. & Manolopoulou, I. Estimating individual treatment effects using non-parametric regression models: a review. J. R. Stat. Soc. A 185, 1115–1149 (2022).

    Article  Google Scholar 

  32. Dorie, V., Hill, J., Shalit, U., Scott, M. & Cervone, D. Automated versus do-it-yourself methods for causal inference: lessons learned from a data analysis competition. SSO Schweiz. Monatsschr. Zahnheilkd. 34, 43–68 (2019).

    Google Scholar 

  33. Okasa, G. Meta-learners for estimation of causal effects: finite sample cross-fit performance. Preprint at https://doi.org/10.48550/arXiv.2201.12692 (2022).

  34. Alaa, A. M. Limits of estimating heterogeneous treatment effects: guidelines for practical algorithm design. Proc. Machine Learn. Res. 80, 129–138 (2018).

  35. Fernandez-Loria, C. & Provost, F. Causal classification: treatment effect estimation vs. outcome prediction. J. Mach. Learn. Res. 23, 2573–2607 (2022).

    Google Scholar 

  36. Nie, X. & Wager, S. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika 108, 299–319 (2021).

    Article  Google Scholar 

  37. McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and STAN (Chapman and Hall/CRC, 2020).

  38. Tipton, E., Yeager, D. S., Iachan, R. & Schneider, B. in Experimental Methods in Survey Research: Techniques that Combine Random Sampling with Random Assignment (eds Lavrakas, P. et al.) 435–456 (Wiley, 2019).

  39. Montgomery, J. M., Nyhan, B. & Torres, M. Replication data for: How conditioning on posttreatment variables can ruin your experiment and what to do about it. Harvard Dataverse https://doi.org/10.7910/DVN/EZSJ1S (2018).

  40. Zhang, Y. & Imai, K. Individualized policy evaluation and learning under clustered network interference. Preprint at https://doi.org/10.48550/arXiv.2311.02467 (2023).

  41. Viviano, D. Policy targeting under network interference. Rev. Econ. Stud. 92, 1257–1292 (2025).

    Article  Google Scholar 

  42. Curth, A., Svensson, D., Weatherall, J. & van der Schaar, M. Really doing great at estimating CATE? A critical look at ML benchmarking practices in treatment effect estimation. In Proc. 35th Conference on Neural Information Processing Systems Datasets and Benchmarks Track (eds Vanschoren, J. & Yeung, S.-K.) (NeurIPS, 2021).

  43. Zurell, D. et al. The virtual ecologist approach: simulating data and observers. Oikos 119, 622–635 (2010).

    Article  Google Scholar 

  44. Bocedi, G. et al. RangeShifter 2.0: an extended and enhanced platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Ecography 44, 1453–1462 (2021).

    Article  Google Scholar 

  45. Gardner, E. et al. A family of process-based models to simulate landscape use by multiple taxa. Landsc. Ecol. 39, 102 (2024).

    Article  Google Scholar 

  46. Díaz-Yáñez, O. et al. Tree regeneration in models of forest dynamics: a key priority for further research. Ecosphere 15, e4807 (2024).

    Article  Google Scholar 

  47. Bowler, D. E. et al. Treating gaps and biases in biodiversity data as a missing data problem. Biol. Rev. 100, 50–67 (2025).

    Article  PubMed  Google Scholar 

  48. Massey, R., Berner, L. T., Foster, A. C., Goetz, S. J. & Vepakomma, U. in Boreal Forests in the Face of Climate Change: Sustainable Management (eds Girona, M. M. et al.) 637–655 (Springer, 2023).

  49. Tipton, E. & Hartman, E. in Handbook of Matching and Weighting Adjustments for Causal Inference (eds Zubizarreta, J. R. et al.) 39–60 (Chapman and Hall/CRC, 2023).

  50. Yarkoni, T. & Westfall, J. Choosing prediction over explanation in psychology: lessons from machine learning. Perspect. Psychol. Sci. 12, 1100–1122 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jones, K. B. et al. Informing landscape planning and design for sustaining ecosystem services from existing spatial patterns and knowledge. Landsc. Ecol. 28, 1175–1192 (2013).

    Article  Google Scholar 

  52. Hullman, J. & Diakopoulos, N. Visualization rhetoric: framing effects in narrative visualization. IEEE Trans. Vis. Comput. Graph. 17, 2231–2240 (2011).

    Article  PubMed  Google Scholar 

  53. Alaa, A. M. & van der Schaar, M. Bayesian inference of individualized treatment effects using multi-task Gaussian processes. In Proc. 31st Annual Conference on Neural Information Processing Systems (eds von Luxburg, U. et al.) 3425–3433 (NeurIPS, 2017).

  54. Baier, D. & Stöcker, B. Profit uplift modeling for direct marketing campaigns: approaches and applications for online shops. J. Bus. Econ. 92, 645–673 (2022).

    Google Scholar 

  55. Hillstrom, K. The MineThatData e-mail analytics and data mining challenge. MineThatData https://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html (20 March 2008).

  56. Foster, J. C., Taylor, J. M. G. & Ruberg, S. J. Subgroup identification from randomized clinical trial data. Stat. Med. 30, 2867–2880 (2011).

    Article  PubMed  Google Scholar 

  57. Hill, J. L. Bayesian nonparametric modeling for causal inference. J. Comput. Graph. Stat. 20, 217–240 (2011).

    Article  Google Scholar 

  58. Athey, S. & Imbens, G. Recursive partitioning for heterogeneous causal effects. Proc. Natl Acad. Sci. USA 113, 7353–7360 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Powers, S. et al. Some methods for heterogeneous treatment effect estimation in high dimensions. Stat. Med. 37, 1767–1787 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Robinson, P. M. Root-N-consistent semiparametric regression. Econometrica 56, 931–954 (1988).

    Article  Google Scholar 

  61. Kennedy, E. H. Towards optimal doubly robust estimation of heterogeneous causal effects. Electron. J. Stat. 17, 3008–3049 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

R.S. and E.E.J. were funded by the Natural Environment Research Council (NERC) project ‘Transferable Ecology for a changing world (TREE)’ (NERC reference: NE/X009998/1). E.G. acknowledges funding from an NERC Research Programme Fellowship provided through the UKRI Landscape Decisions Programme (NE/V007831/1). J.M.B. was funded by NERC-funded project ‘Trustworthy and Accountable Decision-Support Frameworks for Biodiversity - A Virtual Labs based Approach’ (NE/X002233/1). R.S. thanks I. J. Dahabreh and L. Evans for informative discussion of concepts.

Author information

Authors and Affiliations

Authors

Contributions

R.S. conceived the idea and developed a first draft with C.P.D. Contributions from E.E.J., J.M.B., E.G., E.T. and M.J.G. substantially developed ideas and content in manuscript iterations.

Corresponding author

Correspondence to Rebecca Spake.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spake, R., Jackson, E.E., Bullock, J.M. et al. Precision ecology for targeted conservation action. Nat Ecol Evol 9, 1102–1111 (2025). https://doi.org/10.1038/s41559-025-02733-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02733-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing