Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global vegetation production may decrease in this century due to rising atmospheric dryness

Abstract

Previous projections from Earth system models have suggested that rising atmospheric CO2 concentrations would stimulate global vegetation production through the CO2 fertilization effect. Here we show that increased atmospheric dryness driven by climate warming will substantially counteract this effect. Using measurements from global eddy-covariance sites and a process-based model, we project that global vegetation gross primary production (GPP) will peak around the middle of the twenty-first century and subsequently decline. The peak of global GPP is projected to increase by only 5.4 ± 0.5% compared with the present. The stalled increase in GPP is more prominent in tropical regions. Additionally, the increased atmospheric dryness resulting from two non-CO2 greenhouse gases (CH4 and N2O) plays an important role in GPP changes. These gases induce climate warming and atmospheric dryness but, unlike CO2, lack a fertilization effect. This study underscores that climate warming-induced atmospheric dryness markedly reduces terrestrial vegetation production, potentially limiting the terrestrial carbon sink in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observed LUE responses to meteorological variables and atmospheric CO2 concentration.
Fig. 2: Changes in LUE responding to rising atmospheric CO2 concentration and VPD.
Fig. 3: Changes in simulated LUE between future (2090–2100) and present (2010–2020) across four scenarios and eight ecosystem types.
Fig. 4: Projected years of maximum global GPP.
Fig. 5: Contributions of atmospheric concentrations of CO2 and non-CO2 GHGs to VPD and GPP changes in the four SSP scenarios.

Similar content being viewed by others

Data availability

All data used in this study are openly available from the following: CMIP6 output (https://aims2.llnl.gov/search/cmip6/); ERA5 (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview); FLUXNET 2015 (https://fluxnet.org/data/fluxnet2015-dataset/); ICOS (https://www.icos-cp.eu/data-products/2G60-ZHAK); AmeriFlux (https://ameriflux.lbl.gov/sites/site-search/); OzFlux (https://data.ozflux.org.au/home.jspx); AsiaFlux (https://db.cger.nies.go.jp/asiafluxdb/); and GLASS-LAI (https://glass.hku.hk/archive/LAI/MODIS/500M/). Any additional information may be obtained from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

Matlab code for the rEC-LUE-v.2 performed in this study is available via Code Ocean at https://doi.org/10.24433/CO.4541304.v1

References

  1. Chapin, F. S. et al. Earth stewardship: a strategy for social–ecological transformation to reverse planetary degradation. J. Environ. Stud. Sci. 1, 44–53 (2011).

    Article  Google Scholar 

  2. Yuan, W. et al. Redefinition and global estimation of basal ecosystem respiration rate. Glob. Biogeochem. Cycles 25, GB4002 (2011).

    Article  Google Scholar 

  3. Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao, M. et al. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 1667, 2–5 (2010).

    Google Scholar 

  5. Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, S. et al. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, eaau5740 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tian, C. et al. Projections of changes in ecosystem productivity under 1.5 °C and 2 °C global warming. Glob. Planet. Change 205, 103588 (2021).

    Article  Google Scholar 

  8. Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

    Article  Google Scholar 

  9. Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Li, S. et al. Vegetation growth due to CO2 fertilization is threatened by increasing vapor pressure deficit. J. Hydrol. 619, 129292 (2023).

    Article  CAS  Google Scholar 

  11. He, B. et al. Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks. Natl Sci. Rev. 9, nwab150 (2021).

  12. Fu, Z. et al. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nat. Commun. 13, 989 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu, H. et al. Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency. Nat. Commun. 13, 1653 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).

  16. Fang, Z. et al. Globally increasing atmospheric aridity over the 21st century. Earth’s Future 10, e2022EF003019 (2022).

    Article  Google Scholar 

  17. IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  18. Xin, Q. et al. A semiprognostic phenology model for simulating multidecadal dynamics of global vegetation leaf area index. J. Adv. Model. Earth Syst. 12, e2019MS001935 (2020).

    Article  Google Scholar 

  19. Ma, H. et al. Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sens. Environ. 273, 112985 (2022).

    Article  Google Scholar 

  20. Yan, K. et al. HiQ-LAI: a high-quality reprocessed MODIS LAI dataset with better spatio-temporal consistency from 2000 to 2022. Earth Syst. Sci. Data 16, 1601–1622 (2023).

    Article  Google Scholar 

  21. Lin, W. et al. Reprocessed MODIS version 6.1 leaf area index dataset and its evaluation for land surface and climate modeling. Remote Sens. 15, 1780 (2023).

    Article  Google Scholar 

  22. He, Y. et al. CO2 fertilization contributed more than half of the observed forest biomass increase in northern extra-tropical land. Glob. Change Biol. 29, 4313–4326 (2023).

    Article  CAS  Google Scholar 

  23. Chen, C. et al. CO2 fertilization of terrestrial photosynthesis inferred from site to global scales. Proc. Natl Acad. Sci. USA 119, e2115627119 (2022).

  24. Obermeier, W. A. et al. Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nat. Clim. Change 7, 137–141 (2017).

    Article  CAS  Google Scholar 

  25. Wang, S. et al. Drylands contribute disproportionately to observed global productivity increases. Sci. Bull. 68, 224–232 (2023).

    Article  Google Scholar 

  26. Cai, W. et al. Large differences in terrestrial vegetation production derived from satellite-based light use efficiency models. Remote Sens. 6, 8945–8965 (2014).

    Article  Google Scholar 

  27. Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yuan, W. et al. Severe summer heatwave and drought strongly reduced carbon uptake in Southern China. Sci. Rep. 6, 18813 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, L. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 4892 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yuan, W. et al. China’s greenhouse gas budget during 2000–2023. Natl Sci. Rev. 12, nwaf069 (2025).

  31. Zhang, S. & Chen, W. Assessing the energy transition in China towards carbon neutrality with a probabilistic framework. Nat. Commun. 13, 87 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ou, Y. et al. Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures. Nat. Commun. 12, 6245 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Edelenbosch, O. et al. Reducing sectoral hard-to-abate emissions to limit reliance on carbon dioxide removal. Nat. Clim. Change 14, 715–722 (2024).

    Article  Google Scholar 

  34. IPCC. Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & and Romero, J.) (IPCC, 2023).

  35. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791 (2016).

    Article  CAS  Google Scholar 

  36. Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2, 1897–1905 (2018).

    Article  PubMed  Google Scholar 

  37. McDowell, N. G. et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294–308 (2022).

    Article  CAS  Google Scholar 

  38. Munson, S. M. et al. Ecosystem thresholds, tipping points, and critical transitions. New Phytol. 218, 1315–1317 (2018).

    Article  PubMed  Google Scholar 

  39. Niu, S. et al. Plant growth and mortality under climatic extremes: an overview. Environ. Exp. Bot. 98, 13–19 (2014).

    Article  Google Scholar 

  40. Knauer, J. et al. Higher global gross primary productivity under future climate with more advanced representations of photosynthesis. Sci. Adv. 9, eadh9444 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, J. et al. Evidence for widespread thermal acclimation of canopy photosynthesis. Nat. Plants 10, 1919–1927 (2024).

  42. Wang, Y. et al. Increasing optimum temperature of vegetation activity over the past four decades. Earths Future 12, e2024EF004489 (2024).

    Article  Google Scholar 

  43. Wu, T. et al. Leaf photosynthetic and respiratory thermal acclimation in terrestrial plants in response to warming: a global synthesis. Glob. Change Biol. 31, e70026 (2025).

    Article  CAS  Google Scholar 

  44. Du, Q. et al. Leaf anatomical adaptations have central roles in photosynthetic acclimation to humidity. J. Exp. Bot. 70, 4949–4962 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Lopez, J. et al. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Glob. Change Biol. 27, 1704–1720 (2021).

    Article  CAS  Google Scholar 

  46. Chen, I. C. et al. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Luo, X. et al. Mapping the global distribution of C4 vegetation using observations and optimality theory. Nat. Commun. 15, 1219 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Van Der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 8, 24–28 (2015).

    Article  Google Scholar 

  49. Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Myneni, R. et al. MODIS/terra leaf area index/FPAR 8-day L4 global 500m SIN grid V061. LP DAAC https://doi.org/10.5067/MODIS/MOD15A2H.061 (2021).

  52. Dhorde, A. G. et al. Spatio-temporal variation in terminal drought over western India using dryness index derived from long-term MODIS data. Ecol. Inform. 32, 28–38 (2016).

    Article  Google Scholar 

  53. Mariano, D. A. et al. Use of remote sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil. Remote Sens. Environ. 213, 129–143 (2018).

    Article  Google Scholar 

  54. Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).

    Article  CAS  Google Scholar 

  55. He, M. et al. Evaluation and improvement of MODIS gross primary productivity in typical forest ecosystems of East Asia based on eddy covariance measurements. J. For. Res. 18, 31–40 (2013).

    Article  Google Scholar 

  56. Forzieri, G. et al. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Change 10, 356–362 (2020).

    Article  Google Scholar 

  57. Schroeder, M. A. et al. Diagnosing and dealing with multicollinearity. West. J. Nurs. Res. 12, 175–187 (1990).

    Article  PubMed  Google Scholar 

  58. Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).

    Article  Google Scholar 

  59. Yamori, W. et al. Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant Cell Environ. 28, 536–547 (2005).

    Article  CAS  Google Scholar 

  60. Fu, Z. et al. Critical soil moisture thresholds of plant water stress in terrestrial ecosystems. Sci. Adv. 8, eabq7827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang, X. et al. Improving the global MODIS GPP model by optimizing parameters with fluxnet data. Agric. For. Meteorol. 300, 108314 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (grant nos. 42141020 and 42101319), National Key Research and Development Program of China (grant no. 2023YFF1303602) and the Science and Technology Program of Guangdong (no. 2024B1212070012).

Author information

Authors and Affiliations

Authors

Contributions

S.L., X.C. and W.Y. conceived the study. S.L., W.Y., J.X. and X.C. contributed to early-stage discussions. S.L. collected and preprocessed the data and the code. S.L., J.X. and W.Y. performed the analysis, led the result interpretation and drafted the initial paper. X.C., Q.X., Z.F., B.H., Q.L. and S.P. contributed to the development and discussion of the methods. All co-authors reviewed the results and contributed to the writing and revision of the paper.

Corresponding author

Correspondence to Wenping Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–19 and Tables 1–4.

Reporting Summary

Supplementary Data 1

Source geotiff data for Fig. 4e which should be open as .geotiff format with Arcmap or Python script. The numbers in the .tif file are the years.

Supplementary Data 2

Source geotiff data for Fig. 4f which should be open as .geotiff format with Arcmap or Python script. The numbers in the .tif file are the years.

Supplementary Data 3

Source geotiff data for Fig. 4g which should be open as .geotiff format with Arcmap or Python script. The numbers in the .tif file are the years.

Supplementary Data 4

Source geotiff data for Fig. 4h which should be open as .geotiff format with Arcmap or Python script. The numbers in the .tif file are the years.

Source data

Source Data Figs. 1–5

Statistical source data for Fig. 1a,b, Fig. 2a–e and Fig. 3a–h (unit in gC MJ−1 m−2); Fig. 4a–d (unit in PgC yr−1); Fig. 5a–d (unit in hPa); Fig. 5e–h (unit in PgC yr−1).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Chen, X., Xia, J. et al. Global vegetation production may decrease in this century due to rising atmospheric dryness. Nat Ecol Evol 9, 2279–2289 (2025). https://doi.org/10.1038/s41559-025-02885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02885-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing