Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The global extent of the grassland biome and implications for the terrestrial carbon sink

Abstract

Land cover data are commonly used to model the terrestrial carbon (C) sink, yet these data have wide margins of error that significantly alter estimates of global C storage. Here we demonstrate this data vulnerability in grasslands, which are critical to C cycling but whose estimated distribution has varied by >50 million km2 (3.5–42% of the Earth’s terrestrial surface). Comparing multiple high-resolution land cover products with expertly annotated grassland data from six continents, we show sources of mapping error and discuss C implications based on 2023 United Nations (UN) FAO estimates. Past misidentification arose from inconsistent definitions on grassland identity and classification flaws especially relating to woody plant cover. Correcting these errors adjusted grassland coverage to 22.8% of the terrestrial land base (30.1 million km2), elevating UN projections of soil C stocks to 155.02 Pg (0–30 cm depth). These findings underscore the challenges of biome mapping for ecosystem accounting and policy, when lacking field-validated remotely sensed data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Grassland sites of this study, in relation to the WC land cover map.
Fig. 2: Differences in accuracy for identifying grassland and non-grassland land cover in 10 m × 10 m pixels among three high-resolution land cover products.

Similar content being viewed by others

Data availability

All data and materials used in the analysis are available from the corresponding authors on request.

References

  1. Anderson, K. et al. Earth observation in service of the 2030 Agenda for Sustainable Development. Geo Spat. Inf. Sci. 20, 77–96 (2017).

    Article  Google Scholar 

  2. Avtar, R. et al. Assessing sustainable development prospects through remote sensing: a review. Remote Sens. Appl. 20, 100402 (2020).

    PubMed  PubMed Central  Google Scholar 

  3. UN Sustainable Development Goals (United Nations Department of Economic and Social Affairs, 2024).

  4. Watmough, G. R. et al. Socio-ecologically informed use of remote sensing data to predict rural household poverty. Proc. Natl Acad. Sci. USA 116, 1213–1218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mirza, M. U., Xu, C., Bavel, B. V., van Nes, E. H. & Scheffer, M. Global inequality remotely sensed. Proc. Natl Acad. Sci. USA 118, e1919913118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Karra, K. et al. Global land use/land cover with Sentinel 2 and deep learning. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS 4704–4707 (IEEE, 2021).

  7. Zanaga, D. et al. ESA WorldCover 10m 2020 v100 (European Space Agency, 2021).

  8. Van De Kerchove, R. et al. ESA World Cover: global land cover mapping at 10 m resolution for 2020 based on Sentinel-1 and 2 data. In AGU Fall Meeting Abstracts (GC45I–0915) (European Space Agency, 2021).

  9. Abdikan, S., Sanli, F. B., Ustuner, M. & Calò, F. Land cover mapping using sentinel-1 SAR data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 41, 757–761 (2016).

    Article  Google Scholar 

  10. Brown, C. F. et al. Dynamic world, near real-time global 10 m land use land cover mapping. Sci. Data 9, 251 (2022).

    Article  PubMed Central  Google Scholar 

  11. Venter, Z. S., Barton, D. N., Chakraborty, T., Simensen, T. & Singh, G. Global 10 m land use land cover datasets: a comparison of dynamic world, world cover and Esri land cover. Remote Sens. 14, 410 (2022).

    Article  Google Scholar 

  12. Wang, Y. et al. A review of regional and global scale land use/land cover (LULC) mapping products generated from satellite remote sensing ISPRS J. Photogramm. Remote Sens. 206, 311–334 (2023).

  13. Xu, P. et al. Comparative validation of recent 10 m-resolution global land cover maps. Remote Sens. Environ. 311, 114316 (2024).

    Article  Google Scholar 

  14. Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).

    Article  Google Scholar 

  15. Olofsson, P. et al. Mitigating the effects of omission errors on area and area change estimates. Remote Sens. Environ. 236, 111492 (2020).

    Article  Google Scholar 

  16. Friedlingstein, P. et al. Global carbon budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).

    Article  Google Scholar 

  17. Dondini, M. et al. Global Assessment of Soil Carbon in Grasslands: From Current Stock Estimates to Sequestration Potential (FAO, 2023).

  18. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schirpke, U. et al. Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosyst. Serv. 26, 79–94 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wilsey, B. The Biology of Grasslands (Oxford Univ. Press, 2018).

  21. Nerlekar, A. N. et al. Exponential rise in the discovery of endemic plants underscores the need to conserve the Indian savannas. Biotropica 54, 405–417 (2022).

    Article  Google Scholar 

  22. Ratnam, J. et al. When is a ‘forest’ a savanna, and why does it matter? Glob. Ecol. Biogeogr. 20, 653–660 (2011).

    Article  Google Scholar 

  23. Edens, B. et al. Establishing the SEEA Ecosystem Accounting as a global standard. Ecosyst. Serv. 54, 101413 (2022).

    Article  Google Scholar 

  24. FAO STAT Statistical Database 2013 (FAO, 2015).

  25. Conant, R. T., Cerri, C. E., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2007).

    Article  Google Scholar 

  26. Godde, C. M. et al. Global rangeland production systems and livelihoods at threat under climate change and variability. Environ. Res. Lett. 15, 044021 (2020).

    Article  Google Scholar 

  27. White, R. P., Murray, S., Rohweder, M., Prince, S. D. & Thompson, K. M. Grassland Ecosystems (World Resources Institute, 2000).

  28. Loveland, T. R. et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 21, 1303–1330 (2000).

    Article  Google Scholar 

  29. Drotos, K. H., Larson, D. W. & McMullin, R. T. Scientific telephone: The cautionary tale of the global coverage of lichens. BioScience 74, 473–477 (2024).

  30. Keenan, T. F. & Williams, C. A. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 43, 219–243 (2018).

    Article  Google Scholar 

  31. Scurlock, J. M. O. & Hall, D. O. The global carbon sink: a grassland perspective. Glob. Change Biol. 4, 229–233 (1998).

    Article  Google Scholar 

  32. Reich, P. B., Peterson, D. W., Wedin, D. A. & Wrage, K. Fire and vegetation effects on productivity and nitrogen cycling across a forest–grassland continuum. Ecology 82, 1703–1719 (2001).

    Google Scholar 

  33. Hungate, B. A. et al. The economic value of grassland species for carbon storage. Sci. Adv. 3, e1601880 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dass, P., Houlton, B. Z., Wang, Y. & Warlind, D. Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. 13, 074027 (2018).

    Article  Google Scholar 

  35. Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22 (2004).

    Article  CAS  Google Scholar 

  36. Wilcox, B. P. et al. Saving imperiled grassland biomes by recoupling fire and grazing: a case study from the Great Plains. Front. Ecol. Environ. 20, 179–186 (2022).

    Article  Google Scholar 

  37. Baudena, M. et al. Forests, savannas, and grasslands: bridging the knowledge gap between ecology and Dynamic Global Vegetation Models. Biogeosciences 12, 1833–1848 (2015).

    Article  Google Scholar 

  38. Silveira, F. A. et al. Myth-busting tropical grassy biome restoration. Restor. Ecol. 28, 1067–1073 (2020).

    Article  Google Scholar 

  39. Lahiri, S., Roy, A. & Fleischman, F. Grassland conservation and restoration in India: a governance crisis. Restor. Ecol. 31, e13858 (2023).

    Article  Google Scholar 

  40. Fleischman, F. et al. Pitfalls of tree planting show why we need people-centered natural climate solutions. BioScience 70, 947–950 (2020).

    Google Scholar 

  41. Nerlekar, A. N., Munje, A., Mhaisalkar, P., Hiremath, A. J. & Veldman, J. W. Tillage agriculture and afforestation threaten tropical savanna plant communities across a broad rainfall gradient in India. J. Ecol. 112, 98–109 (2024).

    Article  Google Scholar 

  42. Parr, C. L., Te Beest, M. & Stevens, N. Conflation of reforestation with restoration is widespread. Science 383, 698–701 (2024).

    Article  CAS  PubMed  Google Scholar 

  43. Andreatta, D., Gianelle, D., Scotton, M. & Dalponte, M. Estimating grassland vegetation cover with remote sensing: a comparison between Landsat-8, Sentinel-2 and PlanetScope imagery. Ecol. Indic. 141, 109102 (2022).

    Article  Google Scholar 

  44. Nilashi, M., Keng Boon, O., Tan, G., Lin, B. & Abumalloh, R. Critical data challenges in measuring the performance of sustainable development goals: solutions and the role of big-data analytics. Harvard Data Sci. Rev. https://doi.org/10.1162/99608f92.545db2cf (2023).

  45. White, R. L. et al. The next generation of action ecology: novel approaches towards global ecological research. Ecosphere 6, 1–16 (2015).

    Article  Google Scholar 

  46. Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).

    Article  Google Scholar 

  47. Aubin, I. et al. Managing data locally to answer questions globally: The role of collaborative science in ecology. J. Veg. Sci. 31, 509–517 (2020).

    Article  Google Scholar 

  48. Borer, E. T., Grace, J. B., Harpole, W. S., MacDougall, A. S. & Seabloom, E. W. A decade of insights into grassland ecosystem responses to global environmental change. Nat. Ecol. Evol. 1, 0118 (2017).

    Article  Google Scholar 

  49. Bardgett, R. D. et al. Combating global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).

    Article  Google Scholar 

  50. Gibson, D. J. Grasses and Grassland Ecology (Oxford Univ. Press, 2009).

  51. Wu, Q. Geemap: a Python package for interactive mapping with Google Earth Engine. J. Open Source Softw. 5, 2305 (2020).

    Article  Google Scholar 

  52. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  53. Olson, J. S., Watts J. A. & Allison L. J. Carbon in Live Vegetation of Major World Ecosystems Report ORNL-5862 (Oak Ridge National Laboratory, 1983).

  54. Bai, Y. & Cotrufo, M. F. Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science 377, 603–608 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Suttie, J. M., Reynolds, S. G. & Batello, C. (eds) Grasslands of the World Plant Production and Protection Series No. 34 (FAO, 2005).

  56. Global Land Cover Characteristics Database version 1.2 (USGS, 1998); http://edcdaac.usgs.gov/glcc/glcc.html

  57. Sun, W. et al. Land use and cover changes on the Loess Plateau: a comparison of six global or national land use and cover datasets. Land Use Policy 119, 106165 (2022).

    Article  Google Scholar 

  58. O’Mara, F. P. The role of grasslands in food security and climate change. Ann. Bot. 110, 1263–1270 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chang, J. et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat. Commun. 12, 118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. IPCC. Summary for Policymakers. In Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (WMO and UNEP, 2019).

  61. Whittaker, R. H. & Likens, G. E. Carbon in the biota. Brookhaven Symp. Biol. 24, 281–302 (1973).

  62. Goldewijk, K. K., Van Drecht, G. & Bouwman, A. F. Mapping contemporary global cropland and grassland distributions on a 5 × 5 minute resolution. J. Land Use Sci. 2, 167 (2007).

    Article  Google Scholar 

  63. Latham, J. et al. Global Land Cover Share (GLC-SHARE) Database Beta-release version 1.0-2014 (FAO, 2014).

  64. Arneth, A. et al. Restoring degraded lands. Annu. Rev. Environ. Resour. 46, 569–599 (2021).

    Article  Google Scholar 

  65. The State of Food Security and Nutrition in the World 2018: Building Climate Resilience for Food Security and Nutrition (FAO, 2018).

  66. IPCC. Land Use, Land-use Change, and Forestry (Cambridge Univ. Press, 2000).

  67. Schellberg, J., Hill, M. J., Gerhards, R., Rothmund, M. & Braun, M. Precision agriculture on grassland: applications, perspectives and constraints. Eur. J. Agron. 29, 59–71 (2008).

    Article  Google Scholar 

  68. Compendium of Agricultural–Environmental Indicators (1989–91 to 2000) (FAO, 2008); http://www.fao.org/es/ess/os/envi indi/part 15.asp

  69. Liu, Y. et al. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe. Ecol. Indic. 106, 105504 (2019).

    Article  Google Scholar 

  70. Lieth, H. F. H. Patterns of Primary Productivity in the Biosphere (Hutchinson Ross, 1978).

  71. Lauenroth, W. K. in Perspectives in Grassland Ecology: Results and Applications of the US/IBP Grassland Biome Study (ed. French, N. R.) 3–24 (Springer, 1979).

  72. Shantz, H. L. The place of grasslands in the Earth’s cover. Ecology 35, 143–145 (1954).

    Article  Google Scholar 

  73. Xia, J. et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens. 6, 1783–1802 (2014).

    Article  Google Scholar 

  74. Bartholomé, E. et al. GLC 2000: Global Land Cover Mapping for the Year 2000. Report No. EUR 20524 EN (European Commission, 2002).

Download references

Acknowledgements

We thank each of the researchers who have contributed data and ideas to this paper. This study was largely funded by the Canada First Research Excellence Fund—University of Guelph (‘Food from Thought’), with support from the Natural Sciences and Engineering Research Council of Canada (A.S.M.). M.B.S. acknowledges funding from the Swedish Research Council (2021-05767), FORMAS (2020-01073) and the European Union’s Horizon Program project ILLUQ (no. 101133587). Funding was also provided to E.W.S. and E.T.B. by the National Science Foundation Research Coordination Network (NSF-DEB-1042132) and the Long-Term Ecological Research (NSF-DEB-1234162 to Cedar Creek LTER) programmes, and the Institute on the Environment (DG-0001-13). Y.M.B. acknowledges financial support from Research Ireland, Northern Ireland’s Department of Agriculture, Environment and Rural Affairs (DAERA), UK Research and Innovation (UKRI) via the International Science Partnerships Fund (ISPF) under grant number [22/CC/11103] at the Co-Centre for Climate + Biodiversity + Water. N.E. was supported by the German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig iDiv funded by the German Research Foundation (DFG– FZT 118, 202548816), and funding by the DFG (Ei 862/29-1). S.C.P. acknowledges funding from NSF OCE-1832178.

Author information

Authors and Affiliations

Authors

Contributions

A.S.M., M.B.S., J.S. and B.V., with D.N., S. Bagchi and T.O.M., conceptualized the project. B.V., with A.S.M. and M.B.S., designed the methodology. B.V., with A.S.M., M.B.S. and J.S., conducted the investigations. All authors gathered the data. B.V., with A.S.M., M.B.S. and J.S., performed the visualization. A.S.M., with M.B.S., acquired the funding. A.S.M., with M.B.S., J.S., S. Bagchi, D.N. and T.O.M., administered the project. A.S.M., with M.B.S. and J.S., supervised the project. A.S.M., with B.V., M.B.S., J.S., E.W.S. and E.T.B., wrote the original draft of the paper. All authors reviewed and edited the paper.

Corresponding authors

Correspondence to A. S. MacDougall or M. B. Siewert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Fiona Cawkwell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional Methods, Supplementary Figs. 1–5 and Tables 1–6.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacDougall, A.S., Vanzant, B., Sulik, J. et al. The global extent of the grassland biome and implications for the terrestrial carbon sink. Nat Ecol Evol (2026). https://doi.org/10.1038/s41559-025-02955-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41559-025-02955-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing