Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoholes within cyanobacterial mats can account for the origin of anammox bacteria and ancient nitrogen loss

Abstract

Anaerobic ammonium oxidation (anammox) bacteria contribute to nearly half of global nitrogen loss. However, the driving force responsible for the origin of anammox bacteria remains poorly understood. Here we show that anammox bacteria can oxidize ammonium to N2 for growth using photoholes—the positive charge carriers generated from photosensitizers—potentially supporting their origin. Such photoholes could have been generated in sunlit benthic environments by cyanobacterial mats and semiconducting minerals under the intense solar radiation of the Late Archaean (3.0–2.5 billion years ago). Moreover, cyanobacterial mats absorbed harmful short-wavelength light for anammox bacteria, while allowing longer-wavelength infrared light to penetrate. Light-driven enrichment of nitrite-reductase-deficient anammox bacteria in long-term-cultured cyanobacterial mats, DNA stable-isotope probing and evolutionary analysis collectively suggest that the ancestral anammox bacteria tended to be photoelectrotrophic instead of nitrite-dependent. Our discovery provides a paradigm shift in our understanding of the origin of ammonium oxidation and may explain the nitrogen loss on early Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Light-driven enrichment of anammox bacteria in the cyanobacterial mats.
Fig. 2: Evidence for photohole-driven ammonium oxidation by anammox bacteria.
Fig. 3: Impact of light with different wavelengths on anammox bacteria.
Fig. 4: Timetree inferred under a Bayesian node-dating approach, showing the divergence time of anammox bacteria.
Fig. 5: Evolution of the metabolic traits of anammox bacteria.
Fig. 6: Proposed schematic model illustrating biophotoelectrochemical ammonium oxidation by anammox bacteria in sunlit benthic cyanobacterial mats.

Data availability

All raw metagenomes and metatranscriptomes are deposited in the NCBI Sequence Read Archive under BioProject accession numbers PRJNA1144341 and PRJNA1260665. All information on the publicly available MAGs used in this study is provided in Supplementary Datasets 2 and 3. The data that support the findings of this study are available from the corresponding author upon request. Source data are provided with this paper.

Code availability

Analysis scripts are publicly available at https://github.com/zhengru-pku/Metatranscriptomic_analyze.

References

  1. Humbert, S. et al. Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. ISME J. 4, 450–454 (2010).

    Article  PubMed  Google Scholar 

  2. Sun, J. et al. Potential growth of anammox bacteria under aerobic conditions. Environ. Sci. Technol. 58, 18244–18254 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Lawson, C. E. et al. Autotrophic and mixotrophic metabolism of an anammox bacterium revealed by in vivo 13C and 2H metabolic network mapping. ISME J. 15, 673–687 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Shaw, D. R. et al. Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria. Nat. Commun. 11, 2058 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cuecas, A., Barrau, M. J. & Gonzalez, J. M. Microbial divergence and evolution. The case of anammox bacteria. Front. Microbiol. 15, 1355780 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liao, T. et al. Phylogenomic evidence for the origin of obligate anaerobic anammox bacteria around the Great Oxidation Event. Mol. Biol. Evol. 39, msac170 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lyons, T. W. et al. Co-evolution of early Earth environments and microbial life. Nat. Rev. Microbiol. 22, 572–586 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Liao, T. et al. Dating ammonia-oxidizing bacteria with abundant eukaryotic fossils. Mol. Biol. Evol. 41, msae096 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kartal, B. et al. Molecular mechanism of anaerobic ammonium oxidation. Nature 479, 127–130 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Planavsky, N. J. et al. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477, 448–451 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Zhu-Barker, X. et al. The importance of abiotic reactions for nitrous oxide production. Biogeochemistry 126, 251–267 (2015).

    Article  CAS  Google Scholar 

  12. Buessecker, S. et al. Mineral-catalysed formation of marine NO and N2O on the anoxic early Earth. Nat. Geosci. 15, 1056–1063 (2022).

    Article  CAS  Google Scholar 

  13. Parsons, C. et al. Radiation of nitrogen-metabolizing enzymes across the tree of life tracks environmental transitions in Earth history. Geobiology 19, 18–34 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Maza-Márquez, P. et al. Millimeter-scale vertical partitioning of nitrogen cycling in hypersaline mats reveals prominence of genes encoding multi-heme and prismane proteins. ISME J. 16, 1119–1129 (2022).

    Article  PubMed  Google Scholar 

  15. Gutiérrez-Preciado, A. et al. Functional shifts in microbial mats recapitulate early Earth metabolic transitions. Nat. Ecol. Evol. 2, 1700–1708 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stüeken, E. E. et al. Marine biogeochemical nitrogen cycling through Earth’s history. Nat. Rev. Earth Environ. 5, 732–747 (2024).

    Article  Google Scholar 

  17. Li, Y. et al. Photoreduction of inorganic carbon(+IV) by elemental sulfur: implications for prebiotic synthesis in terrestrial hot springs. Sci. Adv. 6, eabc3687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sánchez-Baracaldo, P. et al. Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol. 30, 143–157 (2022).

    Article  PubMed  Google Scholar 

  19. Wiegand, S., Jogler, M. & Jogler, C. On the maverick Planctomycetes. FEMS Microbiol. Rev. 42, 739–760 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Klawonn, I. et al. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates. ISME J. 9, 1456–1466 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goldman, A. D. et al. Electron transport chains as a window into the earliest stages of evolution. Proc. Natl Acad. Sci. USA 120, e2210924120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ming, J. et al. Photocatalytic material–microorganism hybrid systems in water decontamination. Trends Biotechnol. 43, 1031–1047 (2025).

    Article  CAS  PubMed  Google Scholar 

  23. Huang, S. et al. Dissolved organic matter acting as a microbial photosensitizer drives photoelectrotrophic denitrification. Environ. Sci. Technol. 56, 4632–4641 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, S. et al. Biophotoelectrochemical process co-driven by dead microalgae and live bacteria. ISME J. 17, 712–719 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng, H. et al. Sunlight-triggered synergy of hematite and Shewanella oneidensis MR-1 in Cr(VI) removal. Geochim. Cosmochim. Acta 305, 19–32 (2021).

    Article  CAS  Google Scholar 

  26. Kong, L. et al. Anammox bacteria adapt to long-term light irradiation in photogranules. Water Res. 241, 120144 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, L. et al. Anammox coupled with photocatalyst for enhanced nitrogen removal and the activated aerobic respiration of anammox bacteria based on cbb3-type cytochrome c oxidase. Environ. Sci. Technol. 57, 17910–17919 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Guo, M., Wang, C. & Qiao, S. Light-driven ammonium oxidation to dinitrogen gas by self-photosensitized biohybrid anammox systems. iScience 26, 106725 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu, P. et al. The core anammox redox reaction system of 12 anammox bacterial genera and their evolution and application implications. Water Res. 281, 123551 (2025).

    Article  CAS  PubMed  Google Scholar 

  30. Kong, L. et al. Interspecies hydrogen transfer between cyanobacteria and symbiotic bacteria drives nitrogen loss. Nat. Commun. 16, 5078 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng, R. et al. Blue-light irradiation induced partial nitrification. Water Res. 254, 121381 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. Lu, A. et al. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nat. Commun. 3, 768 (2012).

    Article  PubMed  Google Scholar 

  33. Zhang, J. et al. Accumulation of long-lived photogenerated holes at indium single-atom catalysts via two coordinate nitrogen vacancy defect engineering for enhanced photocatalytic oxidation. Adv. Mater. 36, 2309205 (2024).

    Article  CAS  Google Scholar 

  34. Okubo, T. et al. The physiological potential of anammox bacteria as revealed by their core genome structure. DNA Res. 28, dsaa028 (2020).

    Article  PubMed Central  Google Scholar 

  35. Maalcke, W. J. et al. Structural basis of biological NO generation by octaheme oxidoreductases. J. Biol. Chem. 289, 1228–1242 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Oshiki, M. et al. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by “Candidatus Brocadia sinica”. Environ. Microbiol. 18, 3133–3143 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Hu, Z. et al. Nitric oxide-dependent anaerobic ammonium oxidation. Nat. Commun. 10, 1244 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huang, B.-C. et al. Light-driven electron uptake from nonfermentative organic matter to expedite nitrogen dissimilation by chemolithotrophic anammox consortia. Environ. Sci. Technol. 57, 12732–12740 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Trebuch, L. M. et al. High resolution functional analysis and community structure of photogranules. ISME J. 17, 870–879 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Davis, S. J., Vener, A. V. & Vierstra, R. D. Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286, 2517–2520 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, R. et al. Unraveling sources of cyanate in the marine environment: insights from cyanate distributions and production during the photochemical degradation of dissolved organic matter. Front. Mar. Sci. 11, 1373643 (2024).

    Article  Google Scholar 

  42. Zhao, R., Biddle, J. F. & Jørgensen, S. L. Introducing Candidatus Bathyanammoxibiaceae, a family of bacteria with the anammox potential present in both marine and terrestrial environments. ISME Commun. 2, 42 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wisniewski-Dyé, F. et al. Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet. 7, e1002430 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Moran, M. A. & Miller, W. L. Resourceful heterotrophs make the most of light in the coastal ocean. Nat. Rev. Microbiol. 5, 792–800 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Wu, J. et al. Novel anammox bacteria discovered in the untapped subsurface aquifers. Preprint at bioRxiv https://doi.org/10.1101/2023.04.27.538623 (2023).

  46. Lodha, T., Narvekar, S. & Karodi, P. Classification of uncultivated anammox bacteria and Candidatus Uabimicrobium into new classes and provisional nomenclature as Candidatus Brocadiia classis nov. and Candidatus Uabimicrobiia classis nov. of the phylum Planctomycetes and novel family Candidatus Scalinduaceae fam. nov to accommodate the genus Candidatus Scalindua. Syst. Appl. Microbiol. 44, 126272 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Ren, M. et al. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J. 13, 2150–2161 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chicano, T. M. et al. Structural and functional characterization of the intracellular filament-forming nitrite oxidoreductase multiprotein complex. Nat. Microbiol. 6, 1129–1139 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Han, X. et al. Origin and evolution of core components responsible for monitoring light environment changes during plant terrestrialization. Mol. Plant 12, 847–862 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Peng, M.-W. et al. Insight into the structure and metabolic function of iron-rich nanoparticles in anammox bacteria. Sci. Total Environ. 806, 150879 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Helmbrecht, V. et al. Simulated early Earth geochemistry fuels a hydrogen-dependent primordial metabolism. Nat. Ecol. Evol. 9, 769–778 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liu, J. et al. Extracellular electron transfer of electrochemically active bacteria community promoted by semiconducting minerals with photo-response in marine euphotic zone. Geomicrobiol. J. 38, 329–339 (2021).

    Article  CAS  Google Scholar 

  53. Liu, T. et al. Sustainable wastewater management through nitrogen-cycling microorganisms. Nat. Water 2, 936–952 (2024).

    Article  CAS  Google Scholar 

  54. Rios, E. et al. Anaerobic ammonium oxidation linked to microbial reduction of natural organic matter in marine sediments. Environ. Sci. Technol. Lett. 5, 571–577 (2018).

    Article  Google Scholar 

  55. Garcias-Bonet, N. et al. High denitrification and anaerobic ammonium oxidation contributes to net nitrogen loss in a seagrass ecosystem in the central Red Sea. Biogeosciences 15, 7333–7346 (2018).

    Article  CAS  Google Scholar 

  56. Garvin, J. et al. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323, 1045–1048 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Godfrey, L. V. & Falkowski, P. G. The cycling and redox state of nitrogen in the Archaean ocean. Nat. Geosci. 2, 725–729 (2009).

    Article  CAS  Google Scholar 

  58. Koehler, M. C. et al. Transient surface ocean oxygenation recorded in the 2.66-Ga Jeerinah Formation, Australia. Proc. Natl Acad. Sci. USA 115, 7711–7716 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martin, A. N. et al. Anomalous δ15N values in the Neoarchean associated with an abundant supply of hydrothermal ammonium. Nat. Commun. 16, 1873 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bian, J. et al. Bioinspired Fe single-atom nanozyme synergizes with natural NarGH dimer for high-efficiency photobiocatalytic nitrate conversion. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.5c07315 (2025).

    Article  PubMed  Google Scholar 

  61. Bian, J. et al. Directional electron transfer in enzymatic nano-bio hybrids for selective photobiocatalytic conversion of nitrate. Angew. Chem. Int. Ed. 63, e202412194 (2024).

    Article  CAS  Google Scholar 

  62. Kang, D. et al. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chaumeil, P.-A. et al. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10, 33 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281–285 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Kong, L. et al. Cross-feeding between filamentous cyanobacteria and symbiotic bacteria favors rapid photogranulation. Environ. Sci. Technol. 57, 16953–16963 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Tadic, M. et al. Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Appl. Surf. Sci. 320, 183–187 (2014).

    Article  CAS  Google Scholar 

  70. Neufeld, J. D. et al. DNA stable-isotope probing. Nat. Protoc. 2, 860–866 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Kang, D. et al. Deciphering correlation between chromaticity and activity of anammox sludge. Water Res. 185, 116184 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Reis, M. D. & Yang, Z. Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times. Mol. Biol. Evol. 28, 2161–2172 (2011).

    Article  PubMed  Google Scholar 

  73. Zhao, R. et al. Age, metabolisms, and potential origin of dominant anammox bacteria in the global oxygen-deficient zones. ISME Commun. 4, ycae060 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Misawa, K. et al. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nguyen, L.-T. et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Davín, A. A. et al. A geological timescale for bacterial evolution and oxygen adaptation. Science 388, eadp1853 (2025).

    Article  PubMed  Google Scholar 

  77. Szollosi, G. et al. Efficient exploration of the space of reconciled gene trees. Syst. Biol. 62, 901–912 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Moody, E. R. R. et al. The nature of the last universal common ancestor and its impact on the early Earth system. Nat. Ecol. Evol. 8, 1654–1666 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (W2412119 (S.L.), 52270016 (S.L.), 52200029 (K.Z.) and 523B2095 (L.K.)) and Peking University-BHP Carbon and Climate Wei-Ming PhD Scholars (WM202510 (L.K.)). We are grateful for the support of the High-Performance Computing Platform of Peking University.

Author information

Authors and Affiliations

Authors

Contributions

S.L., L.K. and R.Z. designed the study. L.K., R.Z. and J.F. conducted the research with the help of Y.F., B.C., Y.M., J.W. and A.C. K.Z., L.K., R.Z. and S.L. wrote the paper. Y.F. and B.C. performed the software analysis. Y.M., J.W. and A.C. investigated the related information. All the authors contributed to the interpretation of the findings.

Corresponding author

Correspondence to Sitong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Tianhua Liao, Eva Stüeken and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 EPR spectroscopy of the cyanobacterial mats.

(a) The EPR signal was detected in the presence of 5 mM spin probe TEMPO in cyanobacterial mats under dark conditions. (b) The TEMPO signal was detected with the addition of electron scavenger (5 mM AgNO3) in cyanobacterial mats under light conditions. All EPR spectra were recorded at room temperature (25 °C) and recorded every 5 minutes with the following instrumental parameters: center magnetic field, 3505.00 G; modulation frequency, 100.00 kHz; modulation amplitude, 1.000 G; microwave power, 0.6325 mW; sweep width, 100.0 G; and sweep time, 30 s. Magnified views of the selected region were shown to highlight subtle variations in signal intensity.

Source data

Extended Data Fig. 2 Expression of genes in enriched AMX1 at different days during the reactor operation.

Gene expression levels, quantified as Log2(TPM + 1), are shown for metatranscriptomic samples collected at key time points: under dark conditions on day 60 and under light conditions on days 200 and 450. Rows denote genes categorized by function, including light sensing and adaptation, nitrogen metabolism, electron transfer, and cyanate assimilation. The gene encoding hydrazine synthase subunit C (hzsC) was not detected in the AMX1 genome, likely due to the incompleteness of the recovered MAG. For each condition, TPM values represent the mean ± standard deviation derived from three biological replicates.

Source data

Extended Data Fig. 3 Morphological and structural characterization of hematite and hematite-anammox biohybrid system.

(a) Scanning electron microscopy (SEM) image showing the morphology of the hematite-anammox biohybrid system. Micrographs are representative results from 10 independent images. (b) Energy dispersive X-ray spectroscopy (EDS) mapping highlighting the distribution of the Fe element. (c) EDS mapping showing the distribution of the C element within the biohybrid system. (d) EDS mapping illustrating the distribution of the O element. (e) X-ray photoelectron spectroscopy (XPS) spectrum of hematite, revealing characteristic binding energies of Fe, O, and C. (f) X-ray diffraction (XRD) pattern of hematite, with key diffraction peaks corresponding to hematite (indexed in blue).

Source data

Extended Data Fig. 4 Formation of iron mineral on the surface of cyanobacterial mats.

SEM-EDS analysis of cyanobacterial mats collected from the photobioreactor on day 450. The SEM image shows cyanobacterial filaments partially covered by granular deposits identified as iron oxides. Elemental mapping of Fe, O, and C reveals strong co-localization of Fe and O, with negligible carbon signal, indicating the formation of iron mineral coatings on the cyanobacterial surface. Micrographs are representative results from 10 independent images.

Extended Data Fig. 5 The gene expression profile of anammox bacteria during the batch assays of biophotoelectrochemical ammonium oxidation.

Gene expression profiles (in terms of TPM) of three recovered MAGs of anammox bacteria (AMX1–3) under different experimental conditions: hematite-anammox biohybrid under illumination with ammonium (R0), anammox consortia without hematite under illumination (R1), and dark anammox consortia supplied with ammonium and nitrite (R2). TPM values represent means of three biological replicates. Red and blue indicate up- and down-regulated genes, respectively. Statistical significance was assessed using an unpaired two-sided Student’s t-test (*P < 0.05; **P < 0.01; **P < 0.001).

Source data

Extended Data Fig. 6 The variation of specific anammox activity (SAA) over time in the batch assays under different light conditions.

(a) Blue light groups. (b) Infrared light groups. (c) White light groups. Batch assays were conducted under a light intensity of 8000 lux, with each illuminated group paired with a corresponding dark control. Specific anammox activity (SAA) was calculated based on the substrate consumption rate to evaluate the metabolic activity of anammox bacteria over time. Data represent mean ± s.d. of three biological replicates. Statistical significance was determined using a two-tailed Student’s t-test (*P < 0.05; **P < 0.01; **P < 0.001).

Source data

Extended Data Fig. 7 Co-occurrence network of the microbial community.

The network was constructed at the genus level based on Spearman’s correlation coefficients across all metagenomic samples collected during the reactor operation. Node size corresponds to the relative abundance of each genus. A threshold of R > 0.7 and P < 0.05 was used to filter for genera most strongly correlated with anammox bacteria (Ca. Brocadia) and cyanobacteria (Leptolyngbya).

Extended Data Fig. 8 Phylogenetic analysis of genes encoding bacterioferritin and hydrazine synthase from anammox bacteria.

(a) Phylogenetic tree of genes encoding bacterioferritin (bfr). (b) Phylogenetic tree of genes encoding hydrazine synthase subunit A (hzsA). Trees show the classification of these sequences from different anammox bacterial lineages. The phylogenetic tree is constructed based on the alignments of gene sequences from all anammox reference MAGs used in Supplementary Dataset 3. All conserved protein phylogenomic and phylogenetic alignments are based on MAFFT, and the trees that were built by the IQ-Tree method with model LG + C60 + F + G using SH approximate likelihood ratio test implemented with 1000 bootstrap replicates with bootstrap higher than 0.8 are shown with grey squares on tree branches.

Supplementary information

Supplementary Information

Supplementary Texts 1–7, Figs. 1–7 and Tables 1–3.

Reporting Summary

Supplementary Datasets 1–4

This Excel file contains Supplementary Datasets 1–4. The title and description are provided within the file itself.

Source data

Source Data Figs. 1–3 and Extended Data Figs. 1–3, 5 and 6

Source data for all figures and Extended Data figures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Zheng, R., Feng, J. et al. Photoholes within cyanobacterial mats can account for the origin of anammox bacteria and ancient nitrogen loss. Nat Ecol Evol (2026). https://doi.org/10.1038/s41559-026-02976-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41559-026-02976-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing