Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Accelerating increase in the duration of heatwaves under global warming

This article has been updated

Abstract

Heatwaves are expected to both increase in frequency and duration under global warming. The probability distributions of heatwave durations are shaped by day-to-day correlations in temperature and so cannot be simply inferred from changes in the probabilities of daily temperature extremes. Here we show from statistical analysis of global historical and projected temperature data that changes in long-duration heatwaves increase nonlinearly with temperature. Specifically, from analysis informed by theory for autocorrelated fluctuations applied to European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) reanalysis and Coupled Model Intercomparison Project Phase 6 (CMIP6) climate model simulations, we find that the nonlinearity results in acceleration of the rate increase with warming; that is, each increment of regional time-averaged warming increases the characteristic duration scale of long heatwaves more than the previous increment. We show that the curve for this acceleration can be approximately collapsed onto a single dependence across regions by normalizing by local temperature variability. Projections of future change can thus be compared to observations of recent change over part of their range, which supports the near-future-projected acceleration. We also find that the longest, most uncommon heatwaves for a given region have the greatest increase in likelihood, yielding a compounding source of nonlinear impacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Probability distributions of heatwave durations.
Fig. 2: Spatial patterns of heatwave duration scales in the current climate.
Fig. 3: Nonlinear increases in an extreme heatwave duration percentile as a function of normalized mean increases in temperature.
Fig. 4: Spatial changes in heatwave duration scale and squared normalized temperature variations.
Fig. 5: Projected heatwave duration risk ratios in different regions of the world.

Similar content being viewed by others

Data availability

All datasets are taken from publicly available repositories. CMIP6 data were downloaded from https://aims2.llnl.gov/search/cmip6/. ERA5 data were downloaded from https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. MERRA-2 data were downloaded from https://gmao.gsfc.nasa.gov/reanalysis/merra-2/.

Code availability

Relevant code to calculate heatwave durations and their change in statistics is available via Zenodo at https://doi.org/10.5281/zenodo.15556686 (ref. 66).

Change history

  • 14 October 2025

    In the version of the Supplementary information initially published, in Eq. S2, a factor of ½ was omitted in front of the erf term. This was a typographical error, and no results or figures are affected. The corrected Supplementary information is now available alongside the online version of the article.

References

  1. Hoegh-Guldberg, O. et al. in Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 175–312 (IPCC, Cambridge Univ. Press, 2018).

  2. Luber, G. & McGeehin, M. Climate change and extreme heat events. Am. J. Prev. Med. 35, 429–435 (2008).

    Article  Google Scholar 

  3. Xu, Z., FitzGerald, G., Guo, Y., Jalaludin, B. & Tong, S. Impact of heatwave on mortality under different heatwave definitions: a systematic review and meta-analysis. Environ. Int. 89–90, 193–203 (2016).

    Article  Google Scholar 

  4. Hatfield, J. L. et al. Climate impacts on agriculture: implications for crop production. Agron. J. 103, 351–370 (2011).

    Article  Google Scholar 

  5. Teixeira, E. I., Fischer, G., van Velthuizen, H., Walter, C. & Ewert, F. Global hot-spots of heat stress on agricultural crops due to climate change. Agric. For. Meteorol. 170, 206–215 (2013).

    Article  Google Scholar 

  6. Kornhuber, K. et al. Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Clim. Change 10, 48–53 (2020).

    Article  Google Scholar 

  7. Gao, C., Kuklane, K., Östergren, P.-O. & Kjellstrom, T. Occupational heat stress assessment and protective strategies in the context of climate change. Int. J. Biometeorol. 62, 359–371 (2018).

    Article  Google Scholar 

  8. Sherman, P., Lin, H. & McElroy, M. Projected global demand for air conditioning associated with extreme heat and implications for electricity grids in poorer countries. Energy Build. 268, 112198 (2022).

    Article  Google Scholar 

  9. AghaKouchak, A., Cheng, L., Mazdiyasni, O. & Farahmand, A. Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophys. Res. Lett. 41, 8847–8852 (2014).

    Article  Google Scholar 

  10. Urrutia-Jalabert, R., González, M. E., González-Reyes, Á., Lara, A. & Garreaud, R. Climate variability and forest fires in central and south-central Chile. Ecosphere 9, e02171 (2018).

    Article  Google Scholar 

  11. Sippel, S., Zscheischler, J. & Reichstein, M. Ecosystem impacts of climate extremes crucially depend on the timing. Proc. Natl Acad. Sci. USA 113, 5768–5770 (2016).

    Article  CAS  Google Scholar 

  12. Raymond, W. W. et al. Assessment of the impacts of an unprecedented heatwave on intertidal shellfish of the Salish Sea. Ecology 103, e3798 (2022).

    Article  Google Scholar 

  13. Tebaldi, C., Hayhoe, K., Arblaster, J. M. & Meehl, G. A. Going to the extremes. Clim. Change 79, 185–211 (2006).

    Article  Google Scholar 

  14. Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).

    Article  Google Scholar 

  15. Li, C. et al. Changes in annual extremes of daily temperature and precipitation in CMIP6 models. J. Clim. 34, 3441–3460 (2021).

    Article  Google Scholar 

  16. Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1513–1766 (IPCC, Cambridge Univ. Press, 2021).

  17. Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).

    Article  CAS  Google Scholar 

  18. Loikith, P. C., Neelin, J. D., Meyerson, J. & Hunter, J. S. Short warm-side temperature distribution tails drive hot spots of warm temperature extreme increases under near-future warming. J. Clim. 31, 9469–9487 (2018).

    Article  Google Scholar 

  19. Catalano, A. J., Loikith, P. C. & Neelin, J. D. Evaluating CMIP6 model fidelity at simulating non-Gaussian temperature distribution tails. Environ. Res. Lett. 15, 074026 (2020).

    Article  Google Scholar 

  20. Tan, J. et al. Heat wave impacts on mortality in Shanghai, 1998 and 2003. Int. J. Biometeorol. 51, 193–200 (2007).

    Article  Google Scholar 

  21. Gasparrini, A. & Armstrong, B. The impact of heat waves on mortality. Epidemiology 22, 68–73 (2011).

    Article  Google Scholar 

  22. Sheridan, S. C. & Lin, S. Assessing variability in the impacts of heat on health outcomes in New York City over time, season, and heat-wave duration. EcoHealth 11, 512–525 (2014).

    Article  Google Scholar 

  23. Perkins, S. E. & Alexander, L. V. On the measurement of heat waves. J. Clim. 26, 4500–4517 (2013).

    Article  Google Scholar 

  24. Zwiers, F. W. et al. in Climate Science for Serving Society: Research, Modeling and Prediction Priorities (eds Asrar, G. R. & Hurrell, J. W.) 339–389 (Springer, 2013); https://doi.org/10.1007/978-94-007-6692-1_13

  25. Baldwin, J. W., Dessy, J. B., Vecchi, G. A. & Oppenheimer, M. Temporally compound heat wave events and global warming: an emerging hazard. Earths Future 7, 411–427 (2019).

    Article  Google Scholar 

  26. Rogers, C. D. W., Kornhuber, K., Perkins-Kirkpatrick, S. E., Loikith, P. C. & Singh, D. Sixfold increase in historical Northern Hemisphere concurrent large heatwaves driven by warming and changing atmospheric circulations. J. Clim. 35, 1063–1078 (2022).

    Article  Google Scholar 

  27. González-Reyes, Á., Jacques-Coper, M., Bravo, C., Rojas, M. & Garreaud, R. Evolution of heatwaves in Chile since 1980. Weather Clim. Extremes 41, 100588 (2023).

    Article  Google Scholar 

  28. Cowan, T. et al. More frequent, longer, and hotter heat waves for Australia in the twenty-first century. J. Clim. 27, 5851–5871 (2014).

    Article  Google Scholar 

  29. Perkins-Kirkpatrick, S. E. & Gibson, P. B. Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep. 7, 12256 (2017).

    Article  CAS  Google Scholar 

  30. Mazdiyasni, O., Sadegh, M., Chiang, F. & AghaKouchak, A. Heat wave intensity duration frequency curve: a multivariate approach for hazard and attribution analysis. Sci. Rep. 9, 14117 (2019).

    Article  Google Scholar 

  31. Han, Q., Sun, S., Liu, Z., Xu, W. & Shi, P. Accelerated exacerbation of global extreme heatwaves under warming scenarios. Int. J. Climatol. 42, 5430–5441 (2022).

    Article  Google Scholar 

  32. Leach, N. J. et al. Heatwave attribution based on reliable operational weather forecasts. Nat. Commun. 15, 4530 (2024).

    Article  CAS  Google Scholar 

  33. van Oldenborgh, G. J. et al. Pathways and pitfalls in extreme event attribution. Clim. Change 166, 13 (2021).

    Article  Google Scholar 

  34. Philip, S. Y. et al. Rapid attribution analysis of the extraordinary heat wave on the Pacific coast of the US and Canada in June 2021. Earth Syst. Dyn. 13, 1689–1713 (2022).

    Article  Google Scholar 

  35. Qian, C. et al. Rapid attribution of the record-breaking heatwave event in North China in June 2023 and future risks. Environ. Res. Lett. 19, 014028 (2023).

    Article  Google Scholar 

  36. Vautard, R. et al. Heat extremes linearly shift with global warming, with frequency doubling per decade since 1979. Environ. Res. Lett. 19, 094033 (2024).

    Article  Google Scholar 

  37. Lustenberger, A., Knutti, R. & Fischer, E. M. Sensitivity of European extreme daily temperature return levels to projected changes in mean and variance. J. Geophys. Res. Atmos. 119, 3032–3044 (2014).

    Article  Google Scholar 

  38. Tebaldi, C., Armbruster, A., Engler, H. P. & Link, R. Emulating climate extreme indices. Environ. Res. Lett. 15, 074006 (2020).

    Article  Google Scholar 

  39. Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. USA 108, 17905–17909 (2011).

    Article  CAS  Google Scholar 

  40. Pfleiderer, P. & Coumou, D. Quantification of temperature persistence over the Northern Hemisphere land-area. Clim. Dyn. 51, 627–637 (2018).

    Article  Google Scholar 

  41. Di Cecco, G. J. & Gouhier, T. C. Increased spatial and temporal autocorrelation of temperature under climate change. Sci. Rep. 8, 14850 (2018).

    Article  Google Scholar 

  42. Li, J. & Thompson, D. W. J. Widespread changes in surface temperature persistence under climate change. Nature 599, 425–430 (2021).

    Article  CAS  Google Scholar 

  43. Lewis, N. T., Seviour, W. J. M., Roberts-Straw, H. E. & Screen, J. A. The response of surface temperature persistence to Arctic sea-ice loss. Geophys. Res. Lett. 51, e2023GL106863 (2024).

    Article  Google Scholar 

  44. Held, I. M. et al. Structure and performance of GFDL’s CM4.0 climate model. J. Adv. Model. Earth Syst. 11, 3691–3727 (2019).

    Article  Google Scholar 

  45. O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article  Google Scholar 

  46. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  47. Stechmann, S. N. & Neelin, J. D. First-passage-time prototypes for precipitation statistics. J. Atmos. Sci. 71, 3269–3291 (2014).

    Article  Google Scholar 

  48. Martinez-Villalobos, C. & Neelin, J. D. Climate models capture key features of extreme precipitation probabilities across regions. Environ. Res. Lett. 16, 024017 (2021).

    Article  Google Scholar 

  49. Philip, S. et al. A protocol for probabilistic extreme event attribution analyses. Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 177–203 (2020).

    Article  Google Scholar 

  50. Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004).

    Article  CAS  Google Scholar 

  51. Neelin, J. D., Sahany, S., Stechmann, S. N. & Bernstein, D. N. Global warming precipitation accumulation increases above the current-climate cutoff scale. Proc. Natl Acad. Sci. USA 114, 1258–1263 (2017).

    Article  CAS  Google Scholar 

  52. Martinez-Villalobos, C. & Neelin, J. D. Regionally high risk increase for precipitation extreme events under global warming. Sci. Rep. 13, 5579 (2023).

    Article  CAS  Google Scholar 

  53. Haustein, K. et al. A real-time global warming index. Sci. Rep. 7, 15417 (2017).

    Article  CAS  Google Scholar 

  54. Richardson, M. T. Prospects for detecting accelerated global warming. Geophys. Res. Lett. 49, e2021GL095782 (2022).

    Article  Google Scholar 

  55. Hansen, J. E. et al. Global warming in the pipeline. Oxford Open Clim. Change 3, kgad008 (2023).

    Article  Google Scholar 

  56. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  57. Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).

    Article  CAS  Google Scholar 

  58. Lee, J.-Y. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 553–672 (IPCC, Cambridge Univ. Press, 2021).

  59. Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Google Scholar 

  60. Ruthrof, K. X. et al. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 8, 13094 (2018).

    Article  Google Scholar 

  61. Martinez-Villalobos, C. & Neelin, J. D. Why do precipitation intensities tend to follow gamma distributions? J. Atmos. Sci. 76, 3611–3631 (2019).

    Article  Google Scholar 

  62. Ahmed, F. & Neelin, J. D. Explaining scales and statistics of tropical precipitation clusters with a stochastic model. J. Atmos. Sci. 76, 3063–3087 (2019).

    Article  Google Scholar 

  63. Neelin, J. D. et al. Precipitation extremes and water vapor. Curr. Clim. Change Rep. 8, 17–33 (2022).

    Article  Google Scholar 

  64. Chang, M. et al. Changes in extreme precipitation accumulations during the warm season over continental China. J. Clim. 33, 10799–10811 (2020).

    Article  Google Scholar 

  65. Nazarian, R. H., Vizzard, J. V., Agostino, C. P. & Lutsko, N. J. Projected changes in future extreme precipitation over the northeast United States in the NA-CORDEX ensemble. J. Appl. Meteorol. Climatol. 61, 1649–1668 (2022).

    Article  Google Scholar 

  66. Martinez-Villalobos, C. & Fu, D. Code associated with publication ‘Accelerating increase in the duration of heat waves under global warming’ (Nature Geoscience). Zenodo https://doi.org/10.5281/zenodo.15556686 (2025).

Download references

Acknowledgements

C.M.-V. acknowledges support from Proyecto ANID Fondecyt Iniciación 11250471 and Data Observatory Foundation ANID Technology Center number DO210001. J.D.N. acknowledges support from US National Science Foundation AGS-2414576. We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modelling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access and the multiple funding agencies that support CMIP6 and ESGF. We also acknowledge high-performance computing support from Cheyenne provided by National Center for Atmospheric Research (NCAR)’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.M.-V. and J.D.N. conceived the study. D.F. and C.M.-V. conducted the analysis and wrote the first draft with help by P.C.L. and J.D.N. All authors reviewed the paper.

Corresponding author

Correspondence to Cristian Martinez-Villalobos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Stefan Lachowycz and Tom Richardson, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1, Figs. 1–13 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Villalobos, C., Fu, D., Loikith, P.C. et al. Accelerating increase in the duration of heatwaves under global warming. Nat. Geosci. 18, 716–723 (2025). https://doi.org/10.1038/s41561-025-01737-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41561-025-01737-w

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene