Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Population attributable fractions of a wide range of peripheral diseases for the burden of dementia

Abstract

Growing evidence suggests that peripheral diseases serve as risk factors for dementia, but the population-level burden of dementia associated with various peripheral diseases has remained unknown. Here, by conducting a systematic review and Bayesian meta-analyses to estimate the relative risks of 26 peripheral diseases across 9 systems with dementia, including 202 articles searched from the PubMed until 6 September 2024, we identified 16 peripheral diseases as associated with increased risk of dementia. With the relative risks estimated from meta-analyses, prevalences extracted from the Global Burden of Disease Study, and communalities among these 16 peripheral diseases derived from the UK Biobank, we analysed the population attributable fractions (PAFs) of these 16 peripheral diseases for dementia, stratified by sex, age, sociodemographic index level, world region and country, and trends from 1990 to 2021. Globally, these peripheral diseases collectively were related to a combined PAF of 33.18% (95% confidence interval (CI) 16.80–48.43) of dementia burden, corresponding to 18.8 million prevalent cases. The leading ten PAF contributors were periodontal diseases (6.10%, 95% CI 0.95–10.28), cirrhosis and other chronic liver diseases (5.51%, 95% CI 1.77–8.86), age-related and other hearing loss (4.70%, 95% CI 3.51–6.06), blindness and vision loss (4.30%, 95% CI 3.43–5.05), type 2 diabetes mellitus (3.80%, 95% CI 3.06–4.53), chronic kidney disease (2.74%, 95% CI 1.53–4.02), osteoarthritis (2.26%, 95% CI 0.41–4.12), stroke (1.01%, 95% CI 0.86–1.17), ischaemic heart disease (0.97%, 95% CI 0.69–1.29) and chronic obstructive pulmonary disease (0.92%, 95% CI 0.34–1.54). This study revealed that a series of peripheral diseases were associated with increased risk of dementia and collectively were related to about one-third of the global dementia burden, highlighting the need for targeted public health strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global prevalence and cases of dementia stratified by sex.
Fig. 2: Flowchart of study selection for the meta-analysis.
Fig. 3: RR, prevalence and PAF of 16 peripheral diseases across 9 systems.
Fig. 4: PAF, prevalence and cases of dementia related to overall peripheral diseases stratified by sex.
Fig. 5: PAF, prevalence and cases of dementia related to nine classes of peripheral diseases.
Fig. 6: Temporal trends of PAF ranking of dementia related to 16 peripheral diseases, 1990–2021.

Similar content being viewed by others

Data availability

The GBD 2021 is publicly available via Global Health Data Exchange at https://vizhub.healthdata.org/gbd-results/. The UK Biobank resources can be accessed through applications on their website (https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access). All included literature in the meta-analysis is available via PubMed at https://pubmed.ncbi.nlm.nih.gov/. The data extracted from studies included in the meta-analysis and the GBD dataset used in the study are available via Figshare at https://doi.org/10.6084/m9.figshare.30634574 (ref. 293). The UK Biobank data were used under licence and are thus not publicly available.

Code availability

The analytical methods in the study do not involve developing new computer code or algorithm that have not been previously reported. The analytical methods in the study had been described in detail in the article, with citations to the sources containing the relevant methodology and code. Accordingly, the original code required to reanalyse the data in this article is available from the corresponding author upon request.

References

  1. Arthurton, L. et al. Dementia is a neglected noncommunicable disease and leading cause of death. Nat. Rev. Neurol. 21, 63–64 (2025).

    Article  PubMed  Google Scholar 

  2. Global Action Plan on the Public Health Response to Dementia 2017–2025 (World Health Organization, 2017).

  3. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7, e105–e125 (2022).

    Article  Google Scholar 

  4. Livingston, G. et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 404, 572–628 (2024).

    Article  PubMed  Google Scholar 

  5. Walsh, S. et al. Population-level interventions for the primary prevention of dementia: a complex evidence review. Lancet 402, S13 (2023).

    Article  PubMed  Google Scholar 

  6. Mansournia, M. A. & Altman, D. G. Population attributable fraction. Br. Med. J. 360, k757 (2018).

    Article  Google Scholar 

  7. Stephan, B. C. M. et al. Population attributable fractions of modifiable risk factors for dementia: a systematic review and meta-analysis. Lancet Healthy Longev. 5, e406–e421 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shang, X. et al. Association of a wide range of chronic diseases and apolipoprotein E4 genotype with subsequent risk of dementia in community-dwelling adults: a retrospective cohort study. EClinicalMedicine 45, 101335 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang, L. Y. et al. Identifying modifiable factors and their joint effect on brain health: an exposome-wide association study. Geroscience 46, 6257–6268 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ren, Y. et al. Multimorbidity, cognitive phenotypes, and Alzheimer’s disease plasma biomarkers in older adults: a population-based study. Alzheimers Dement. 20, 1550–1561 (2024).

    Article  CAS  PubMed  Google Scholar 

  11. Ben Hassen, C. et al. Association between age at onset of multimorbidity and incidence of dementia: 30 year follow-up in Whitehall II prospective cohort study. Br. Med. J. 376, e068005 (2022).

    Article  Google Scholar 

  12. Calvin, C. M., Conroy, M. C., Moore, S. F., Kuzma, E. & Littlejohns, T. J. Association of multimorbidity, disease clusters, and modification by genetic factors with risk of dementia. JAMA Netw. Open 5, e2232124 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Smith, E. E. et al. Systemic determinants of brain health in ageing. Nat. Rev. Neurol. 20, 647–659 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhao, B. et al. Heart-brain connections: phenotypic and genetic insights from magnetic resonance images. Science 380, abn6598 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Testai, F. D. et al. Cardiac contributions to brain health: a scientific statement from the American Heart Association. Stroke 55, e425–e438 (2024).

    Article  PubMed  Google Scholar 

  16. Dodd, J. W. Lung disease as a determinant of cognitive decline and dementia. Alzheimers Res. Ther. 7, 32 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lutsey, P. L. et al. Impaired lung function, lung disease, and risk of incident dementia. Am. J. Respir. Crit. Care Med. 199, 1385–1396 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smith, M. L., Wade, J. B., Wolstenholme, J. & Bajaj, J. S. Gut microbiome–brain–cirrhosis axis. Hepatology 80, 465–485 (2024).

    Article  PubMed  Google Scholar 

  19. Cheng, Y. et al. Physiological β-amyloid clearance by the liver and its therapeutic potential for Alzheimer’s disease. Acta Neuropathol. 145, 717–731 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Viggiano, D. et al. Mechanisms of cognitive dysfunction in CKD. Nat. Rev. Nephrol. 16, 452–469 (2020).

    Article  PubMed  Google Scholar 

  21. Bello-Corral, L. et al. Implications of gut and oral microbiota in neuroinflammatory responses in Alzheimer’s disease. Life Sci. 333, 122132 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Ma, X., Shin, Y. J., Yoo, J. W., Park, H. S. & Kim, D. H. Extracellular vesicles derived from Porphyromonas gingivalis induce trigeminal nerve-mediated cognitive impairment. J. Adv. Res. 54, 293–303 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Beydoun, H. A. et al. Mediating and moderating effects of plasma proteomic biomarkers on the association between poor oral health problems and incident dementia: the UK Biobank study. Geroscience 46, 5343–5363 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dominy, S. S. et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 5, eaau3333 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403, 2133–2161 (2024).

    Article  Google Scholar 

  26. GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 402, 203–234 (2023).

    Article  Google Scholar 

  27. GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob. Health 9, e144–e160 (2021).

    Article  Google Scholar 

  28. GBD 2019 IMID Collaborators. Global, regional, and national incidence of six major immune-mediated inflammatory diseases: findings from the Global Burden of Disease Study 2019. EClinicalMedicine 64, 102193 (2023).

    Article  Google Scholar 

  29. Walsh, S. et al. Considering challenges for the new Alzheimer’s drugs: clinical, population, and health system perspectives. Alzheimers Dement. 20, 6639–6646 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferguson, E. L. et al. Visual Impairment, Eye Conditions, And Diagnoses Of Neurodegeneration And Dementia. JAMA Netw. Open 7, e2424539 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rutherford, B. R., Brewster, K., Golub, J. S., Kim, A. H. & Roose, S. P. Sensation and psychiatry: linking age-related hearing loss to late-life depression and cognitive decline. Am. J. Psychiatry 175, 215–224 (2018).

    Article  PubMed  Google Scholar 

  32. Burton, M. J. et al. The Lancet Global Health Commission on Global Eye Health: vision beyond 2020. Lancet Glob. Health 9, e489–e551 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, Z. T., Liu, M. H., Xiong, Y., Wang, Y. J. & Bu, X. L. Crosstalk between bone and brain in Alzheimer’s disease: mechanisms, applications, and perspectives. Alzheimers Dement. 20, 5720–5739 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi, T. et al. Osteocyte-derived sclerostin impairs cognitive function during ageing and Alzheimer’s disease progression. Nat. Metab. 6, 531–549 (2024).

    Article  PubMed  Google Scholar 

  35. Bajinka, O., Simbilyabo, L., Tan, Y., Jabang, J. & Saleem, S. A. Lung–brain axis. Crit. Rev. Microbiol. 48, 257–269 (2022).

    Article  PubMed  Google Scholar 

  36. Hoogendijk, E. O. et al. Frailty: implications for clinical practice and public health. Lancet 394, 1365–1375 (2019).

    Article  PubMed  Google Scholar 

  37. Skou, S. T. et al. Multimorbidity. Nat. Rev. Dis. Primers 8, 48 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Valletta, M. et al. Association of mild and complex multimorbidity with structural brain changes in older adults: a population-based study. Alzheimers Dement. 20, 1958–1965 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hoffmann, J. P., Liu, J. A., Seddu, K. & Klein, S. L. Sex hormone signaling and regulation of immune function. Immunity 56, 2472–2491 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Yu, B. et al. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell 184, 1790–1803 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gulati, M., Dursun, E., Vincent, K. & Watt, F. E. The influence of sex hormones on musculoskeletal pain and osteoarthritis. Lancet Rheumatol. 5, e225–e238 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Vosters, T. G. et al. The association and contribution of gender-related characteristics to prevalent chronic kidney disease in women and men in a multi-ethnic population—the HELIUS study. BMC Public Health 25, 853 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  43. García, G. G. et al. Sex and gender differences in chronic kidney disease and access to care around the globe. Semin. Nephrol. 42, 101–113 (2022).

    Article  PubMed  Google Scholar 

  44. Kautzky-Willer, A., Leutner, M. & Harreiter, J. Sex differences in type 2 diabetes. Diabetologia 66, 986–1002 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tramunt, B. et al. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 63, 453–461 (2020).

    Article  PubMed  Google Scholar 

  46. Reue, K. & Wiese, C. B. Illuminating the mechanisms underlying sex differences in cardiovascular disease. Circ. Res. 130, 1747–1762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu, F. B. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care 34, 1249–1257 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stein, M. M. et al. Innate immunity and asthma risk in Amish and Hutterite farm children. New Engl. J. Med. 375, 411–421 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Feng, M. et al. Associations of early life exposures and environmental factors with asthma among children in rural and urban areas of Guangdong, China. Chest 149, 1030–1041 (2016).

    Article  PubMed  Google Scholar 

  50. Zuo, T., Kamm, M. A., Colombel, J.-F. & Ng, S. C. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 15, 440–452 (2018).

    Article  PubMed  Google Scholar 

  51. Hunter, D. J. & Bierma-Zeinstra, S. Osteoarthritis. Lancet 393, 1745–1759 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 5, e508–e522 (2023).

    Article  Google Scholar 

  53. Momtazmanesh, S. et al. Global burden of chronic respiratory diseases and risk factors, 1990–2019: an update from the Global Burden of Disease Study 2019. EClinicalMedicine 59, 101936 (2023).

    Article  Google Scholar 

  54. Xie, W. et al. Association of electronic cigarette use with incident respiratory conditions among US adults from 2013 to 2018. JAMA Netw. Open 3, e2020816 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

    Article  Google Scholar 

  56. Ramke, J., Zwi, A. B., Palagyi, A., Blignault, I. & Gilbert, C. E. Equity and blindness: closing evidence gaps to support universal eye health. Ophthalmic Epidemiol. 22, 297–307 (2015).

    Article  PubMed  Google Scholar 

  57. Jiang, C. Y. et al. Global, regional, and national prevalence of hearing loss from 1990 to 2019: a trend and health inequality analyses based on the Global Burden of Disease Study 2019. Ageing Res. Rev. 92, 102124 (2023).

    Article  PubMed  Google Scholar 

  58. GBD 2019 Hearing Loss Collaborators. Hearing loss prevalence and years lived with disability, 1990–2019: findings from the Global Burden of Disease Study 2019. Lancet 397, 996–1009 (2021).

    Article  Google Scholar 

  59. Peres, M. A. et al. Oral diseases: a global public health challenge. Lancet 394, 249–260 (2019).

    Article  PubMed  Google Scholar 

  60. Luan, Y. et al. Universal coverage for oral health care in 27 low-income countries: a scoping review. Glob. Health Res. Policy 9, 34 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang, R., Li, Z., Liu, S. & Zhang, D. Global, regional, and national burden of 10 digestive diseases in 204 countries and territories from 1990 to 2019. Front. Public Health 11, 1061453 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  62. GBD 2017 Cirrhosis Collaborators. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 5, 245–266 (2020).

    Article  Google Scholar 

  63. Kinane, D. F., Stathopoulou, P. G. & Papapanou, P. N. Periodontal diseases. Nat. Rev. Dis. Primers 3, 17038 (2017).

    Article  PubMed  Google Scholar 

  64. Howell, J. et al. A global investment framework for the elimination of hepatitis B. J. Hepatol. 74, 535–549 (2021).

    Article  PubMed  Google Scholar 

  65. Paraje, G. R., Jha, P., Savedoff, W. & Fuchs, A. Taxation of tobacco, alcohol, and sugar-sweetened beverages: reviewing the evidence and dispelling the myths. BMJ Glob. Health 8, e011866 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chen, S. et al. Temporal trends in population attributable fractions of modifiable risk factors for dementia: a time-series study of the English Longitudinal Study of Ageing (2004–2019). BMC Med. 22, 268 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Welberry, H. J., Tisdell, C. C., Huque, M. H. & Jorm, L. R. Have we been underestimating modifiable dementia risk? An alternative approach for calculating the combined population attributable fraction for modifiable dementia risk factors. Am. J. Epidemiol. 192, 1763–1771 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  68. GBD 2021 Demographics Collaborators. Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950-2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021. Lancet 403, 1989–2056 (2024).

    Article  Google Scholar 

  69. GBD 2021 Nervous System Disorders Collaborators. Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 23, 344–381 (2024).

    Article  Google Scholar 

  70. Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Br. Med. J. 372, n71 (2021).

    Article  Google Scholar 

  71. Guyatt, G. H. et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. Br. Med. J. 336, 924–926 (2008).

    Article  Google Scholar 

  72. Wells, G. et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (2013).

  73. Aromataris, E. et al. JBI Manual for Evidence Synthesis. JBI https://synthesismanual.jbi.global (2024).

  74. Klaver, C. C. et al. Is age-related maculopathy associated with Alzheimer’s disease? The Rotterdam Study. Am. J. Epidemiol. 150, 963–968 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Kessing, L. V., Lopez, A. G., Andersen, P. K. & Kessing, S. V. No increased risk of developing Alzheimer disease in patients with glaucoma. J. Glaucoma 16, 47–51 (2007).

    Article  PubMed  Google Scholar 

  76. Ou, Y., Grossman, D. S., Lee, P. P. & Sloan, F. A. Glaucoma, Alzheimer disease and other dementia: a longitudinal analysis. Ophthalmic Epidemiol. 19, 285–292 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Helmer, C. et al. Is there a link between open-angle glaucoma and dementia? The Three-City-Alienor cohort. Ann. Neurol. 74, 171–179 (2013).

    Article  PubMed  Google Scholar 

  78. Ekström, C. & Kilander, L. Pseudoexfoliation and Alzheimer’s disease: a population-based 30-year follow-up study. Acta Ophthalmol. 92, 355–358 (2014).

    Article  PubMed  Google Scholar 

  79. Exalto, L. G. et al. Severe diabetic retinal disease and dementia risk in type 2 diabetes. J. Alzheimers Dis. 42, S109–S117 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lai, S. W., Lin, C. L. & Liao, K. F. Cataract may be a non-memory feature of Alzheimer’s disease in older people. Eur. J. Epidemiol. 29, 405–409 (2014).

    Article  PubMed  Google Scholar 

  81. Keenan, T. D., Goldacre, R. & Goldacre, M. J. Associations between primary open angle glaucoma, Alzheimer’s disease and vascular dementia: record linkage study. Br. J. Ophthalmol. 99, 524–527 (2015).

    Article  PubMed  Google Scholar 

  82. Su, C. W., Lin, C. C., Kao, C. H. & Chen, H. Y. Association between glaucoma and the risk of dementia. Medicine 95, e2833 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Davies-Kershaw, H. R. et al. Vision impairment and risk of dementia: findings from the English Longitudinal Study of Ageing. J. Am. Geriatr. Soc. 66, 1823–1829 (2018).

    Article  PubMed  Google Scholar 

  84. Brenowitz, W. D., Kaup, A. R., Lin, F. R. & Yaffe, K. Multiple sensory impairment is associated with increased risk of dementia among black and white older adults. J. Gerontol. A 74, 890–896 (2019).

    Article  Google Scholar 

  85. Lee, C. S. et al. Associations between recent and established ophthalmic conditions and risk of Alzheimer’s disease. Alzheimers Dement. 15, 34–41 (2019).

    Article  PubMed  Google Scholar 

  86. Naël, V. et al. Vision loss and 12-year risk of dementia in older adults: the 3C cohort study. Eur. J. Epidemiol. 34, 141–152 (2019).

    Article  PubMed  Google Scholar 

  87. Choi, S., Jahng, W. J., Park, S. M. & Jee, D. Association of age-related macular degeneration on Alzheimer or Parkinson disease: a retrospective cohort study. Am. J. Ophthalmol. 210, 41–47 (2020).

    Article  PubMed  Google Scholar 

  88. Hwang, P. H. et al. Dual sensory impairment in older adults and risk of dementia from the GEM Study. Alzheimers Dement. 12, e12054 (2020).

    Google Scholar 

  89. Lee, A. T. C. et al. Higher dementia incidence in older adults with poor visual acuity. J. Gerontol. A 75, 2162–2168 (2020).

    Article  Google Scholar 

  90. Tran, E. M. et al. Association of visual impairment with risk of incident dementia in a Women’s Health Initiative population. JAMA Ophthalmol. 138, 624–633 (2020).

    Article  PubMed  Google Scholar 

  91. Xiao, Z. et al. Association of glaucoma and cataract with incident dementia: a 5-year follow-up in the Shanghai Aging Study. J. Alzheimers Dis. 76, 529–537 (2020).

    Article  PubMed  Google Scholar 

  92. Ehrlich, J. R., Swenor, B. K., Zhou, Y. & Langa, K. M. The longitudinal association of vision impairment with transitions to cognitive impairment and dementia: findings from the Aging, Demographics and Memory Study. J. Gerontol. A 76, 2187–2193 (2021).

    Article  Google Scholar 

  93. Hwang, P. H. et al. Ophthalmic conditions associated with dementia risk: The Cardiovascular Health Study. Alzheimers Dement. 17, 1442–1451 (2021).

    Article  PubMed  Google Scholar 

  94. Chang, P. Y. et al. Vascular complications of diabetes: natural history and corresponding risks of dementia in a national cohort of adults with diabetes. Acta Diabetol. 58, 859–867 (2021).

    Article  PubMed  Google Scholar 

  95. Killeen, O. J., Zhou, Y. & Ehrlich, J. R. Objectively measured visual impairment and dementia prevalence in older adults in the US. JAMA Ophthalmol. 141, 786–790 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Park, D. Y., Kim, M., Bae, Y., Jang, H. & Lim, D. H. Risk of dementia in newly diagnosed glaucoma: a nationwide cohort study in Korea. Ophthalmology 130, 684–691 (2023).

    Article  PubMed  Google Scholar 

  97. Shang, X. et al. Associations of ophthalmic and systemic conditions with incident dementia in the UK Biobank. Br. J. Ophthalmol. 107, 275–282 (2023).

    Article  PubMed  Google Scholar 

  98. Gates, G. A., Anderson, M. L., McCurry, S. M., Feeney, M. P. & Larson, E. B. Central auditory dysfunction as a harbinger of Alzheimer dementia. Arch. Otolaryngol. Head Neck Surg. 137, 390–395 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lin, F. R. et al. Hearing loss and incident dementia. Arch. Neurol. 68, 214–220 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Gurgel, R. K. et al. Relationship of hearing loss and dementia: a prospective, population-based study. Otol. Neurotol. 35, 775–781 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Davies, H. R., Cadar, D., Herbert, A., Orrell, M. & Steptoe, A. Hearing impairment and incident dementia: findings from the English Longitudinal Study of Ageing. J. Am. Geriatr. Soc. 65, 2074–2081 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Golub, J. S. et al. Observed hearing loss and incident dementia in a multiethnic cohort. J. Am. Geriatr. Soc. 65, 1691–1697 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Heywood, R. et al. Hearing loss and risk of mild cognitive impairment and dementia: findings from the Singapore Longitudinal Ageing Study. Dement. Geriatr. Cogn. Disord. 43, 259–268 (2017).

    Article  PubMed  Google Scholar 

  104. Su, P. et al. Age-related hearing loss and dementia: a 10-year national population-based study. Eur. Arch. Otorhinolaryngol. 274, 2327–2334 (2017).

    Article  PubMed  Google Scholar 

  105. Amieva, H., Ouvrard, C., Meillon, C., Rullier, L. & Dartigues, J. F. Death, depression, disability, and dementia associated with self-reported hearing problems: a 25-year study. J. Gerontol. A 73, 1383–1389 (2018).

    Article  Google Scholar 

  106. Vassilaki, M. et al. Informant-based hearing difficulties and the risk for mild cognitive impairment and dementia. Age Ageing 48, 888–894 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Osler, M. et al. Hearing loss, cognitive ability, and dementia in men age 19–78 years. Eur. J. Epidemiol. 34, 125–130 (2019).

    Article  PubMed  Google Scholar 

  108. Kuo, P. L. et al. Prevalence of concurrent functional vision and hearing impairment and association with dementia in community-dwelling medicare beneficiaries. JAMA Netw. Open 4, e211558 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Brewster, K. K. et al. Age-related hearing loss, late-life depression, and risk for incident dementia in older adults. J. Gerontol. A 76, 827–834 (2021).

    Article  CAS  Google Scholar 

  110. Chern, A., Sharma, R. K. & Golub, J. S. Hearing loss and incident dementia: claims data from the New York SPARCS database. Otol. Neurotol. 43, 36–41 (2022).

    Article  PubMed  Google Scholar 

  111. Myrstad, C. et al. Hearing impairment and risk of dementia in The HUNT Study (HUNT4 70+): a Norwegian cohort study. EClinicalMedicine 66, 102319 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Tonelli, M. et al. Associations between hearing loss and clinical outcomes: population-based cohort study. EClinicalMedicine 61, 102068 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hendriks, S. et al. Risk factors for young-onset dementia in the UK Biobank. JAMA Neurol. 81, 134–142 (2024).

    Article  PubMed  Google Scholar 

  114. Cantuaria, M. L. et al. Hearing loss, hearing aid use, and risk of dementia in older adults. JAMA Otolaryngol. Head Neck Surg. 150, 157–164 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Chen, T. B. et al. Comorbidity and dementia: a nationwide survey in Taiwan. PLoS ONE 12, e0175475 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Labenz, C., Kostev, K., Kaps, L., Galle, P. R. & Schattenberg, J. M. Incident dementia in elderly patients with nonalcoholic fatty liver disease in Germany. Dig. Dis. Sci. 66, 3179–3185 (2021).

    Article  PubMed  Google Scholar 

  117. Lampignano, L. et al. Liver health and dementia in an Italian older population: findings from the Salus in Apulia Study. Front. Aging Neurosci. 13, 748888 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Parikh, N. S. et al. Association between liver fibrosis and incident dementia in the UK Biobank study. Eur. J. Neurol. 29, 2622–2630 (2022).

    Article  PubMed  Google Scholar 

  119. Xiao, T., van Kleef, L. A., Ikram, M. K., de Knegt, R. J. & Ikram, M. A. Association of nonalcoholic fatty liver disease and fibrosis with incident dementia and cognition: The Rotterdam Study. Neurology 99, e565–e573 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shang, Y., Widman, L. & Hagström, H. Nonalcoholic fatty liver disease and risk of dementia: a population-based cohort study. Neurology 99, e574–e582 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, Y. et al. Nonalcoholic fatty liver disease, serum cytokines, and dementia among rural-dwelling older adults in China: a population-based study. Eur. J. Neurol. 29, 2612–2621 (2022).

    Article  PubMed  Google Scholar 

  122. Jeong, S. et al. Association of non-alcoholic fatty liver disease with incident dementia later in life among elder adults. Clin. Mol. Hepatol. 28, 510–521 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lu, Y. et al. Liver integrity and the risk of Alzheimer’s disease and related dementias. Alzheimers Dement. 20, 1913–1922 (2024).

    Article  PubMed  Google Scholar 

  124. Solfrizzi, V. et al. Liver fibrosis score, physical frailty, and the risk of dementia in older adults: The Italian Longitudinal Study on Aging. Alzheimers Dement. 6, e12065 (2020).

    Google Scholar 

  125. Yuan, S. et al. Digestive system diseases, genetic risk, and incident dementia: a prospective cohort study. Am. J. Prev. Med. 66, 516–525 (2024).

    Article  PubMed  Google Scholar 

  126. Paik, W. H. et al. Acute pancreatitis and the risk of dementia in diabetes: a nationwide cohort study using Korean Healthcare Claims Database. J. Alzheimers Dis. 94, 205–216 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Liang, C. S. et al. The risk of Alzheimer’s disease after acute appendicitis with or without appendectomy. J. Am. Med. Dir. Assoc. 23, 601–607.e602 (2022).

    Article  PubMed  Google Scholar 

  128. Silber, J. H. et al. Alzheimer’s dementia after exposure to anesthesia and surgery in the elderly: a matched natural experiment using appendicitis. Ann. Surg. 276, e377–e385 (2022).

    Article  PubMed  Google Scholar 

  129. Hung, K. C., Sun, C. K., Chen, J. Y., Wang, H. C. & Kao, C. H. Association between abdominal hernia and the risk of subsequent dementia. Brain Behav. 9, e01434 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Chen, C. K., Wu, Y. T. & Chang, Y. C. Association between chronic periodontitis and the risk of Alzheimer’s disease: a retrospective, population-based, matched-cohort study. Alzheimers Res. Ther. 9, 56 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Holmer, J., Eriksdotter, M., Schultzberg, M., Pussinen, P. J. & Buhlin, K. Association between periodontitis and risk of Alzheimer’s disease, mild cognitive impairment and subjective cognitive decline: a case–control study. J. Clin. Periodontol. 45, 1287–1298 (2018).

    Article  PubMed  Google Scholar 

  132. Tiisanoja, A. et al. Oral diseases and inflammatory burden and Alzheimer’s disease among subjects aged 75 years or older. Spec. Care Dentist 39, 158–165 (2019).

    Article  PubMed  Google Scholar 

  133. de Oliveira Araújo, R. et al. Association between periodontitis and Alzheimer’s disease and its impact on the self-perceived oral health status: a case–control study. Clin. Oral Investig. 25, 555–562 (2021).

    Article  PubMed  Google Scholar 

  134. Holmer, J. et al. Periodontal conditions and incident dementia: a nationwide Swedish cohort study. J. Periodontol. 93, 1378–1386 (2022).

    Article  PubMed  Google Scholar 

  135. Kulkarni, M. S. et al. Poor oral health linked with higher risk of Alzheimer’s disease. Brain Sci. 13, 1555 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yoo, J. E. et al. Association between dental diseases and oral hygiene care and the risk of dementia: a retrospective cohort study. J. Am. Med. Dir. Assoc. 24, 1924–1930.e1923 (2023).

    Article  PubMed  Google Scholar 

  137. Stein, P. S., Desrosiers, M., Donegan, S. J., Yepes, J. F. & Kryscio, R. J. Tooth loss, dementia and neuropathology in the Nun study. J. Am. Dent. Assoc. 138, 1314–1322 (2007).

  138. Batty, G. D. et al. Oral disease in relation to future risk of dementia and cognitive decline: prospective cohort study based on the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified-Release Controlled Evaluation (ADVANCE) trial. Eur. Psychiatry 28, 49–52 (2013).

    Article  PubMed  Google Scholar 

  139. Takeuchi, K. et al. Tooth loss and risk of dementia in the community: the Hisayama study. J. Am. Geriatr. Soc. 65, e95–e100 (2017).

    Article  PubMed  Google Scholar 

  140. Kusama, T., Takeuchi, K., Kiuchi, S., Aida, J. & Osaka, K. Poor oral health and dementia risk under time-varying confounding: a cohort study based on marginal structural models. J. Am. Geriatr. Soc. 72, 729–741 (2024).

    Article  PubMed  Google Scholar 

  141. Ott, A. et al. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 53, 1937–1942 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Peila, R., Rodriguez, B. L. & Launer, L. J. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 51, 1256–1262 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Schnaider Beeri, M. et al. Diabetes mellitus in midlife and the risk of dementia three decades later. Neurology 63, 1902–1907 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Yaffe, K. et al. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology 63, 658–663 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Irie, F. et al. Enhanced risk for Alzheimer disease in persons with type 2 diabetes and APOE epsilon4: the Cardiovascular Health Study Cognition Study. Arch. Neurol. 65, 89–93 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Raffaitin, C. et al. Metabolic syndrome and risk for incident Alzheimer’s disease or vascular dementia: the Three-City Study. Diabetes Care 32, 169–174 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Xu, W. et al. Accelerated progression from mild cognitive impairment to dementia in people with diabetes. Diabetes 59, 2928–2935 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ahtiluoto, S. et al. Diabetes, Alzheimer disease, and vascular dementia: a population-based neuropathologic study. Neurology 75, 1195–1202 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Cheng, D. et al. Type 2 diabetes and late-onset Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 31, 424–430 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cheng, C. et al. Type 2 diabetes and antidiabetic medications in relation to dementia diagnosis. J. Gerontol. A 69, 1299–1305 (2014).

    Article  CAS  Google Scholar 

  151. Mehlig, K. et al. Physical activity, weight status, diabetes and dementia: a 34-year follow-up of the population study of women in Gothenburg. Neuroepidemiology 42, 252–259 (2014).

    Article  PubMed  Google Scholar 

  152. Davis, W. A., Zilkens, R. R., Starkstein, S. E., Davis, T. M. & Bruce, D. G. Dementia onset, incidence and risk in type 2 diabetes: a matched cohort study with the Fremantle Diabetes Study Phase I. Diabetologia 60, 89–97 (2017).

    Article  PubMed  Google Scholar 

  153. Salinas, R. M., Hiriart, M., Acosta, I., Sosa, A. L. & Prince, M. J. Type 2 diabetes mellitus as a risk factor for dementia in a Mexican population. J. Diabetes Complications 30, 1234–1239 (2016).

    Article  PubMed  Google Scholar 

  154. Wennberg, A. M. V. et al. Longitudinal association between diabetes and cognitive decline: The National Health and Aging Trends Study. Arch. Gerontol. Geriatr. 72, 39–44 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Rawlings, A. M. et al. The association of late-life diabetes status and hyperglycemia with incident mild cognitive impairment and dementia: The ARIC Study. Diabetes Care 42, 1248–1254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Frison, E. et al. Diabetes-associated dementia risk and competing risk of death in the Three-City Study. J. Alzheimers Dis. 71, 1339–1350 (2019).

    Article  PubMed  Google Scholar 

  157. Barbiellini Amidei, C. et al. Association between age at diabetes onset and subsequent risk of dementia. JAMA 325, 1640–1649 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Li, F. R. et al. Influence of diabetes duration and glycemic control on dementia: a cohort study. J. Gerontol. A 76, 2062–2070 (2021).

    Article  CAS  Google Scholar 

  159. Yen, F. S., Wei, J. C., Yip, H. T., Hwu, C. M. & Hsu, C. C. Diabetes, hypertension, and the risk of dementia. J. Alzheimers Dis. 89, 323–333 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Nagar, S. D. et al. Investigation of hypertension and type 2 diabetes as risk factors for dementia in the All of Us cohort. Sci Rep. 12, 19797 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wang, K. & Liu, H. Early-onset subgroup of type 2 diabetes and risk of dementia, Alzheimer’s disease and stroke: a cohort study. J. Prev. Alzheimers Dis. 8, 442–447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sasaki, Y. et al. Chronic kidney disease: a risk factor for dementia onset: a population-based study. The Osaki-Tajiri Project. J Am Geriatr Soc 59, 1175–1181 (2011).

    Article  PubMed  Google Scholar 

  163. O’Hare, A. M. et al. Relationship between longitudinal measures of renal function and onset of dementia in a community cohort of older adults. J. Am. Geriatr. Soc. 60, 2215–2222 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Miwa, K. et al. Chronic kidney disease is associated with dementia independent of cerebral small-vessel disease. Neurology 82, 1051–1057 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Kuo, Y. T. et al. Risk of dementia in patients with end-stage renal disease under maintenance dialysis-a nationwide population-based study with consideration of competing risk of mortality. Alzheimers Res. Ther. 11, 31 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Tseng, T. J., Yen, Y. T., Yang, Y. H., Chen, Y. H. & Chan, T. C. Association between the occurrence of albuminuria and the risk of early dementia among older people upon health examination: a community-based cohort study in Taiwan. BMJ Open 10, e041664 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Hiramatsu, R., Iwagami, M. & Nitsch, D. Association between chronic kidney disease and incident diagnosis of dementia in England: a cohort study in Clinical Practice Research Datalink. BMJ Open 10, e033811 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Wang, M. et al. Kidney function and dementia risk in community-dwelling older adults: the Shanghai Aging Study. Alzheimers Res. Ther. 13, 21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kjaergaard, A. D., Johannesen, B. R., Sørensen, H. T., Henderson, V. W. & Christiansen, C. F. Kidney disease and risk of dementia: a Danish nationwide cohort study. BMJ Open 11, e052652 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Månsson, T. & Elmståhl, S. Processing speed is affected by early impairment in kidney function in the general elder population. BMC Nephrol. 22, 314 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Lee, S. I. et al. Decreased renal function is associated with incident dementia: an IMRD-THIN retrospective cohort study in the UK. Alzheimers Dement. 18, 1943–1956 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Singh-Manoux, A. et al. Association between kidney function and incidence of dementia: 10-year follow-up of the Whitehall II cohort study. Age Ageing 51, afab259 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Yeh, T. S. et al. Kidney function, albuminuria, and their modification by genetic factors and risk of incident dementia in UK Biobank. Alzheimers Res. Ther. 15, 138 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kwon, M. J. et al. Exploring the link between chronic kidney disease and Alzheimer’s disease: a longitudinal follow-up study using the Korean National Health Screening Cohort. Biomedicines 11, 1606 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kelly, D. M. et al. Impaired kidney function, cerebral small vessel disease and cognitive disorders: the Framingham Heart Study. Nephrol. Dial Transplant. 39, 1911–1922 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Desmond, D. W., Moroney, J. T., Sano, M. & Stern, Y. Incidence of dementia after ischemic stroke: results of a longitudinal study. Stroke 33, 2254–2260 (2002).

    Article  PubMed  Google Scholar 

  177. Kuller, L. H. et al. Risk factors for dementia in the cardiovascular health cognition study. Neuroepidemiology 22, 13–22 (2003).

    Article  PubMed  Google Scholar 

  178. Srikanth, V. K. et al. Progressive dementia after first-ever stroke: a community-based follow-up study. Neurology 63, 785–792 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Ivan, C. S. et al. Dementia after stroke: the Framingham Study. Stroke 35, 1264–1268 (2004).

    Article  PubMed  Google Scholar 

  180. Simons, L. A., Simons, J., McCallum, J. & Friedlander, Y. Lifestyle factors and risk of dementia: Dubbo Study of the elderly. Med J Aust 184, 68–70 (2006).

    Article  PubMed  Google Scholar 

  181. Yip, A. G., Brayne, C. & Matthews, F. E. Risk factors for incident dementia in England and Wales: The Medical Research Council Cognitive Function and Ageing Study. A population-based nested case–control study. Age Ageing 35, 154–160 (2006).

    Article  PubMed  Google Scholar 

  182. Hayden, K. M. et al. Vascular risk factors for incident Alzheimer disease and vascular dementia: the Cache County study. Alzheimer Dis. Assoc. Disord. 20, 93–100 (2006).

    Article  PubMed  Google Scholar 

  183. Qiu, C., Xu, W., Winblad, B. & Fratiglioni, L. Vascular risk profiles for dementia and Alzheimer’s disease in very old people: a population-based longitudinal study. J. Alzheimers Dis. 20, 293–300 (2010).

    Article  PubMed  Google Scholar 

  184. de Bruijn, R. F. et al. The potential for prevention of dementia across two decades: the prospective, population-based Rotterdam Study. BMC Med. 13, 132 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Ganguli, M. et al. Rates and risk factors for progression to incident dementia vary by age in a population cohort. Neurology 84, 72–80 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Hendrie, H. C. et al. Statin use, incident dementia and Alzheimer disease in elderly African Americans. Ethn. Dis. 25, 345–354 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Corraini, P. et al. Long-term risk of dementia among survivors of ischemic or hemorrhagic stroke. Stroke 48, 180–186 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Hsu, P. F. et al. C-reactive protein predicts incidence of dementia in an elderly Asian community cohort. J. Am. Med. Dir. Assoc. 18, 277.e277–277.e211 (2017).

    Article  Google Scholar 

  189. Li, C. H. et al. Factors of post-stroke dementia: a nationwide cohort study in Taiwan. Geriatr. Gerontol. Int. 19, 815–822 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Guo, X., Östling, S., Kern, S., Johansson, L. & Skoog, I. Increased risk for dementia both before and after stroke: a population-based study in women followed over 44 years. Alzheimers Dement. 14, 1253–1260 (2018).

    Article  PubMed  Google Scholar 

  191. Clair, L., Anderson, H., Anderson, C., Ekuma, O. & Prior, H. J. Cardiovascular disease and the risk of dementia: a survival analysis using administrative data from Manitoba. Can. J. Public Health 113, 455–464 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Lu, Y. et al. Cardiometabolic and vascular disease factors and mild cognitive impairment and dementia. Gerontology 68, 1061–1069 (2022).

    Article  CAS  PubMed  Google Scholar 

  193. Zhong, W. et al. Prevalent stroke, age of its onset, and post-stroke lifestyle in relation to dementia: a prospective cohort study. Alzheimers Dement. 19, 3998–4007 (2023).

    Article  PubMed  Google Scholar 

  194. Koton, S. et al. Association of ischemic stroke incidence, severity, and recurrence with dementia in the atherosclerosis risk in communities cohort study. JAMA Neurol. 79, 271–280 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Dove, A. et al. Cardiometabolic multimorbidity accelerates cognitive decline and dementia progression. Alzheimers Dement. 19, 821–830 (2023).

    Article  PubMed  Google Scholar 

  196. Kauko, A., Engler, D., Niiranen, T., Ortega-Alonso, A. & Schnabel, R. B. Increased risk of dementia differs across cardiovascular diseases and types of dementia—data from a nationwide study. J. Intern. Med. 295, 196–205 (2024).

    Article  CAS  PubMed  Google Scholar 

  197. Hwangbo, S. et al. Dementia incidence and population-attributable fraction for dementia risk factors in Republic of Korea: a 12-year longitudinal follow-up study of a national cohort. Front. Aging Neurosci. 15, 1126587 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Veronese, N. et al. Multimorbidity increases the risk of dementia: a 15 year follow-up of the SHARE study. Age Ageing 52, afad052 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Aronson, M. K. et al. Women, myocardial infarction, and dementia in the very old. Neurology 40, 1102–1106 (1990).

    Article  CAS  PubMed  Google Scholar 

  200. Kivipelto, M. et al. Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann. Intern. Med. 137, 149–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  201. Newman, A. B. et al. Dementia and Alzheimer’s disease incidence in relationship to cardiovascular disease in the Cardiovascular Health Study cohort. J. Am. Geriatr. Soc. 53, 1101–1107 (2005).

    Article  PubMed  Google Scholar 

  202. Bursi, F. et al. Heart disease and dementia: a population-based study. Am. J. Epidemiol. 163, 135–141 (2006).

    Article  PubMed  Google Scholar 

  203. Ikram, M. A. et al. Unrecognized myocardial infarction in relation to risk of dementia and cerebral small vessel disease. Stroke 39, 1421–1426 (2008).

    Article  PubMed  Google Scholar 

  204. Chen, R. et al. Incident dementia in a defined older Chinese population. PLoS ONE 6, e24817 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Takahashi, P. Y., Caldwell, C. R. & Targonski, P. V. Effect of vascular burden as measured by vascular indexes upon vascular dementia: a matched case–control study. Clin. Interv. Aging 7, 27–33 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Haring, B. et al. Cardiovascular disease and cognitive decline in postmenopausal women: results from the Women’s Health Initiative Memory Study. J. Am. Heart Assoc. 2, e000369 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Rusanen, M. et al. Heart diseases and long-term risk of dementia and Alzheimer’s disease: a population-based CAIDE study. J. Alzheimers Dis. 42, 183–191 (2014).

    Article  PubMed  Google Scholar 

  208. Kuo, S. C. et al. Association between comorbidities and dementia in diabetes mellitus patients: population-based retrospective cohort study. J. Diabetes Complications 29, 1071–1076 (2015).

    Article  PubMed  Google Scholar 

  209. Heath, C. A., Mercer, S. W. & Guthrie, B. Vascular comorbidities in younger people with dementia: a cross-sectional population-based study of 616 245 middle-aged people in Scotland. J. Neurol. Neurosurg. Psychiatry 86, 959–964 (2015).

    Article  CAS  PubMed  Google Scholar 

  210. Booker, A., Jacob, L. E., Rapp, M., Bohlken, J. & Kostev, K. Risk factors for dementia diagnosis in German primary care practices. Int. Psychogeriatr. 28, 1059–1065 (2016).

    Article  PubMed  Google Scholar 

  211. Deng, J. et al. Prevalence and effect factors of dementia among the community elderly in Chongqing, China. Psychogeriatrics 18, 412–420 (2018).

    Article  PubMed  Google Scholar 

  212. Imahori, Y. et al. Association of ischemic heart disease with long-term risk of cognitive decline and dementia: a cohort study. Alzheimers Dement. 19, 5541–5549 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. Liang, J. et al. Association between onset age of coronary heart disease and incident dementia: a prospective cohort study. J. Am. Heart Assoc. 12, e031407 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Olesen, K. K. W. et al. Diabetes and coronary artery disease as risk factors for dementia. Eur. J. Prev. Cardiol. 32, 477–484 (2025).

    Article  PubMed  Google Scholar 

  215. Forti, P. et al. Atrial fibrillation and risk of dementia in non-demented elderly subjects with and without mild cognitive impairment (MCI). Arch. Gerontol. Geriatr. 44, 155–165 (2007).

    Article  PubMed  Google Scholar 

  216. Marengoni, A., Qiu, C., Winblad, B. & Fratiglioni, L. Atrial fibrillation, stroke and dementia in the very old: a population-based study. Neurobiol. Aging 32, 1336–1337 (2011).

    Article  PubMed  Google Scholar 

  217. Dublin, S. et al. Atrial fibrillation and risk of dementia: a prospective cohort study. J. Am. Geriatr. Soc. 59, 1369–1375 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  218. de Bruijn, R. F. et al. Association between atrial fibrillation and dementia in the general population. JAMA Neurol. 72, 1288–1294 (2015).

    Article  PubMed  Google Scholar 

  219. Liao, J. N. et al. Risk and prediction of dementia in patients with atrial fibrillation—a nationwide population-based cohort study. Int. J. Cardiol. 199, 25–30 (2015).

    Article  PubMed  Google Scholar 

  220. Marzona, I. et al. Risk of dementia and death in patients with atrial fibrillation: a competing risk analysis of a population-based cohort. Int. J. Cardiol. 220, 440–444 (2016).

    Article  PubMed  Google Scholar 

  221. Walters, K. et al. Predicting dementia risk in primary care: development and validation of the Dementia Risk Score using routinely collected data. BMC Med. 14, 6 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Singh-Manoux, A. et al. Atrial fibrillation as a risk factor for cognitive decline and dementia. Eur. Heart J. 38, 2612–2618 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Ding, M. et al. Atrial fibrillation, antithrombotic treatment, and cognitive aging: a population-based study. Neurology 91, e1732–e1740 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Chen, L. Y. et al. Association of atrial fibrillation with cognitive decline and dementia over 20 years: The ARIC-NCS (Atherosclerosis Risk in Communities Neurocognitive Study). J. Am. Heart Assoc. 7, e007301 (2018).

  225. Kim, D. et al. Risk of dementia in stroke-free patients diagnosed with atrial fibrillation: data from a population-based cohort. Eur. Heart J. 40, 2313–2323 (2019).

    Article  CAS  PubMed  Google Scholar 

  226. Rydén, L. et al. Atrial fibrillation increases the risk of dementia amongst older adults even in the absence of stroke. J. Intern. Med. 286, 101–110 (2019).

    Article  PubMed  Google Scholar 

  227. Bansal, N. et al. Incident atrial fibrillation and risk of dementia in a diverse, community-based population. J. Am. Heart Assoc. 12, e028290 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  228. van Oijen, M. et al. Atherosclerosis and risk for dementia. Ann. Neurol. 61, 403–410 (2007).

    Article  PubMed  Google Scholar 

  229. Guerchet, M. et al. Association between a low ankle-brachial index and dementia in a general elderly population in Central Africa (Epidemiology of Dementia in Central Africa Study). J. Am. Geriatr. Soc. 61, 1135–1140 (2013).

    Article  PubMed  Google Scholar 

  230. Huang, S. W. et al. Osteoarthritis increases the risk of dementia: a nationwide cohort study in Taiwan. Sci Rep. 5, 10145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Chen, K. T. et al. Rheumatic diseases are associated with a higher risk of dementia: a nation-wide, population-based, case–control study. Int. J. Rheum. Dis. 21, 373–380 (2018).

    Article  PubMed  Google Scholar 

  232. Innes, K. E. & Sambamoorthi, U. The Association of osteoarthritis and related pain burden to incident Alzheimer’s disease and related dementias: a retrospective cohort study of U.S. Medicare beneficiaries. J. Alzheimers Dis. 75, 789–805 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Swain, S. et al. Temporal relationship between osteoarthritis and comorbidities: a combined case control and cohort study in the UK primary care setting. Rheumatology 60, 4327–4339 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Kiadaliri, A., Dell’Isola, A., Turkiewicz, A. & Englund, M. Rheumatic and musculoskeletal diseases and risk of dementia: a nested case–control study. ACR Open Rheumatol. 6, 504–510 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Guo, R. et al. Osteoarthritis, osteoarthritis treatment and risk of incident dementia: a prospective cohort study based on UK Biobank. Age Ageing 53, afae167 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Endo, Y. et al. Radiographic knee osteoarthritis is a risk factor for the development of dementia: locomotive syndrome and health outcomes in the Aizu Cohort Study. J. Clin. Med. 13, 4956 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Liao, W. C., Lin, C. L., Chang, S. N., Tu, C. Y. & Kao, C. H. The association between chronic obstructive pulmonary disease and dementia: a population-based retrospective cohort study. Eur. J. Neurol. 22, 334–340 (2015).

    Article  PubMed  Google Scholar 

  238. Xie, F. & Xie, L. COPD and the risk of mild cognitive impairment and dementia: a cohort study based on the Chinese Longitudinal Health Longevity Survey. Int. J. Chron. Obstruct. Pulmon. Dis. 14, 403–408 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Xiao, T. et al. Lung function impairment and the risk of incident dementia: The Rotterdam Study. J. Alzheimers Dis. 82, 621–630 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Wotton, C. J. & Goldacre, M. J. Associations between specific autoimmune diseases and subsequent dementia: retrospective record-linkage cohort study, UK. J. Epidemiol. Commun. Health 71, 576–583 (2017).

    Article  Google Scholar 

  241. Mahmoudi, E. et al. Diagnosis of Alzheimer’s disease and related dementia among people with multiple sclerosis: large cohort study, USA. Mult. Scler. Relat. Disord. 57, 103351 (2022).

    Article  PubMed  Google Scholar 

  242. Cho, E. B. et al. The risk of dementia in multiple sclerosis and neuromyelitis optica spectrum disorder. Front. Neurosci. 17, 1214652 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Huang, J. et al. Inflammatory diseases, inflammatory biomarkers, and Alzheimer disease: an observational analysis and Mendelian randomization. Neurology 100, e568–e581 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Fleming, N. H., Bahorik, A., Xia, F. & Yaffe, K. Risk of dementia in older veterans with multiple sclerosis. Mult. Scler. Relat. Disord. 82, 105372 (2024).

    Article  PubMed  Google Scholar 

  245. Zhang, B. et al. Inflammatory bowel disease is associated with higher dementia risk: a nationwide longitudinal study. Gut 70, 85–91 (2021).

    Article  PubMed  Google Scholar 

  246. Zingel, R., Bohlken, J. & Kostev, K. Association between inflammatory bowel disease and dementia: a retrospective cohort study. J. Alzheimers Dis. 80, 1471–1478 (2021).

    Article  CAS  PubMed  Google Scholar 

  247. Kim, G. H. et al. Risk of neurodegenerative diseases in patients with inflammatory bowel disease: a nationwide population-based cohort study. J. Crohns Colitis 16, 436–443 (2022).

    Article  PubMed  Google Scholar 

  248. Rønnow Sand, J. et al. Risk of dementia in patients with inflammatory bowel disease: a Danish population-based study. Aliment. Pharmacol. Ther. 56, 831–843 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Sun, Y. et al. Association between inflammatory bowel disease and dementia: a longitudinal cohort study. Inflamm. Bowel Dis. 28, 1520–1526 (2022).

    Article  PubMed  Google Scholar 

  250. Aggarwal, M. et al. Alzheimer disease occurs more frequently in patients with inflammatory bowel disease: insight from a nationwide study. J. Clin. Gastroenterol. 57, 501–507 (2023).

    Article  CAS  PubMed  Google Scholar 

  251. Garcia-Argibay, M., Hiyoshi, A. & Montgomery, S. Association between dementia risk and ulcerative colitis, with and without colectomy: a Swedish population-based register study. BMJ Open 13, e074110 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Abuabara, K. et al. Cause-specific mortality in patients with severe psoriasis: a population-based cohort study in the U.K. Br. J. Dermatol. 163, 586–592 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Pezzolo, E. et al. Psoriasis is not associated with cognition, brain imaging markers, and risk for dementia: The Rotterdam Study. J. Am. Acad. Dermatol. 85, 671–680 (2021).

    Article  PubMed  Google Scholar 

  254. Kim, M., Park, H. E., Lee, S. H., Han, K. & Lee, J. H. Increased risk of Alzheimer’s disease in patients with psoriasis: a nationwide population-based cohort study. Sci. Rep. 10, 6454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Leisner, M. Z. et al. Psoriasis and risk of mental disorders in Denmark. JAMA Dermatol. 155, 745–747 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Lin, C. C., Lin, H. C. & Chiu, H. W. Association between psoriasis and dementia: a population-based case–control study. Am. J. Clin. Dermatol. 20, 457–463 (2019).

    Article  PubMed  Google Scholar 

  257. Wu, C. Y., Hu, H. Y., Chou, Y. J., Li, C. P. & Chang, Y. T. Psoriasis is not a risk factor for dementia: a 12-year nationwide population-based cohort study. Arch. Dermatol. Res. 312, 657–664 (2020).

    Article  PubMed  Google Scholar 

  258. Kridin, K. et al. Psoriasis and dementia: a cross-sectional study of 121,801 patients. Acta Derm. Venereol. 100, adv00250 (2020).

    Article  PubMed  Google Scholar 

  259. Zhang, Y. R. et al. Immune-mediated diseases are associated with a higher incidence of dementia: a prospective cohort study of 375,894 individuals. Alzheimers Res. Ther. 14, 130 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Eriksson, U. K., Gatz, M., Dickman, P. W., Fratiglioni, L. & Pedersen, N. L. Asthma, eczema, rhinitis and the risk for dementia. Dement. Geriatr. Cogn. Disord. 25, 148–156 (2008).

    Article  PubMed  Google Scholar 

  261. Pan, T. L. et al. Atopic dermatitis and dementia risk: a nationwide longitudinal study. Ann. Allergy Asthma Immunol. 127, 200–205 (2021).

    Article  PubMed  Google Scholar 

  262. Magyari, A. et al. Adult atopic eczema and the risk of dementia: a population-based cohort study. J. Am. Acad. Dermatol. 87, 314–322 (2022).

    Article  PubMed  Google Scholar 

  263. Joh, H. K. et al. Allergic diseases and risk of incident dementia and Alzheimer’s disease. Ann. Neurol. 93, 384–397 (2023).

    Article  CAS  PubMed  Google Scholar 

  264. Ng, T. P., Chiam, P. C. & Kua, E. H. Mental disorders and asthma in the elderly: a population-based study. Int. J. Geriatr. Psychiatry 22, 668–674 (2007).

    Article  PubMed  Google Scholar 

  265. Chen, M. H. et al. Risk of dementia among patients with asthma: a nationwide longitudinal study. J. Am. Med. Dir. Assoc. 15, 763–767 (2014).

    Article  PubMed  Google Scholar 

  266. Peng, Y. H. et al. Adult asthma increases dementia risk: a nationwide cohort study. J. Epidemiol. Commun. Health 69, 123–128 (2015).

    Article  Google Scholar 

  267. Bartels, C. M. et al. Alzheimer incidence and prevalence with and without asthma: a Medicare cohort study. J. Allergy Clin. Immunol. 154, 498–502 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Lu, K. et al. Association between autoimmune rheumatic diseases and the risk of dementia. BioMed Res. Int. 2014, 861812 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Wallin, K. et al. Midlife rheumatoid arthritis increases the risk of cognitive impairment two decades later: a population-based study. J. Alzheimers Dis. 31, 669–676 (2012).

    Article  PubMed  Google Scholar 

  270. Lin, T. M. et al. Autoimmune rheumatic diseases increase dementia risk in middle-aged patients: a nationwide cohort study. PLoS ONE 13, e0186475 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Min, C., Bang, W. J., Kim, M., Oh, D. J. & Choi, H. G. Rheumatoid arthritis and neurodegenerative dementia: a nested case–control study and a follow-up study using a national sample cohort. Clin. Rheumatol. 39, 159–166 (2020).

    Article  PubMed  Google Scholar 

  272. Kronzer, V. L. et al. Trends in incidence of dementia among patients with rheumatoid arthritis: a population-based cohort study. Semin. Arthritis Rheum. 51, 853–857 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Xue, M. et al. Diabetes mellitus and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 144 prospective studies. Ageing Res. Rev. 55, 100944 (2019).

    Article  CAS  PubMed  Google Scholar 

  274. Ronksley, P. E., Brien, S. E., Turner, B. J., Mukamal, K. J. & Ghali, W. A. Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. BMJ 342, d671 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Zhang, J. & Yu, K. F. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 280, 1690–1691 (1998).

    Article  CAS  PubMed  Google Scholar 

  276. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article  Google Scholar 

  277. Röver, C. Bayesian random-effects meta-analysis using the bayesmeta R package. J. Stat. Softw. 93, 1–51 (2020).

    Article  Google Scholar 

  278. Röver, C. & Friede, T. Using the bayesmeta R package for Bayesian random-effects meta-regression. Comput. Methods Programs Biomed. 229, 107303 (2023).

    Article  PubMed  Google Scholar 

  279. Ambati, J. et al. Repurposing anti-inflammasome NRTIs for improving insulin sensitivity and reducing type 2 diabetes development. Nat. Commun. 11, 4737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Seide, S. E., Röver, C. & Friede, T. Likelihood-based random-effects meta-analysis with few studies: empirical and simulation studies. BMC Med. Res. Method. 19, 16 (2019).

    Article  Google Scholar 

  281. Spiegelhalter, D. J., Abrams, K. R. & Myles, J. P. Bayesian Approaches to Clinical Trials and Health-Care Evaluation (John Wiley & Sons, 2004).

  282. Harrer, M., Cuijpers, P., Furukawa, T. & Ebert D. Doing Meta-analysis with R: A Hands-On Guide (Chapman and Hall/CRC, 2021).

  283. Jakobsen, J. C., Wetterslev, J., Winkel, P., Lange, T. & Gluud, C. Thresholds for statistical and clinical significance in systematic reviews with meta-analytic methods. BMC Med. Res. Methodol. 14, 120 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Morey, R. D. & Rouder, J. N. Bayes factor approaches for testing interval null hypotheses. Psychol. Methods 16, 406–419 (2011).

    Article  PubMed  Google Scholar 

  285. Villamor, E. et al. Patent ductus arteriosus and bronchopulmonary dysplasia-associated pulmonary hypertension: a Bayesian meta-analysis. JAMA Netw. Open 6, e2345299 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Albuquerque, A. M., Tramujas, L., Sewanan, L. R., Williams, D. R. & Brophy, J. M. Mortality rates among hospitalized patients with COVID-19 infection treated with tocilizumab and corticosteroids: a bayesian reanalysis of a previous meta-analysis. JAMA Netw. Open 5, e220548 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Levin, M. L. The occurrence of lung cancer in man. Acta Unio Int. Contra Cancrum 9, 531–541 (1953).

    CAS  PubMed  Google Scholar 

  288. Barnes, D. E. & Yaffe, K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 10, 819–828 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Lee, M. et al. Variation in population attributable fraction of dementia associated with potentially modifiable risk factors by race and ethnicity in the US. JAMA Netw. Open 5, e2219672 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Deng, Z. & Yang, Y. Population attributable fractions of a wide range of peripheral diseases for the burden of dementia. figshare https://doi.org/10.6084/m9.figshare.30634574 (2025).

Download references

Acknowledgements

The data acquired from the UK Biobank in this study were under application number 70109. The UK Biobank received ethical approval from the North West Multi-Centre Research Ethics Committee (REC reference 11/NW/0382), and all participants provided written informed consent. The GBD is funded by the Bill & Melinda Gates Foundation. This work was supported by the STI 2030 Major Projects (2022ZD0211603), the National Natural Science Foundation of China (82330099, 82530100), the Key-Area Research and Development Program of Guangdong Province (2023B0303040003) and Science and Technology Program of Guangzhou (2023A03J0708) to Y.T.; the National Natural Science Foundation of China (82473563) and Guangzhou Science and Technology Programme (2024A03J0911) to Y.X.; Guangzhou Science and Technology Plan Project (2025A04J4443) and Sun Yat-sen Clinical Research Cultivating Program (SYS-Q-202208) to H.L.; and the National Natural Science Foundation of China (81872261) to S.X. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the paper.

Author information

Authors and Affiliations

Authors

Contributions

Z.D., Y.Y., Q.L. and S.X. are co-first authors. Z.D., Y.Y., Q.L. and Y.T. designed the study. Z.D., Y.Y., Q.L., S.X., Y.Z. and Y.T. accessed the data, performed the statistical analysis and verified the underlying data reported in the paper. Z.D., Y.Y., Q.L. and Y.T. drafted the initial paper. All authors critically revised the paper for important intellectual content. Y.T. supervised the study. All authors have full access to all of the data in the study and take responsibility to submit for publication. All authors have read and approved the final paper. Y.T. has the final responsibility for the decision to submit for publication.

Corresponding author

Correspondence to Yamei Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Nooshin Abbasi, Christian Razo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–25 and Figs. 1–71.

Reporting Summary

Supplementary Data 1

The detailed spatial distribution of dementia prevalence and DALYs, as well as the PAF, prevalence rates and case numbers of dementia related to overall and nine classes of peripheral diseases, across GBD regions and countries.

Supplementary Data 2

Details of the characteristics and quality assessment of all the included articles.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Yang, Y., Lin, Q. et al. Population attributable fractions of a wide range of peripheral diseases for the burden of dementia. Nat Hum Behav (2026). https://doi.org/10.1038/s41562-025-02392-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41562-025-02392-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing