Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast time-resolved observation of non-thermal current-induced switching in an antiferromagnetic Weyl semimetal

Abstract

Antiferromagnets have gained a growing interest for next-generation spintronic applications. Among them, the antiferromagnetic Weyl semimetal Mn3Sn stands out because of its electrical and magnetic properties driven by its non-collinear spin structure at room temperature. Despite research progress on the current-induced switching of the magnetic octupole in Mn3Sn, the ultrafast switching inherent to the antiferromagnet remains to be resolved, and the underlying mechanism is yet elusive. Here we measure the spatiotemporally resolved current-induced switching dynamics in polycrystalline Mn3Sn films using ultrafast magneto-optical Kerr effect imaging, with current pulses as short as 140 ps. Our results directly reveal two distinct switching regimes depending on the intensity and duration of the current pulse: a non-thermal process that does not require the transient melting of antiferromagnetic order, and a temperature-assisted process that relies on heating above the magnetic ordering temperature. Our work highlights the potential of Mn3Sn towards ultrafast magnetic recording devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup and device characteristics.
Fig. 2: Current-induced switching dynamics of Mn3Sn films.
Fig. 3: Current amplitude dependence of current-induced dynamics.
Fig. 4: In-plane magnetic field dependence of current-induced dynamics.

Similar content being viewed by others

Data availability

Data that support the findings of this work are available in the Supplementary Information. Source data are provided with this paper.

References

  1. Satoh, T. et al. Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light. Phys. Rev. Lett. 105, 077402 (2010).

    Article  PubMed  Google Scholar 

  2. Bossini, D. et al. Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons. Nat. Commun. 7, 10645 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  CAS  Google Scholar 

  5. Li, J. et al. Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature 578, 70–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Vaidya, P. et al. Subterahertz spin pumping from an insulating antiferromagnet. Science 368, 160–165 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Bai, H. et al. Functional antiferromagnets for potential applications on high-density storage and high frequency. J. Appl. Phys. 128, 210901 (2020).

    Article  CAS  Google Scholar 

  8. Miwa, S. et al. Giant effective damping of octupole oscillation in an antiferromagnetic Weyl semimetal. Small Sci. 1, 2000062 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jhuria, K. et al. Spin–orbit torque switching of a ferromagnet with picosecond electrical pulses. Nat. Electron. 3, 680–686 (2020).

    Article  Google Scholar 

  10. Garello, K. et al. Ultrafast magnetization switching by spin-orbit torques. Appl. Phys. Lett. 105, 212402 (2014).

    Article  Google Scholar 

  11. Polley, D. et al. Picosecond spin-orbit torque–induced coherent magnetization switching in a ferromagnet. Sci. Adv. 9, eadh5562 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Díaz, E. et al. Energy-efficient picosecond spin–orbit torque magnetization switching in ferro- and ferrimagnetic films. Nat. Nanotechnol. 20, 36–42 (2025).

  13. Yang, Y. et al. Ultrafast magnetization reversal by picosecond electrical pulses. Sci. Adv. 3, e1603117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Higo, T. et al. Anomalous Hall effect in thin films of the Weyl antiferromagnet Mn3Sn. Appl. Phys. Lett. 113, 202402 (2018).

    Article  Google Scholar 

  16. Ikeda, T. et al. Anomalous Hall effect in polycrystalline Mn3Sn thin films. Appl. Phys. Lett. 113, 222405 (2018).

    Article  Google Scholar 

  17. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article  CAS  Google Scholar 

  18. Li, X. et al. Anomalous Nernst and Righi-Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).

    Article  PubMed  Google Scholar 

  19. Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78 (2018).

    Article  CAS  Google Scholar 

  20. Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Nakatsuji, S. & Arita, R. Topological magnets: functions based on Berry phase and multipoles. Annu. Rev. Condens. Matter Phys. 13, 119–142 (2022).

    Article  CAS  Google Scholar 

  22. Suzuki, M.-T., Koretsune, T., Ochi, M. & Arita, R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B 95, 094406 (2017).

    Article  Google Scholar 

  23. Nomoto, T. & Arita, R. Cluster multipole dynamics in noncollinear antiferromagnets. Phys. Rev. Res. 2, 012045 (2020).

    Article  CAS  Google Scholar 

  24. Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    Article  PubMed  Google Scholar 

  25. Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Rout, P. K., Madduri, P. V. P., Manna, S. K. & Nayak, A. K. Field-induced topological Hall effect in the noncoplanar triangular antiferromagnetic geometry of Mn3Sn. Phys. Rev. B 99, 094430 (2019).

    Article  CAS  Google Scholar 

  27. Wang, X. et al. Topological Hall effect in thin films of an antiferromagnetic Weyl semimetal integrated on Si. ACS Appl. Mater. Interfaces 15, 7572–7577 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Li, X. et al. Chiral domain walls of Mn3Sn and their memory. Nat. Commun. 10, 3021 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 607, 474–479 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Xie, H. et al. Magnetization switching in polycrystalline Mn3Sn thin film induced by self-generated spin-polarized current. Nat. Commun. 13, 5744 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zheng, Z. et al. Effective electrical manipulation of a topological antiferromagnet by orbital torques. Nat. Commun. 15, 745 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sugimoto, S. et al. Electrical nucleation, displacement, and detection of antiferromagnetic domain walls in the chiral antiferromagnet Mn3Sn. Commun. Phys. 3, 111 (2020).

    Article  CAS  Google Scholar 

  35. Wu, M. et al. Current-driven fast magnetic octupole domain-wall motion in noncollinear antiferromagnets. Nat. Commun. 15, 4305 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sakamoto, S. et al. Antiferromagnetic spin-torque diode effect in a kagome Weyl semimetal. Nat. Nanotechnol. 20, 216–221 (2025).

    Article  CAS  PubMed  Google Scholar 

  37. Yamada, S. et al. Observation of electrical fast switching in the antiferromagnet Mn3Sn. Meeting Abstracts Phys. Soc. Jpn 16aSK314-8, 1288 (2025).

  38. Krishnaswamy, G. K. et al. Time-dependent multistate switching of topological antiferromagnetic order in Mn3Sn. Phys. Rev. Appl. 18, 024064 (2022).

    Article  CAS  Google Scholar 

  39. Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364–1370 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Yan, G. Q. et al. Quantum sensing and imaging of spin–orbit-torque-driven spin dynamics in the non-collinear antiferromagnet Mn3Sn. Adv. Mater. 34, 2200327 (2022).

    Article  CAS  Google Scholar 

  41. Yoon, J.-Y. et al. Handedness anomaly in a non-collinear antiferromagnet under spin–orbit torque. Nat. Mater. 22, 1106–1113 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Shukla, A., Qian, S. & Rakheja, S. Order parameter dynamics in Mn3Sn driven by d.c. and pulsed spin–orbit torques. APL Mater. 11, 091110 (2023).

    Article  CAS  Google Scholar 

  43. Xu, Z. et al. Deterministic spin-orbit torque switching including the interplay between spin polarization and kagome plane in Mn3Sn. Phys. Rev. B 109, 134433 (2024).

    Article  CAS  Google Scholar 

  44. Pal, B. et al. Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque. Sci. Adv. 8, eabo5930 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kobayashi, Y., Shiota, Y., Narita, H., Ono, T. & Moriyama, T. Pulse-width dependence of spin–orbit torque switching in Mn3Sn/Pt thin films. Appl. Phys. Lett. 122, 122405 (2023).

    Article  CAS  Google Scholar 

  46. Yoo, M.-W., Lorenz, V. O., Hoffmann, A. & Cahill, D. G. Thermal contribution to current-driven antiferromagnetic-order switching. APL Mater. 12, 081107 (2024).

    Article  CAS  Google Scholar 

  47. Ogawa, K. et al. Ultrafast stroboscopic time-resolved magneto-optical imaging of domain wall motion in Pt/GdFeCo wires induced by a current pulse. Phys. Rev. Res. 5, 033151 (2023).

    Article  CAS  Google Scholar 

  48. Schlauderer, S. et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching. Nature 569, 383–387 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Baumgartner, M. et al. Spatially and time-resolved magnetization dynamics driven by spin–orbit torques. Nat. Nanotechnol. 12, 980–986 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Cai, K. et al. Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets. Nat. Electron. 3, 37–42 (2020).

    Article  CAS  Google Scholar 

  51. Matsuo, T. et al. Crossover between intrinsic and temperature-assisted regimes in spin-orbit torque switching of antiferromagnetic order. Preprint at https://arxiv.org/abs/2510.27138 (2025).

Download references

Acknowledgements

This work was supported by a JST-MIRAI program (JPMJMI20A1). K.O. acknowledges financial support from JSPS KAKENHI (grant number JP24KJ0653). We are grateful to K. Kondo for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.O. carried out the optical experiments and analysed the data. K.O. and N.Y. developed the ultrafast TR-MOKE measurement system under the supervision of R.S. H.T. and T. Matsuda optimized the device structure for the TR-MOKE measurements with feedback from K.O., S.N. and R.S. T. Matsuo, Y.T., M.A., H.P. and T.H. grew and characterized the thin films. H.T. fabricated the Hall-bar devices and conducted the transport measurements of current-induced switching phenomena under the supervision of S.N. S.N. and R.S. conceived the project of this study. K.O. and R.S. wrote the manuscript with feedback from all co-authors.

Corresponding authors

Correspondence to Kazuma Ogawa or Ryo Shimano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Davide Bossini, Zhiqi Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–15 and Figs. 1–15.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, K., Tsai, H., Yoshikawa, N. et al. Ultrafast time-resolved observation of non-thermal current-induced switching in an antiferromagnetic Weyl semimetal. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02402-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41563-025-02402-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing