Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MAP-X reveals distinct protein complex dynamics across Plasmodium falciparum blood stages

Abstract

The malaria parasite Plasmodium falciparum undergoes a complex intraerythrocytic developmental cycle (IDC) that relies on a dynamic network of protein–protein interactions. These are usually mapped ex vivo, limiting our understanding of their dynamics and composition in natural environments. Here we introduce the meltome-assisted profiling of protein complexes (MAP-X) that maps the complexome through thermal proteome profiling in intact cells. We applied MAP-X across seven timepoints in the P. falciparum IDC. MAP-X predicted more than 20,000 interactions, resolving conserved protein complexes, reproducing previously identified interactions and finding previously unreported associations. We found that malaria protein complexes undergo distinct dynamic alterations, and we predicted their moonlighting subunits that dissociate from their native complex to assume different biological functions. Altogether, our findings provide a resource for uncovering Plasmodium biology and show that MAP-X can characterize protein complexes in intact cells to reveal cellular physiology at a proteome-wide level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MAP-X predicts protein–protein interactions.
Fig. 2: MAP-X complexomes map protein complexes.
Fig. 3: Local subnetworks replicate experimental evidence of protein–protein interactions.
Fig. 4: Experimental validation of MAP-X-predicted interactions.
Fig. 5: Dynamics of the P. falciparum protein complexes.
Fig. 6: Prediction of moonlighting proteins.

Similar content being viewed by others

Data availability

The raw mass spectrometry data were deposited in the PRIDE database under the identifier PXD056075. The model of P. falciparum RNA exosome ring is available in ModelArchive at https://www.modelarchive.org/doi/10.5452/ma-a867m (ref. 106). The gold-standard dataset and all prediction score values have been deposited in Zenodo36. Source data are provided with this paper.

Code availability

The R codes used to process the data and create the figures are available in the R package MAP-X available in GitHub89. The code used to generate all tables and figures is available in Zenodo107. The trained random forest models have been deposited in Zenodo36,108.

References

  1. World Malaria Report (WHO, 2023).

  2. Cowell, A. & Winzeler, E. Exploration of the Plasmodium falciparum resistome and druggable genome reveals new mechanisms of drug resistance and antimalarial targets. Microbiol. Insights 11, 1178636118808529 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wicht, K. J., Mok, S. & Fidock, D. A. Molecular mechanisms of drug resistance in Plasmodium falciparum malaria. Annu. Rev. Microbiol. 74, 431–454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Global Technical Strategy For Malaria 2016–2030, 2021 Update (WHO, 2021).

  5. Siqueira-Neto, J. L. et al. Antimalarial drug discovery: progress and approaches. Nat. Rev. Drug Discov. 22, 807–826 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guttery, D. S. et al. Genome-wide functional analysis of Plasmodium protein phosphatases reveals key regulators of parasite development and differentiation. Cell Host Microbe 16, 128–140 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Singh, G. & Gupta, D. In-silico functional annotation of Plasmodium falciparum hypothetical proteins to identify novel drug targets. Front. Genet. 13, 821516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wasmuth, J., Daub, J., Peregrín-Alvarez, J. M., Finney, C. A. M. & Parkinson, J. The origins of apicomplexan sequence innovation. Genome Res. 19, 1202–1213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Niss, K. et al. Complete topological mapping of a cellular protein interactome reveals bow-tie motifs as ubiquitous connectors of protein complexes. Cell Rep. 31, 107763 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Fadhal, E., Gamieldien, J. & Mwambene, E. C. Protein interaction networks as metric spaces: a novel perspective on distribution of hubs. BMC Syst. Biol. 8, 6 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Birth, D., Kao, W.-C. & Hunte, C. Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action. Nat. Commun. 5, 4029 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Silk, S. E. et al. Blood-stage malaria vaccine candidate RH5.1/Matrix-M in healthy Tanzanian adults and children; an open-label, non-randomised, first-in-human, single-centre, phase 1b trial. Lancet 24, 1105–1117 (2024).

    Article  CAS  Google Scholar 

  13. Keeley, A. & Soldati, D. The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. Trends Cell Biol. 14, 528–532 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Ghosh, S. et al. The Plasmodium rhoptry associated protein complex is important for parasitophorous vacuole membrane structure and intraerythrocytic parasite growth. Cell. Microbiol. 19, e12733 (2017).

    Article  Google Scholar 

  15. Pasternak, M. et al. RhopH2 and RhopH3 export enables assembly of the RhopH complex on P. falciparum-infected erythrocyte membranes. Commun. Biol. 5, 333 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cao, J. et al. Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitol. Int. 58, 29–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Chugh, M. et al. Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc. Natl Acad. Sci. USA 110, 5392–5397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ho, C.-M. et al. Malaria parasite translocon structure and mechanism of effector export. Nature 561, 70–75 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morano, A. A., Rudlaff, R. M. & Dvorin, J. D. A PPP-type pseudophosphatase is required for the maintenance of basal complex integrity in Plasmodium falciparum. Nat. Commun. 14, 3916 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fields, S. & Song, O. A novel genetic system to detect protein–protein interactions. Nature 340, 245–246 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. LaCount, D. J. et al. A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438, 103–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Gavin, A.-C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Wessels, H. J. C. T. et al. LC-MS/MS as an alternative for SDS-PAGE in blue native analysis of protein complexes. Proteomics 9, 4221–4228 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Hillier, C. et al. Landscape of the Plasmodium interactome reveals both conserved and species-specific functionality. Cell Rep. 28, 1635–1647.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

    Article  PubMed  Google Scholar 

  26. Savitski, M. M. et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346, 1255784 (2014).

    Article  PubMed  Google Scholar 

  27. Dziekan, J. M. et al. Cellular thermal shift assay for the identification of drug–target interactions in the Plasmodium falciparum proteome. Nat. Protoc. 15, 1881–1921 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Tan, C. S. H. et al. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells. Science 359, 1170–1177 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Becher, I. et al. Pervasive protein thermal stability variation during the cell cycle. Cell 173, 1495–1507.e18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hashimoto, Y., Sheng, X., Murray-Nerger, L. A. & Cristea, I. M. Temporal dynamics of protein complex formation and dissociation during human cytomegalovirus infection. Nat. Commun. 11, 806 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Justice, J. L. et al. Systematic profiling of protein complex dynamics reveals DNA-PK phosphorylation of IFI16 en route to herpesvirus immunity. Sci. Adv. 7, eabg6680 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun, S. et al. Improved in situ characterization of protein complex dynamics at scale with thermal proximity co-aggregation. Nat. Commun. 14, 7697 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reed, T. J., Tyl, M. D., Tadych, A., Troyanskaya, O. G. & Cristea, I. M. Tapioca: a platform for predicting de novo protein–protein interactions in dynamic contexts. Nat. Methods 21, 488–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pasini, E. M. et al. In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood 108, 791–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Bryk, A. H. & Wiśniewski, J. R. Quantitative analysis of human red blood cell proteome. J. Proteome Res. 16, 2752–2761 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Pazicky, S. P. falciparum MAPX models, timepoints 4–22 hpi. Zenodo https://doi.org/10.5281/ZENODO.13859621 (2025).

  37. Huang, H. & Bader, J. S. Precision and recall estimates for two-hybrid screens. Bioinformatics 25, 372–378 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Li, B., Altelaar, M. & van Breukelen, B. Identification of protein complexes by integrating protein abundance and interaction features using a deep learning strategy. Int. J. Mol. Sci. 24, 7884 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong, W. et al. Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. eLife 3, e03080 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sun, M. et al. Dynamical features of the Plasmodium falciparum ribosome during translation. Nucleic Acids Res. 43, 10515–10524 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wong, W. et al. The antimalarial Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat. Microbiol. 2, 17031 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Holder, A. A., Freeman, R. R., Uni, S. & Aikawa, M. Isolation of a Plasmodium falciparum rhoptry protein. Mol. Biochem. Parasitol. 14, 293–303 (1985).

    Article  CAS  PubMed  Google Scholar 

  43. Cooper, J. A. et al. The 140/130/105 kilodalton protein complex in the rhoptries of Plasmodium falciparum consists of discrete polypeptides. Mol. Biochem. Parasitol. 29, 251–260 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Takebe, S., Witola, W. H., Schimanski, B., Günzl, A. & Ben Mamoun, C. Purification of components of the translation elongation factor complex of Plasmodium falciparum by tandem affinity purification. Eukaryot. Cell 6, 584–591 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tellier, G. et al. Identification of Plasmodium falciparum translation initiation eIF2β subunit: direct interaction with protein phosphatase type 1. Front. Microbiol. 7, 777 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dastidar, E. G. et al. Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway. BMC Biol. 10, 5 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jaramillo Ponce, J. R., Kapps, D., Paulus, C., Chicher, J. & Frugier, M. Discovery of two distinct aminoacyl-tRNA synthetase complexes anchored to the Plasmodium surface tRNA import protein. J. Biol. Chem. 298, 101987 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, L. et al. Characterization of the 26S proteasome network in Plasmodium falciparum. Sci. Rep. 5, 17818 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leneghan, D. & Bell, A. Immunophilin–protein interactions in Plasmodium falciparum. Parasitology 142, 1404–1414 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Garrido, M. F. et al. Regulation of eIF4F translation initiation complex by the peptidyl prolyl isomerase FKBP7 in taxane-resistant prostate cancer. Clin. Cancer Res. 25, 710–723 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Thommen, B. T. et al. Genetic validation of PfFKBP35 as an antimalarial drug target. eLife 12, RP86975 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Montemayor, E. J. et al. Molecular basis for the distinct cellular functions of the Lsm1–7 and Lsm2–8 complexes. RNA 26, 1400–1413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, Y. et al. A moonlighting role for enzymes of glycolysis in the co-localization of mitochondria and chloroplasts. Nat. Commun. 11, 4509 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Menard, L., Maughan, D. & Vigoreaux, J. The structural and functional coordination of glycolytic enzymes in muscle: evidence of a metabolon? Biology 3, 623–644 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Droll, D. et al. Disruption of the RNA exosome reveals the hidden face of the malaria parasite transcriptome. RNA Biol. 15, 1206–1214 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu, J.-J. et al. CryoEM structure of yeast cytoplasmic exosome complex. Cell Res. 26, 822–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. VanDemark, A. P., Hofmann, R. M., Tsui, C., Pickart, C. M. & Wolberger, C. Molecular Insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105, 711–720 (2001).

  59. Carmo, O. M. S. et al. Deletion of the Plasmodium falciparum exported protein PTP7 leads to Maurer’s clefts vesiculation, host cell remodeling defects, and loss of surface presentation of EMP1. PLOS Pathog. 18, e1009882 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dietz, O. et al. Characterization of the small exported Plasmodium falciparum membrane protein SEMP1. PLoS ONE 9, e103272 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Das, D., Krishnan, S. R., Roy, A. & Bulusu, G. A network-based approach reveals novel invasion and Maurer’s clefts-related proteins in Plasmodium falciparum. Mol. Omics 15, 431–441 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Birnbaum, J. et al. A genetic system to study Plasmodium falciparum protein function. Nat. Methods 14, 450–456 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Heiber, A. et al. Identification of new PNEPs indicates a substantial non-PEXEL exportome and underpins common features in Plasmodium falciparum protein export. PLOS Pathog. 9, e1003546 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mesén-Ramírez, P. et al. Stable translocation intermediates jam global protein export in Plasmodium falciparum parasites and link the PTEX component EXP2 with translocation activity. PLOS Pathog. 12, e1005618 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hawthorne, P. L. et al. A novel Plasmodium falciparum ring stage protein, REX, is located in Maurer’s clefts. Mol. Biochem. Parasitol. 136, 181–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Klink, B. U. et al. Structure of the Mon1-Ccz1 complex reveals molecular basis of membrane binding for Rab7 activation. Proc. Natl Acad. Sci. USA 119, e2121494119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nordmann, M. et al. The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr. Biol. 20, 1654–1659 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Struck, N. S. et al. Re-defining the Golgi complex in Plasmodium falciparum using the novel Golgi marker PfGRASP. J. Cell Sci. 118, 5603–5613 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Krai, P., Dalal, S. & Klemba, M. Evidence for a Golgi-to-endosome protein sorting pathway in Plasmodium falciparum. PLoS ONE 9, e89771 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kimmel, J. et al. Gene-by-gene screen of the unknown proteins encoded on Plasmodium falciparum chromosome 3. Cell Syst. 14, 9–23 (2023).

    Article  CAS  PubMed  Google Scholar 

  71. Goyal, M., Banerjee, C., Nag, S. & Bandyopadhyay, U. The Alba protein family: structure and function. Biochim. Biophys. Acta 1864, 570–583 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Jelinska, C. et al. Obligate heterodimerization of the archaeal Alba2 protein with Alba1 provides a mechanism for control of DNA packaging. Structure 13, 963–971 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Bozdech, Z. et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1, e5 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Le Roch, K. G. et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 1503–1508 (2003).

    Article  PubMed  Google Scholar 

  75. Pease, B. N. et al. Global analysis of protein expression and phosphorylation of three stages of Plasmodium falciparum intraerythrocytic development. J. Proteome Res. 12, 4028–4045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Foth, B. J., Zhang, N., Mok, S., Preiser, P. R. & Bozdech, Z. Quantitative protein expression profiling reveals extensive post-transcriptional regulation and post-translational modifications in schizont-stage malaria parasites. Genome Biol. 9, R177 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Foth, B. J. et al. Quantitative time-course profiling of parasite and host cell proteins in the human malaria parasite Plasmodium falciparum. Mol. Cell. Proteom. 10, M110.006411 (2011).

    Article  Google Scholar 

  78. Kucharski, M. et al. A comprehensive RNA handling and transcriptomics guide for high-throughput processing of Plasmodium blood-stage samples. Malar. J. 19, 363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Khacho, M. et al. eEF1A is a novel component of the mammalian nuclear protein export machinery. Mol. Biol. Cell 19, 5296 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bunai, F., Ando, K., Ueno, H. & Numata, O. Tetrahymena eukaryotic translation elongation factor 1A (eEF1A) bundles filamentous actin through dimer formation. J. Biochem. 140, 393–399 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Chang, R. & Wang, E. Mouse translation elongation factor eEF1A-2 interacts with Prdx-I to protect cells against apoptotic death induced by oxidative stress. J. Cell. Biochem. 100, 267–278 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Carothers, D. J., Pons, G. & Patel, M. S. Dihydrolipoamide dehydrogenase: functional similarities and divergent evolution of the pyridine nucleotide-disulfide oxidoreductases. Arch. Biochem. Biophys. 268, 409–425 (1989).

    Article  CAS  PubMed  Google Scholar 

  83. DaFonseca, C. J., Shu, F. & Zhang, J. J. Identification of two residues in MCM5 critical for the assembly of MCM complexes and Stat1-mediated transcription activation in response to IFN-γ. Proc. Natl Acad. Sci. USA 98, 3034–3039 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lenz, S. et al. Reliable identification of protein–protein interactions by crosslinking mass spectrometry. Nat. Commun. 12, 3564 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lu, H. et al. Recent advances in the development of protein–protein interactions modulators: mechanisms and clinical trials. Signal Transduct. Target. Ther. 5, 213 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lu, Q. et al. Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling. Proc. Natl Acad. Sci. USA 119, e2118220119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Perrin, J. et al. Identifying drug targets in tissues and whole blood with thermal-shift profiling. Nat. Biotechnol. 38, 303–308 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Pazicky, S. SamPazicky/MAPX: MAP-X v1.0.0. Zenodo https://doi.org/10.5281/ZENODO.17173443 (2025).

  90. Jackson, K. E. et al. Selective permeabilization of the host cell membrane of Plasmodium falciparum-infected red blood cells with streptolysin O and equinatoxin II. Biochem. J. 403, 167–175 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Elzhov, T. V., Mullen, K. M., Spiess, A.-N. & Bolker, B. minpack.lm: R interface to the Levenberg–Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds. https://cran.r-project.org/package=minpack.lm (2023).

  92. Harrell, F. E. Jr. Hmisc: Harrell miscellaneous. http://cran.r-project.org/web/packages/Hmisc (2024).

  93. Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

  94. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article  Google Scholar 

  95. Grau, J., Grosse, I. & Keilwagen, J. PRROC: computing and visualizing precision–recall and receiver operating characteristic curves in R. Bioinformatics 31, 2595–2597 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Moon, R. W. et al. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes. Proc. Natl Acad. Sci. USA 110, 531–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Cronshagen, J. et al. A system for functional studies of the major virulence factor of malaria parasites. eLife 13, RP103542 (2024).

    Google Scholar 

  98. Grüring, C. & Spielmann, T. Imaging of live malaria blood stage parasites. Methods Enzymol. 506, 81–92 (2012).

  99. Tonkin, C. J. et al. Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol. Biochem. Parasitol. 137, 13–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article  Google Scholar 

  101. Gu, Z. Complex heatmap visualization. iMeta 1, e43 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gustavsen, J. A., Pai, S., Isserlin, R., Demchak, B. & Pico, A. R. RCy3: network biology using Cytoscape from within R. F1000Research 8, 1774 (2019).

  104. Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8 (2015).

  105. Pedersen, T. L. patchwork: the composer of plots (2024).

  106. Pazicky, S. Structure of the P. falciparum exosome ring. ModelArchive https://doi.org/10.5452/ma-a867m (2025).

  107. Pazicky, S. MAPX publication workflow. Zenodo https://doi.org/10.5281/ZENODO.17190585 (2025).

  108. Pazicky, S. P. falciparum MAPX models, timepoints 28–40 hpi. Zenodo https://doi.org/10.5281/ZENODO.13836099 (2025).

Download references

Acknowledgements

This work was supported by Singapore Ministry of Education grant #MOE2019-T3-1-007 and Singapore National Science Foundation grant #NRF-CRP24-2020-0005 (ZB); EMBO LTF #ALTF 1115-2009 (NP); Deutsche Forschungs-gemeinschaft GRK2771–No 453548970 (G.B.F., T.-W.G.); Leibniz ScienceCampus InterACt W75/2022 InterACt and ‘Hamburg-X Infektionsforschung’ (G.B.F., T.-W.G.); and Wellcome Trust Principal Research Fellowship Ref. 083811/Z/07/Z (A.P.W.). We thank T. Spielmann (BNITM, Germany) for the MON1-GFP-expressing parasite line and for providing the mCherry-Rab7 plasmid.

Author information

Authors and Affiliations

Authors

Contributions

S.P. and Z.B. conceptualized the project and curated data. S.P., G.B.F. and N. Philip conducted formal analysis. Z.B., N. Philip and T.-W.G. acquired funding. S.P., S.T., G.B.F., N. Piwon and N. Philip performed investigation. S.P., S.T., G.B.F., N. Piwon, N. Philip, A.P.W., T.-W.G., R.M.S. and Z.B. designed the methodology. S.P. developed software. A.P.W., T.-W.G. and Z.B. supervised the project. S.P., G.B.F. and N. Philip performed visualization. S.P. and Z.B. wrote the original paper draft. S.P., G.B.F., N. Philip, A.P.W., T.-W.G., R.M.S. and Z.B. reviewed and edited the paper.

Corresponding author

Correspondence to Zbynek Bozdech.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Mercedes Pardo Calvo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Synchronized parasites.

Representative images of Giemsa-stained tightly synchronized parasites after enrichment by magnetic sorting (28-40 hpi) or SLO (4-22 hpi).

Extended Data Fig. 2 Predicting PPIs by MAP-X.

a, Scaled soluble protein abundances measured across the temperature gradient (gray points) with particular protein complex subunits marked (red points). These charts show that the principle of TPCA is preserved in the data. b, Counts of overlapping protein identifications across seven timepoints. Inset: total number of detected proteins for each timepoint and replicate. c, Computational approach for machine learning. The positive interactions are randomly split to four parts and only 3/4 are used to predict the left-out 1/4 and other interactions not included in the gold standard. The procedure is repeated 25x to get 100 models that are averaged into a composite model. The composite model of each replicate is than averaged to get final model scores for each timepoint. d, Number of clusters of specific sizes (node counts) is similar across all timepoints. e, Overlap between three global PPI mapping studies in malaria parasites. Interactions from 34 hpi were used from this study.

Extended Data Fig. 3 Complexome maps.

a, MAP-X global mapping split the ribosome into two clusters at 40 hpi. b, Prefoldin subunits do not follow the principles of TPCA. c, Example of a cluster in which subunits of two protein complexes (ribosomal subunits yellow, and exported proteins orange) coexist as the clustering algorithm cannot separate them further. d,e, Sequence alignment of yeast RRP43 (d) and RRP46 (e) to P. falciparum 3D7 counterparts PF3D7_0626200 and PF3D7_0412200, respectively.

Source data

Extended Data Fig. 4 Complexome maps vs local subnetworks.

a, Number of known co-clustering protein complex subunits in global maps (GM) and local subnetworks (LS) across different timepoints shows that local subnetworks retrieve additional unmapped interactions. b, Comparison of proportion of co-clustering subunits for different known protein complexes between GM and LS. c-g, Integration check PCR on genomic DNA from 3D7 and the indicated cell lines to validate correct integration of the SLI plasmid at the 3’- and 5’-end and disruption of the original locus (WT locus); PF3D7_1149100 (c), PTP7 (d), PF3D7_1149100 with PTP7 background (e), CCZ1 (f) and RMC1 (g). The PCR results are representative of results from three different clones. One clone was always chosen for the subsequent experiments. h Western blot of GST and GST-ALBA1/3 bound to Glutathione Sepharose resin confirming the presence of bait for interaction assays.

Extended Data Fig. 5 Conservation of Alba proteins.

Sequence alignment of Alba proteins 1-4 between Plasmodium falciparum and berghei shows high sequence identity.

Extended Data Fig. 6 Dynamics of protein complexes.

a, Transcriptomic stage profiling shows a high degree of agreement of stage used for proteomic experiments between the two replicates used for dynamic assembly studies and assembly index calculation. b, Centered assembly index across blood stage timepoints plotted for known protein complexes categorized by their function. c, Assembly profiles of investigated protein complexes, supplementing Fig. 5d-g. d, Transcription profile of RhopH complex subunits shows that their RNA levels peak at 34 hpi. e, Circular probability density between transcriptomic and proteomic profiles of detected proteins shows that the peak protein abundance is delayed by 4-20 hpi (median 14 hpi) after the peak RNA abundance. f, Phase shifts of cross-corelation coefficients across a series of hpi lags between the protein complex assembly profiles and the corresponding transcriptome (cyan) or proteome (red) profiles.

Supplementary information

Reporting Summary

Peer Review File

Supplementary Tables 1–3, 5 and 6

Supplementary Tables 1–3, 5 and 6.

Supplementary Table 4

List of known protein complexes and their prediction by MAP-X.

Supplementary Data 1

Cytoscape files of globe complexome maps.

Supplementary Data 2

PCA plots and clustering for prediction of moonlighting proteins across all complexes, timepoints and replicates.

Source data

Source Data Fig. 4

Unprocessed western blot of Alba pulldown experiment.

Source Data Extended Data Fig. 3

Uncropped gel and western blot images.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazicky, S., Tjia, S., Farias, G.B. et al. MAP-X reveals distinct protein complex dynamics across Plasmodium falciparum blood stages. Nat Microbiol 10, 3229–3244 (2025). https://doi.org/10.1038/s41564-025-02173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-025-02173-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing