Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subvolt high-speed free-space modulator with electro-optic metasurface

Abstract

Active metasurfaces incorporating electro-optic materials enable high-speed free-space optical modulators that show great promise for a wide range of applications, including optical communication, sensing and computing. However, the limited light–matter interaction lengths in metasurfaces typically require high driving voltages exceeding tens of volts to achieve satisfactory modulation. Here we present low-voltage, high-speed free-space optical modulators based on silicon-organic-hybrid metasurfaces with dimerized-grating-based nanostructures. By exploiting a high-Q resonant mode, normally incident light is effectively trapped within a submicrometre-scale silicon slot region embedded with organic electro-optic material. Consequently, highly efficient modulation is obtained, enabling data transmission at 50 Mbps and 1.6 Gbps with driving voltages of only 0.2 V and 1 V, respectively. These metasurface modulators can now operate at complementary metal–oxide–semiconductor-compatible voltage levels, allowing energy-efficient high-speed practical applications of active metasurfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metasurface modulator with an all-dielectric SOH dimerized resonator.
Fig. 2: Passive characterization of the fabricated devices.
Fig. 3: Active modulation of free-space light.
Fig. 4: High-speed modulation using an ultra-small device with integrated DBRs.

Similar content being viewed by others

Data availability

All numerical data are available via figshare at https://doi.org/10.6084/m9.figshare.28281509 (ref. 59). Source data are provided with this paper.

References

  1. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  PubMed  Google Scholar 

  2. Kuznetsov, A. I. et al. Roadmap for optical metasurfaces. ACS Photon. 11, 816–865 (2024).

    Article  Google Scholar 

  3. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    Article  PubMed  Google Scholar 

  4. Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).

    Article  PubMed  Google Scholar 

  5. Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019).

    Article  PubMed  Google Scholar 

  6. Miyata, M., Nemoto, N., Shikama, K., Kobayashi, F. & Hashimoto, T. Full-color-sorting metalenses for high-sensitivity image sensors. Optica 8, 1596–1604 (2021).

    Article  Google Scholar 

  7. Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017).

    Article  PubMed  Google Scholar 

  8. Xiong, B. et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379, 294–299 (2023).

    Article  PubMed  Google Scholar 

  9. Gopakumar, M. et al. Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature 629, 791–797 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Oh, J. et al. Adjoint-optimized metasurfaces for compact mode-division multiplexing. ACS Photon. 9, 929–937 (2022).

    Article  Google Scholar 

  11. Soma, G. et al. Compact and scalable polarimetric self-coherent receiver using a dielectric metasurface. Optica 10, 604–611 (2023).

    Article  Google Scholar 

  12. Komatsu, K. et al. Scalable multi-core dual-polarization coherent receiver using a metasurface optical hybrid. J. Light. Technol. 42, 4013–4022 (2024).

    Article  Google Scholar 

  13. Li, S.-Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    Article  PubMed  Google Scholar 

  14. Holsteen, A. L., Cihan, A. F. & Brongersma, M. L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science 365, 257–260 (2019).

    Article  PubMed  Google Scholar 

  15. Zhang, Y. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol. 16, 661–666 (2021).

    Article  PubMed  Google Scholar 

  16. Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    Article  PubMed  Google Scholar 

  17. Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 16, 69–76 (2021).

    Article  PubMed  Google Scholar 

  19. Panuski, C. L. et al. A full degree-of-freedom spatiotemporal light modulator. Nat. Photon. 16, 834–842 (2022).

    Article  Google Scholar 

  20. Sisler, J. et al. Electrically tunable space-time metasurfaces at optical frequencies. Nat. Nanotechnol. 19, 1491–1498 (2024).

    Article  PubMed  Google Scholar 

  21. Ren, F. et al. Surface-normal plasmonic modulator using sub-wavelength metal grating on electro-optic polymer thin film. Opt. Commun. 352, 116–120 (2015).

    Article  Google Scholar 

  22. Zhang, J., Kosugi, Y., Otomo, A., Nakano, Y. & Tanemura, T. Active metasurface modulator with electro-optic polymer using bimodal plasmonic resonance. Opt. Express 25, 30304–30311 (2017).

    Article  PubMed  Google Scholar 

  23. Miyano, H. et al. Dimerized plasmonic-organic grating for high-speed metasurface modulator. In OptoElectronics and Communications Conference/International Conference on Photonics in Switching and Computing TuD3-2 (IEEE, 2022).

  24. Sun, X. et al. Manipulating dual bound states in the continuum for efficient spatial light modulator. Nano Lett. 22, 9982–9989 (2022).

    Article  PubMed  Google Scholar 

  25. Zhang, J. et al. High-speed metasurface modulator using perfectly absorptive bimodal plasmonic resonance. APL Photon. 8, 121304 (2023).

    Article  Google Scholar 

  26. Zhang, L. et al. Plasmonic metafibers electro-optic modulators. Light Sci. Appl. 12, 198 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Benea-Chelmus, I.-C. et al. Electro-optic spatial light modulator from an engineered organic layer. Nat. Commun. 12, 5928 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sun, X. et al. Electro-optic polymer and silicon nitride hybrid spatial light modulators based on a metasurface. Opt. Express 29, 25543–25551 (2021).

    Article  PubMed  Google Scholar 

  29. Sun, X. & Qiu, F. Polarization independent high-speed spatial modulators based on an electro-optic polymer and silicon hybrid metasurface. Photon. Res. 10, 2893 (2022).

    Article  Google Scholar 

  30. Benea-Chelmus, I.-C. et al. Gigahertz free-space electro-optic modulators based on Mie resonances. Nat. Commun. 13, 3170 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ogasawara, M. et al. Electro-optic polymer surface-normal modulator using silicon high-contrast grating resonator. In Conference on Lasers and Electro-Optics JTh2A.48 (2019).

  32. Zheng, T., Gu, Y., Kwon, H., Roberts, G. & Faraon, A. Dynamic light manipulation via silicon-organic slot metasurfaces. Nat. Commun. 15, 1557 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kosugi, Y., Yamada, T., Otomo, A., Nakano, Y. & Tanemura, T. Surface-normal electro-optic-polymer modulator with silicon subwavelength grating. IEICE Electron. Express 13, 20160595–20160595 (2016).

    Article  Google Scholar 

  34. Fukui, T. et al. 17 GHz lossless InP-membrane active metasurface. Preprint at https://doi.org/10.48550/arXiv.2505.07072 (2025).

  35. Damgaard-Carstensen, C., Thomaschewski, M. & Bozhevolnyi, S. I. Electro-optic metasurface-based free-space modulators. Nanoscale 14, 11407–11414 (2022).

    Article  PubMed  Google Scholar 

  36. Damgaard-Carstensen, C. & Bozhevolnyi, S. I. Nonlocal electro-optic metasurfaces for free-space light modulation. Nanophotonics 12, 2953–2962 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Damgaard-Carstensen, C., Yezekyan, T., Brongersma, M. L. & Bozhevolnyi, S. I. Highly efficient, tunable, electro-optic, reflective metasurfaces based on quasi-bound states in the continuum. ACS Nano 19, 11999–12006 (2025).

    Article  PubMed  Google Scholar 

  38. Weigand, H. et al. Enhanced electro-optic modulation in resonant metasurfaces of lithium niobate. ACS Photon. 8, 3004–3009 (2021).

    Article  Google Scholar 

  39. Trajtenberg-Mills, S. et al. LNoS: lithium niobate on silicon spatial light modulator. Preprint at https://doi.org/10.48550/arXiv.2402.14608 (2024).

  40. Di Francescantonio, A. et al. Efficient GHz electro-optical modulation with a nonlocal lithium niobate metasurface in the linear and nonlinear regime. Nat. Commun. 16, 7000 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ju, Y., Zhang, W., Zhao, Y., Deng, X. & Zuo, H. Polarization independent lithium niobate electro-optic modulator based on guided mode resonance. Opt. Mater. 148, 114928 (2024).

    Article  Google Scholar 

  42. Karvounis, A. et al. Electro-optic metasurfaces based on barium titanate nanoparticle films. Adv. Opt. Mater. 8, 2000623 (2020).

    Article  Google Scholar 

  43. Weigand, H. C. et al. Nanoimprinting solution-derived barium titanate for electro-optic metasurfaces. Nano Lett. 24, 5536–5542 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Weiss, A. et al. Tunable metasurface using thin-film lithium niobate in the telecom regime. ACS Photon. 9, 605–612 (2022).

    Article  Google Scholar 

  45. Overvig, A. C., Shrestha, S. & Yu, N. Dimerized high contrast gratings. Nanophotonics 7, 1157–1168 (2018).

    Article  Google Scholar 

  46. Jin, W. et al. Benzocyclobutene barrier layer for suppressing conductance in nonlinear optical devices during electric field poling. Appl. Phys. Lett. 104, 243304 (2014).

    Article  Google Scholar 

  47. Kieninger, C. et al. Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator. Optica 5, 739–748 (2018).

    Article  Google Scholar 

  48. Sun, K., Wang, W. & Han, Z. High-Q resonances in periodic photonic structures. Phys. Rev. B 109, 085426 (2024).

    Article  Google Scholar 

  49. Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 121, 193903 (2018).

    Article  PubMed  Google Scholar 

  50. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of LightSecond Edition (Princeton Univ. Press, 2008).

  51. Chang, F., Onohara, K. & Mizuochi, T. Forward error correction for 100 G transport networks. IEEE Commun. Mag. 48, S48–S55 (2010).

    Article  Google Scholar 

  52. Chen, Z. et al. Observation of miniaturized bound states in the continuum with ultra-high quality factors. Sci. Bull. 67, 359–366 (2022).

    Article  Google Scholar 

  53. Dolia, V. et al. Very-large-scale-integrated high quality factor nanoantenna pixels. Nat. Nanotechnol. 19, 1290–1298 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ledentsov, N. et al. High speed VCSEL technology and applications. J. Light. Technol. 40, 1749–1763 (2022).

    Article  Google Scholar 

  55. Ren, C., Komatsu, K., Soma, G., Nakano, Y. & Tanemura, T. Metasurface-based functional optical splitter for a spatially parallelized dual-polarization coherent modulator. Opt. Lett. 49, 7238–7241 (2024).

    Article  PubMed  Google Scholar 

  56. Morita, R. et al. High-speed high-power free-space optical communication via directly modulated watt-class photonic-crystal surface-emitting lasers. Optica 11, 971 (2024).

    Article  Google Scholar 

  57. Hammond, S. R., Elder, D. L. & Johnson, L. E. Plasmonic organic hybrid electro-optic modulators as a platform for process optimization towards extraordinary nonlinearity and exceptional stability enabling commercial applications. Proc. SPIE 12418, Organic Photonic Materials and Devices XXV 1241807 (SPIE, 2023).

  58. Xu, H. et al. Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels–Alder cross-linkable binary molecular glasses. Chem. Mater. 32, 1408–1421 (2020).

    Article  Google Scholar 

  59. Soma, G. et al. Subvolt high-speed free-space modulator with electro-optic metasurface. Figshare https://doi.org/10.6084/m9.figshare.28281509 (2025).

Download references

Acknowledgements

We acknowledge Y. Nakano and A. Otomo for their support and fruitful discussions. G.S. thanks K. Saito for his help in building the measurement system. T.T. and G.S. thank Z. Han for providing insightful comments. T.T. thanks K. Ueda for fruitful discussions and his encouragement. This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI, grant numbers JP23H05444 (T.T.) and JP24KJ0557 (G.S.). The device was fabricated in part at Takeda Cleanroom with help of Nanofabrication Platform Center of School of Engineering, the University of Tokyo, Japan, supported by ‘Advanced Research Infrastructure for Materials and Nanotechnology in Japan’ of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), grant number JPMXP1224UT1115 (T.T.).

Author information

Authors and Affiliations

Authors

Contributions

G.S. and T.T. conceived the device concept and experiments. G.S. performed the metasurface design, simulation, fabrication and experiments. K.A. developed the OEO process, constructed the poling set-up and assisted with the poling process. S.K. assisted with numerical simulation. Y.T. assisted with device fabrication. G.S. and T.T. wrote the paper with inputs from all authors. T.T. supervised the project.

Corresponding authors

Correspondence to Go Soma or Takuo Tanemura.

Ethics declarations

Competing interests

G.S. and T.T. are listed as inventors in a patent application related to this work, filed by the University of Tokyo, application number 2025-41949. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Hyounghan Kwon and Cosmin-Constantin Popescu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Comparison of modulation metrics in active electro-optic metasurfaces

Extended Data Fig. 1 Benchmark comparison of this work against previously reported electro-optic metasurface modulators.

The modulation swing ΔR (top panel vertical axis), bandwidth (bottom panel vertical axis), and the required voltage Vreq to shift the resonance wavelength by an amount equal to its linewidth (horizontal axis) of experimentally demonstrated EO metasurface modulators in the literature. Our presented device exhibits the lowest Vreq and the highest modulation efficiency η = ΔR/Vreq. The bandwidth is also the highest among all dielectric resonating devices. The numerical values are listed in Extended Data Table 1.

Supplementary information

Supplementary Information

Supplementary Sections 1–4, Figs. 1–10 and Tables 1 and 2.

Source data

Source Data Fig. 1

Source data of Fig. 1.

Source Data Fig. 2

Source data of Fig. 2.

Source Data Fig. 3

Source data of Fig. 3.

Source Data Fig. 4

Source data of Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soma, G., Ariu, K., Karakida, S. et al. Subvolt high-speed free-space modulator with electro-optic metasurface. Nat. Nanotechnol. 20, 1625–1632 (2025). https://doi.org/10.1038/s41565-025-02000-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-025-02000-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing