Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular crystal memristors

Abstract

Memristors have emerged as a promising hardware platform for in-memory computing, but many current devices suffer from channel material degradation during repeated resistive switching. This leads to high energy consumption and limited endurance. Here we introduce a molecular crystal memristor, of which the representative channel material, Sb2O3, possesses a molecular crystal structure where molecular cages are interconnected via van der Waals forces. This unique configuration allows ions to migrate through intermolecular spaces with relatively low energy input, preserving the integrity of the crystal structure even after extensive switching cycles. Our molecular crystal memristor thus exhibits low energy consumption of 26 zJ per operation, with prominent endurance surpassing 109 switching cycles. The device delivers both reconfigurable non-volatile and volatile resistive switching behaviours over a broad range of device scales, from micrometres down to nanometres. Furthermore, we establish the scalability of this technology by fabricating large crossbar arrays on an 8 inch wafer. This enables the successful implementation of reservoir computing on a single CMOS-integrated chip using these memristors, achieving 100% accuracy in dynamic vision recognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of filaments between the conventional oxide memristor and the molecular crystal memristor.
Fig. 2: Electric behaviours of the molecular crystal memristor.
Fig. 3: Structural evolution model and TEM observation of resistive switching in molecular crystal memristor.
Fig. 4: Dynamic vision recognition with molecular crystal memristor.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The code that is used for the software simulation for this study is available from the corresponding authors upon reasonable request.

References

  1. Lanza, M. et al. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 376, eabj9979 (2022).

    Article  PubMed  CAS  Google Scholar 

  2. Wang, C. et al. Parallel in-memory wireless computing. Nat. Electron. 6, 381–389 (2023).

    Article  CAS  Google Scholar 

  3. Langenegger, J. et al. In-memory factorization of holographic perceptual representations. Nat. Nanotechnol. 18, 479–485 (2023).

    Article  PubMed  CAS  Google Scholar 

  4. Yi, S. I., Kendall, J. D., Williams, R. S. & Kumar, S. Activity-difference training of deep neural networks using memristor crossbars. Nat. Electron. 6, 45–51 (2023).

    Google Scholar 

  5. Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

    Article  Google Scholar 

  6. Zhu, K. et al. Hybrid 2D-CMOS microchips for memristive applications. Nature 618, 57–62 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Rao, M. et al. Thousands of conductance levels in memristors integrated on CMOS. Nature 615, 823–829 (2023).

    Article  PubMed  CAS  Google Scholar 

  8. Xiong, T. et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 379, 156–161 (2023).

    Article  PubMed  CAS  Google Scholar 

  9. Milano, G. et al. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 21, 195–202 (2022).

    Article  PubMed  CAS  Google Scholar 

  10. Lin, P. et al. Three-dimensional memristor circuits as complex neural networks. Nat. Electron. 3, 225–232 (2020).

    Article  Google Scholar 

  11. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  PubMed  CAS  Google Scholar 

  12. Wang, X. et al. Vertically integrated spiking cone photoreceptor arrays for color perception. Nat. Commun. 14, 3444 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zhou, X. et al. Thermally stable threshold selector based on CuAg alloy for energy-efficient memory and neuromorphic computing applications. Nat. Commun. 14, 3285 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhao, H. et al. Energy-efficient high-fidelity image reconstruction with memristor arrays for medical diagnosis. Nat. Commun. 14, 2276 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wang, C. et al. Scalable massively parallel computing using continuous-time data representation in nanoscale crossbar array. Nat. Nanotechnol. 16, 1079–1085 (2021).

    Article  PubMed  CAS  Google Scholar 

  16. Chen, S. et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 3, 638–645 (2020).

    Article  CAS  Google Scholar 

  17. Wang, M. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 1, 130–136 (2018).

    Article  CAS  Google Scholar 

  18. Li, Y. et al. Anomalous resistive switching in memristors based on two-dimensional palladium diselenide using heterophase grain boundaries. Nat. Electron. 4, 348–356 (2021).

    Article  CAS  Google Scholar 

  19. Liu, K., Liu, L. & Zhai, T. Emerging two-dimensional inorganic molecular crystals: the concept and beyond. J. Phys. Chem. Lett. 13, 2173–2179 (2022).

    Article  PubMed  Google Scholar 

  20. Li, M. et al. Imperfection-enabled memristive switching in van der Waals materials. Nat. Electron. 6, 491–505 (2023).

    Article  CAS  Google Scholar 

  21. Kang, J. et al. Cluster-type analogue memristor by engineering redox dynamics for high-performance neuromorphic computing. Nat. Commun. 13, 4040 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang, Z. et al. In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat. Commun. 13, 6590 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sun, W. et al. Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 10, 3453 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wei, T. et al. Three-dimensional reconstruction of conductive filaments in HfOx-based memristor. Adv. Mater. 35, 2209925 (2023).

    Article  CAS  Google Scholar 

  25. Yang, Y. et al. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun. 5, 4232 (2014).

    Article  PubMed  CAS  Google Scholar 

  26. Yang, Y. et al. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012).

    Article  PubMed  Google Scholar 

  27. Zhang, B. et al. 90% yield production of polymer nano-memristor for in-memory computing. Nat. Commun. 12, 1984 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lanza, M. et al. Standards for the characterization of endurance in resistive switching devices. ACS Nano 15, 17214–17231 (2021).

    Article  PubMed  CAS  Google Scholar 

  29. Liu, S. et al. Eliminating negative-SET behavior by suppressing nanofilament overgrowth in cation-based memory. Adv. Mater. 28, 10623–10629 (2016).

    Article  PubMed  CAS  Google Scholar 

  30. Liu, K. et al. A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film. Nat. Electron. 4, 906–913 (2021).

    Article  CAS  Google Scholar 

  31. Han, W. et al. Two-dimensional inorganic molecular crystals. Nat. Commun. 10, 4728 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ryu, H. et al. Van der Waals epitaxially grown molecular crystal dielectric Sb2O3 for 2D electronics. ACS Nano 18, 13098–13105 (2024).

    Article  PubMed  CAS  Google Scholar 

  33. Xu, Y. et al. Scalable integration of hybrid high-dielectric materials on two-dimensional semiconductors. Nat. Mater. 22, 1078–1084 (2023).

    Article  PubMed  CAS  Google Scholar 

  34. Kopperberg, N., Wouters, D. J., Waser, R., Menzel, S. & Wiefels, S. Accurate evaluation method for HRS retention of VCM ReRAM. APL Mater. 12, 031112 (2024).

    Article  CAS  Google Scholar 

  35. Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).

    Article  PubMed  CAS  Google Scholar 

  36. Liu, L. et al. Low-power memristive logic device enabled by controllable oxidation of 2D HfSe2 for in-memory computing. Adv. Sci. 8, 2005038 (2021).

    Article  CAS  Google Scholar 

  37. Cao, R. et al. Improvement of device reliability by introducing a BEOL-compatible TiN barrier layer in CBRAM. IEEE Electron Device Lett. 38, 1371–1374 (2017).

    Article  CAS  Google Scholar 

  38. Tian, H. et al. Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano 11, 12247–12256 (2017).

    Article  PubMed  CAS  Google Scholar 

  39. Chekol, S. A., Menzel, S., Ahmad, R. W., Waser, R. & Hoffmann-Eifert, S. Effect of the threshold kinetics on the filament relaxation behavior of Ag-based diffusive memristors. Adv. Funct. Mater. 32, 2111242 (2022).

    Article  CAS  Google Scholar 

  40. Lei, P. et al. High-performance memristor based on 2D layered BiOI nanosheet for low-power artificial optoelectronic synapses. Adv. Funct. Mater. 32, 2201276 (2022).

    Article  CAS  Google Scholar 

  41. Li, Y. et al. In-memory computing using memristor arrays with ultrathin 2D PdSeOx/PdSe2 heterostructure. Adv. Mater. 34, 2201488 (2022).

    Article  CAS  Google Scholar 

  42. Chen, C. et al. A photoelectric spiking neuron for visual depth perception. Adv. Mater. 34, 2201895 (2022).

    Article  CAS  Google Scholar 

  43. Sun, Y. et al. Performance-enhancing selector via symmetrical multilayer design. Adv. Funct. Mater. 29, 1808376 (2019).

    Article  Google Scholar 

  44. Lu, Y. et al. An electronic silicon-based memristor with a high switching uniformity. Nat. Electron. 2, 66–74 (2019).

    Article  CAS  Google Scholar 

  45. Goswami, S. et al. Decision trees within a molecular memristor. Nature 597, 51–56 (2021).

    Article  PubMed  CAS  Google Scholar 

  46. Wang, T. et al. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat. Commun. 13, 7432 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Shi, Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018).

    Article  Google Scholar 

  48. Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Appeltant, L. et al. Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011).

    Article  PubMed  CAS  Google Scholar 

  50. Zhong, Y. et al. A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nat. Electron. 5, 672–681 (2022).

    Article  Google Scholar 

  51. Hennen, T. et al. Current-limiting amplifier for high speed measurement of resistive switching data. Rev. Sci. Instrum. 92, 054701 (2021).

    Article  PubMed  CAS  Google Scholar 

  52. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  53. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  54. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  55. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  56. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  PubMed  CAS  Google Scholar 

  57. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  58. Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article  CAS  Google Scholar 

  59. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  60. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  61. Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).

    Article  CAS  Google Scholar 

  62. Chan, M. K. Y., Wolverton, C. & Greeley, J. P. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon. J. Am. Chem. Soc. 134, 14362–14374 (2012).

    Article  PubMed  CAS  Google Scholar 

  63. Wolverton, C. & Zunger, A. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2. Phys. Rev. Lett. 81, 606–609 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22350003, T.Z.; 22535004, T.Z.; U22A20137, Yuan Li; U21A2069, T.Z.) and the National Key R&D Program of China (2021YFA1200501, Yuan Li) and the Interdisciplinary Research Program of HUST (2024JCYJ008, T.Z.) and the Open Research Fund of Suzhou Laboratory (SZLAB-1508-2024-ZD013, T.Z.). We also acknowledge the support of the HPC platform of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Yuan Li and T.Z. conceived the ideas. L.Q., P.G. and Jiefan Shao designed and conducted most of the experiments under Yuan Li and T.Z.’s supervision. L.Q., P.G. and Jiefan Shao contributed equally to this work. Pengyu Li and Y.Z. contributed to the DFT calculation of the migration barrier. Jie Su and Z.Y. carried out the works of the DFT calculation of structural evolution. Jiefan Shao, Y.Y. and J.W. prepared the cross-sectional samples and performed the TEM characterizations. L.Q., C.Z., Yanyong Li and F.H. conducted the CAFM characterizations. L.Q. and P.G. contributed to crossbar array fabrication. L.Q., P.G., Y.X., F.L., Peng Lin, K.Z. and M.L. fabricated the 1T1R chip and demonstrated the dynamic vision recognition. Jiefan Shao, D.O., L.Q., P.G., W.H., S.L., K.L., M.L. and H.L. worked on the figure preparation with assistance from all the others. L.Q., P.G., Jiefan Shao and M.L. wrote and revised the paper with inputs from all authors.

Corresponding authors

Correspondence to Yuan Li or Tianyou Zhai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Zhongrui Wang, Stefan Wiefels and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Convolutional image processing in the molecular crystal memristor crossbar array.

a, Schematic of convolution operation between voltage vectors and device conductance matrix in hardware. b, Prewitt kernels for different convolution image processing. The symbol of each matrix element mapped from the conductance difference of HRS and LRS. c, The original input image. d-k, Hardware- and software-processed images with different kernels, including vertical, horizontal and soft edges. The combinations of vertical and horizontal edges are shown in f and j.

Extended Data Fig. 2 In-situ TEM demonstration of the switching process in molecular crystal memristor.

a-b, Schematic (a) and TEM image (b) of the cross-section TEM sample with vertical structure. The scale bar in b is 2 µm. c, Cross sectional HAADF image and corresponding EDS mapping images, the scale bar is 40 nm. d-h, HRTEM images of Sb2O3 when the applied voltage is 0 V (d), 2 V (e), 0 V (f), −2 V (g) and 0 V (h), respectively. The lattice spacings are obtained by averaging the fast Fourier transform spots distances in Supplementary Fig. 27. All the scale bars are 2 nm. i-m, Corresponding fast Fourier transform patterns when the applied voltage is 0 V (i), 2 V (j), 0 V (k), −2 V (l) and 0 V (m), respectively.

Extended Data Fig. 3 Electrical characterization of nanosized molecular crystal memristor.

a, Schematic of the memristor constructed using CAFM. The tip/sample junction forms a nanosized Pt/Sb2O3/Ag memristor. b-c, Non-volatile (b) and volatile (c) switching curves using various compliance currents. d, Non-volatile switching curves of one spot. e-f, Statistical analysis of VSET/VRESET (e) and RHRS/RLRS (f) for non-volatile switching from 5 spots in Supplementary Fig. 28. g, Volatile threshold-switching curves of one spot. h, Statistical histogram of Vth/Vhold for volatile threshold-switching from 5 spots in Supplementary Fig. 28.

Extended Data Fig. 4 Wafer-scale 1024×1024 molecular crystal memristor crossbar array.

a-b, Image of wafer (a) and die (b) of crossbar array. c, Layout details of TE and BE for crossbar array. d, SEM characterization of the crossbar array. e-f, SEM (e) and AFM (f) image of 3 × 3 devices in the crossbar array. The size of high-density device is 400 nm × 400 nm. g-h, Volatile (g) and non-volatile (h) switching curves of 1024 tested cells in Supplementary Fig. 29. i, On/off ratio mapping of 1024 tested cells in Supplementary Fig. 29 extracted from h with VREAD = 0.1 V.

Extended Data Fig. 5 Characterizations of the 1T1R chip corresponding to Fig. 4.

a-b, Schematic (a) and STEM image (b) of the 1T1R cell cross-section. The inset in (b) is the HR-TEM image of Sb2O3 memristor. c, Volatile switching curves of 1T1R cell with different VG. d, Volatile response to the 4-bit sequential electrical pulse in the reservoir, with each state tested 3 times. e, Non-volatile switching curves of 1T1R cell with different VG. f, Multi-conductance states of 1T1R cell. g, Comparison between the directly measured output current and the arithmetic output current of 8 columns in the readout layer.

Supplementary information

Supplementary Information

Supplementary Figs. 1–38 and Tables 1 and 2.

Supplementary Video 1

Real-time in situ HRTEM observation of the resistive switching process in the Sb2O3 memristor under a programmed voltage sweep.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Guan, P., Shao, J. et al. Molecular crystal memristors. Nat. Nanotechnol. 20, 1641–1647 (2025). https://doi.org/10.1038/s41565-025-02013-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-025-02013-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing