Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy

Abstract

Highly sensitive phase- and frequency-resolved detection of microwave electric fields is of central importance in a wide range of fields, including cosmology1,2, meteorology3, communication4 and microwave quantum technology5. Atom-based electrometers6,7 promise traceable standards for microwave electrometry, but their best sensitivity is currently limited to a few μV cm−1 Hz−1/2 (refs. 8,9) and they only yield information about the field amplitude and polarization10. Here, we demonstrate a conceptually new microwave electric field sensor—the Rydberg-atom superheterodyne receiver (superhet). The sensitivity of this technique scales favourably, achieving even 55 nV cm−1 Hz−1/2 with a modest set-up. The minimum detectable field of 780 pV cm−1 is three orders of magnitude smaller than what can be reached by existing atomic electrometers. The Rydberg-atom superhet allows SI-traceable measurements, reaching uncertainty levels of 10−8 V cm−1 when measuring a sub-μV cm−1 field, which has been inaccessible so far with atomic sensors. Our method also enables phase and frequency detection. In sensing Doppler frequencies, sub-μHz precision is reached for fields of a few hundred nV cm−1. This work is a first step towards realizing electromagnetic-wave quantum sensors with quantum projection noise-limited sensitivity. Such a device will impact diverse areas like radio astronomy, radar technology and metrology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Basic principle of the Rydberg-atom superhet.
Fig. 2: Proof-of-principle demonstrations of the optimal point and linear detection.
Fig. 3: Sensitivity and uncertainties of the electric field measurement.
Fig. 4: Frequency and phase detections.

Similar content being viewed by others

Data availability

The data represented in Figs. 2, 3 and 4 and Extended Data Figs. 2 and 3 are available as Source Data. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Spitler, L. G. et al. A repeating fast radio burst. Nature 531, 202–205 (2016).

    Article  ADS  Google Scholar 

  2. Shannon, R. M. et al. The dispersion-brightness relation for fast radio bursts from a wide-field survey. Nature 562, 386–390 (2018).

    Article  ADS  Google Scholar 

  3. Alsdorf, D. E. et al. Interferometric radar measurements of water level changes on the Amazon flood plain. Nature 404, 174–177 (2000).

    Article  ADS  Google Scholar 

  4. Rohde, U. L. & Whitaker, J. C. Communications Receivers: Principles and Design 4th edn (McGraw-Hill Education, 2017).

  5. Maeda, H., Norum, D. V. L. & Gallagher, T. F. Microwave manipulation of an atomic electron in a classical orbit. Science 307, 1757–1760 (2005).

    Article  ADS  Google Scholar 

  6. Fan, H. et al. Atom based RF electric field sensing. J. Phys. B 48, 202001 (2015).

    Article  ADS  Google Scholar 

  7. Sedlacek, J. A. et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys. 8, 819–824 (2012).

    Article  Google Scholar 

  8. Kumar, S., Fan, H., Kübler, H., Sheng, J. & Shaffer, J. P. Atom-based sensing of weak radio frequency electric fields using homodyne readout. Sci. Rep. 7, 42981 (2017).

    Article  ADS  Google Scholar 

  9. Kumar, S., Fan, H., Kübler, H., Jahangiri, A. J. & Shaffer, J. P. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells. Opt. Express 25, 8625–8637 (2017).

    Article  ADS  Google Scholar 

  10. Sedlacek, J. A., Schwettmann, A., Kübler, H. & Shaffer, J. P. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell. Phys. Rev. Lett. 111, 063001 (2013).

    Article  ADS  Google Scholar 

  11. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  12. Mohapatra, A. K., Bason, M. G., Butscher, B., Weatherill, K. J. & Adams, C. S. A giant electro-optic effect using polarizable dark states. Nat. Phys. 4, 890–894 (2008).

    Article  Google Scholar 

  13. Holloway, C. L. et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements. IEEE Trans. Antennas Propag. 62, 6169–6182 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  14. Holloway, C. L. et al. Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor. J. Appl. Phys. 121, 233106 (2017).

    Article  ADS  Google Scholar 

  15. Cox, K. C., Meyer, D. H., Fatemi, F. K. & Kunz, P. D. Quantum-limited atomic receiver in the electrically small regime. Phys. Rev. Lett. 121, 110502 (2018).

    Article  ADS  Google Scholar 

  16. Böhi, P. & Treutlein, P. Simple microwave field imaging technique using hot atomic vapor cells. Appl. Phys. Lett. 101, 181107 (2012).

    Article  ADS  Google Scholar 

  17. Wade, C. G. et al. Real-time near-field terahertz imaging with atomic optical fluorescence. Nat. Photon. 11, 40–43 (2017).

    Article  ADS  Google Scholar 

  18. Alabaster, C. Pulse Doppler Radar: Principles, Technology, Applications (SciTech, 2012).

  19. Anderson, D. A., Sapiro, R. E. & Raithel, G. An atomic receiver for AM and FM radio communication. IEEE Trans. Antennas Propag. https://doi.org/10.1109/TAP.2020.2987112 (2020).

  20. Pandey, K. Single reference atomic based MW interferometry using EIT. Preprint at https://arxiv.org/pdf/1802.09935.pdf (2018).

  21. Facon, A. et al. A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state. Nature 535, 262–265 (2016).

    Article  ADS  Google Scholar 

  22. Tanasittikosol, M. et al. Microwave dressing of Rydberg dark states. J. Phys. B 44, 184020 (2011).

    Article  ADS  Google Scholar 

  23. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  ADS  Google Scholar 

  24. Mohapatra, A. K., Jackson, T. R. & Adams, C. S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007).

    Article  ADS  Google Scholar 

  25. Boss, J. M., Cujia, K. S., Zopes, J. & Degen, C. L. Quantum sensing with arbitrary frequency resolution. Science 356, 837–840 (2017).

    Article  ADS  Google Scholar 

  26. Ghosh, S. et al. Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber. Phys. Rev. Lett. 97, 023603 (2006).

    Article  ADS  Google Scholar 

  27. Bajcsy, M. et al. Efficient all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett. 102, 203902 (2009).

    Article  ADS  Google Scholar 

  28. Kübler, H., Shaffer, J. P., Baluktsian, T., Löw, R. & Pfau, T. Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells. Nat. Photon. 4, 112–116 (2010).

    Article  ADS  Google Scholar 

  29. Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photon. 7, 977–981 (2013).

    Article  ADS  Google Scholar 

  30. Nagatsuma, T., Ducournau, G. & Renaud, C. C. Advances in terahertz communications accelerated by photonics. Nat. Photon. 10, 371–379 (2016).

    Article  ADS  Google Scholar 

  31. Kessler, T. et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photon. 6, 687–692 (2012).

    Article  ADS  Google Scholar 

  32. Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).

    Article  ADS  Google Scholar 

  33. Musha, M., Nakagawa, K. & Ueda, K. Wideband and high frequency stabilization of an injection-locked Nd:YAG laser to a high-finesse Fabry–Perot cavity. Opt. Lett. 22, 1177–1179 (1997).

    Article  ADS  Google Scholar 

  34. Endo, M. & Schibli, T. R. Residual phase noise suppression for Pound–Drever–Hall cavity stabilization with an electro-optic modulator. OSA Continuum 1, 116–123 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with X. Liu, H. Pichler, A. Smerzi, H. Sheng, Y. Xiao and B. Vermersch. This research is funded by the National Key R&D Program of China (grant no. 2017YFA0304203), the National Natural Science Foundation of China (grants 61827824, 61527824, 11874038 and 61722507), 1331 Key Subjects Construction and 111 project (grant no. D18001). L.X. acknowledges support from the Program for Changjiang Scholars and Innovative Research Team (grant no. IRT13076). Y.H. and L.Z. also acknowledge support from the 100-Talent Program of Shanxi Province.

Author information

Authors and Affiliations

Authors

Contributions

L.X., S.J., L.Z. and M.J. proposed the project. M.J. and Y.H. developed the research. M.J. and L.Z. performed the experiments and analysed the experimental data. Y.H. and M.J. developed the theory and carried out theoretical calculations. M.J., L.Z. and H.Z. contributed to the experimental set-up. Y.H., M.J., L.X., J.M. and L.Z. wrote the manuscript and provided revisions. All authors contributed to discussions of the results and the manuscript.

Corresponding authors

Correspondence to Linjie Zhang or Liantuan Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Overview of the experimental setup.

We have used the following notations: (1) DL PRO: external-cavity diode lasers, (2) CR: diode laser current, (3) PZT: piezo ceramic, (4) AOM: The double-pass acousto-optic modulators which shift the frequencies of the probe and coupling lights to atomic resonances, (5) INS: intensity noise server, (6) FNS: frequency noise server, (7) ULE: ultra-low expansion (ULE) glass cavity, (8) TA & SHG: tapered amplifier and second-harmonic generation, (9) HWP: half-wave plate, (10) PBS: polarizing beam splitter, (11) HR: dielectric mirror, (12) GPSDO: GPS disciplined oscillator with Rubidium timebase, (13) RPD: 2-way microwave resistive power divider, (14) FFT: fast Fourier transform, (15) DAO: digital acquisition oscilloscope, (16) SA: spectrum analyzer, (17) Lock-in: lock-in amplifier.

Extended Data Fig. 2 Measurements of the same signal for various laser powers.

In measuring the same signal, seven different choices of (Pp, Pc) for the powers of probe and control lasers are considered, indexed by i = 1, …, 7 in the horizontal axis of a and b. They are respectively (120 μW, 34 mW), (108 μW, 30 mW), (120 μW, 30 mW), (132 μW, 34 mW), (120 μW, 27 mW), (84 μW, 30 mW), (180 μW, 39 mW). Panel a presents measurements of P(δs) and κ0 by atomic superhet, and panel b shows \({E}_{s}=[\hslash /(\sqrt{2}\ \mu )]| P({\delta }_{s})| /| {\kappa }_{0}|\). In panel a, the dark blue circle denotes single-shot measurement of P(δs). The light blue square depicts average P(δs) from 10 single-shot measurements with error bar indicating the 1σ standard error. All data of P(δs) has been normalized by the median of P(δs). The gray circle denotes single-shot measurement of κ0. Average κ0 from 3 measurements is shown (black square) with error bar denoting 1σ standard error. Data of κ0 has been normalized by its median. In panel b, the red circle represents single-shot measurement of Es by atomic superhet, and the blue square depicts average Es from 10 measurements with error bar indicating the 1σ standard error. The same signal electric field is also measured using standard antenna method (dashed black line), and the light blue patch denotes measurement uncertainty in this method.

Source data

Extended Data Fig. 3 Sensitivity spectrum of the Rydberg-atom superhet.

Measured sensitivity S as a function of relative signal frequency δs is shown for various optical readout noises (red curve), the amplifier noise of photon detector (gray curve) and the spectrum analyzer noise (black curve). These optical readout noises include 1/f noise, transit noise of atoms, and laser frequency noise. The blue line represents the QPNL sensitivity of our setup (Methods). The dashed gray line indicates δs = 150 kHz chosen in experiments in the main text. The sensitivity of our setup is limited by laser frequency noise to 55 nV cm−1 Hz−1/2.

Source data

Source data

Source Data Fig. 2

Numerical data used to generate graphs in Fig. 2.

Source Data Fig. 3

Numerical data used to generate graphs in Fig. 3.

Source Data Fig. 4

Numerical data used to generate graphs in Fig. 4.

Source Data Extended Data Fig. 2

Numerical data used to generate graphs in Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Numerical data used to generate graphs in Extended Data Fig. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, M., Hu, Y., Ma, J. et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy. Nat. Phys. 16, 911–915 (2020). https://doi.org/10.1038/s41567-020-0918-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-020-0918-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing