Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translating premalignant biology to accelerate non-small-cell lung cancer interception

Abstract

Over the past decade, substantial progress has been made in the development of targeted and immune-based therapies for patients with advanced non-small-cell lung cancer. To further improve outcomes for patients with lung cancer, identifying and intercepting disease at the earliest and most curable stages are crucial next steps. With the recent implementation of low-dose computed tomography scan screening in populations at high risk, there is an emerging unmet need for new diagnostic, prognostic and therapeutic tools to help treat patients suspected of harbouring premalignant lesions and minimally invasive non-small-cell lung cancer. Continued advances in the identification of the earliest drivers of lung carcinogenesis are poised to address these unmet needs. Employing multimodal approaches to chart the temporal and spatial maps of the molecular events driving lung premalignant lesion progression will refine our understanding of early carcinogenesis. Elucidating the molecular drivers of premalignancy is critical to the development of biomarkers to detect those incubating a premalignant lesion, to stratify risk for progression to invasive cancer and to identify novel therapeutic targets to intercept that process. In this Review, we summarize emerging insights into the earliest cellular and molecular events associated with lung squamous and adenocarcinoma carcinogenesis and highlight the growing opportunity for translating these insights into clinical tools for early detection and disease interception to transform the outcomes for those at risk for lung cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Field-level alterations in the airway and lung.
Fig. 2: Cellular and molecular alterations in pre-invasive and early-stage LUSC.
Fig. 3: Cellular and molecular alterations in pre-invasive and early-stage lung adenocarcinoma.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  2. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  3. Zhang, Y. et al. Global variations in lung cancer incidence by histological subtype in 2020: a population-based study. Lancet Oncol. 24, 1206–1218 (2023).

    Article  PubMed  Google Scholar 

  4. Gazdar, A. F. & Brambilla, E. Preneoplasia of lung cancer. Cancer Biomark. 9, 385–396 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Howlader, N. et al. The effect of advances in lung-cancer treatment on population mortality. N. Engl. J. Med. 383, 640–649 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

    Article  Google Scholar 

  7. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

    Article  Google Scholar 

  8. de Koning, H. J. et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N. Engl. J. Med. 382, 503–513 (2020).

    Article  PubMed  Google Scholar 

  9. National Lung Screening Trial Research Team et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365, 395–409 (2011). This study summarizes the NLST findings to establish the utilization of LDCT screening for lung cancer in the USA.

    Article  Google Scholar 

  10. Silvestri, G. A. et al. Outcomes from more than 1 million people screened for lung cancer with low-dose CT imaging. Chest 164, 241–251 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Altorki, N. et al. Lobar or sublobar resection for peripheral stage IA non-small-cell lung cancer. N. Engl. J. Med. 388, 489–498 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Forde, P. M. et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N. Engl. J. Med. 386, 1973–1985 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cascone, T. et al. Perioperative nivolumab in resectable lung cancer. N. Engl. J. Med. 390, 1756–1769 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Spicer, J. D. et al. Neoadjuvant and adjuvant treatments for early stage resectable NSCLC: consensus recommendations from the International Association for the Study of Lung Cancer. J. Thorac. Oncol. 19, 1373–1414 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Kobayashi, Y., Ambrogio, C. & Mitsudomi, T. Ground-glass nodules of the lung in never-smokers and smokers: clinical and genetic insights. Transl. Lung Cancer Res. 7, 487–497 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Herskovitz, E., Solomides, C., Barta, J., Evans, N. & Kane, G. Detection of lung carcinoma arising from ground glass opacities (GGO) after 5 years — a retrospective review. Respir. Med. 196, 106803 (2022).

    Article  PubMed  Google Scholar 

  17. Migliore, M. et al. Ground glass opacities management in the lung cancer screening era. Ann. Transl. Med. 6, 90 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jiang, J., Chang, S. H., Kent, A. J., Geraci, T. C. & Cerfolio, R. J. Current novel advances in bronchoscopy. Front. Surg. 7, 596925 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tremblay, A. et al. Low prevalence of high-grade lesions detected with autofluorescence bronchoscopy in the setting of lung cancer screening in the Pan-Canadian Lung Cancer Screening Study. Chest 150, 1015–1022 (2016).

    Article  PubMed  Google Scholar 

  20. Nicholson, A. G. et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. J. Thorac. Oncol. 17, 362–387 (2022).

    Article  PubMed  Google Scholar 

  21. World Health Organization. WHO Global Report on Trends in Prevalence of Tobacco Use 2000–2030 https://www.who.int/publications/i/item/9789240088283 (2024).

  22. Siegel, D. A., Fedewa, S. A., Henley, S. J., Pollack, L. A. & Jemal, A. Proportion of never smokers among men and women with lung cancer in 7 US states. JAMA Oncol. 7, 302–304 (2021).

    Article  PubMed  Google Scholar 

  23. Corrales, L. et al. Lung cancer in never smokers: the role of different risk factors other than tobacco smoking. Crit. Rev. Oncol. Hematol. 148, 102895 (2020).

    Article  PubMed  Google Scholar 

  24. Merrick, D. T. et al. Persistence of bronchial dysplasia is associated with development of invasive squamous cell carcinoma. Cancer Prev. Res. 9, 96–104 (2016). This study demonstrates the reversibility and persistence of bronchial dysplasia based on histological grade.

    Article  CAS  Google Scholar 

  25. Keith, R. L. et al. Lung cancer: premalignant biology and medical prevention. Semin. Oncol. 49, 254–260 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185, 1905–1923.e25 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thege, F. I. et al. A programmable in vivo CRISPR activation model elucidates the oncogenic and immunosuppressive functions of MYC in lung adenocarcinoma. Cancer Res. 82, 2761–2776 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blair, L. M. et al. Oncogenic context shapes the fitness landscape of tumor suppression. Nat. Commun. 14, 6422 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hynds, R. E. et al. Progress towards non-small-cell lung cancer models that represent clinical evolutionary trajectories. Open Biol. 11, 200247 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eickhoff, J. et al. A systematic review and pooled analysis of hypothesized versus observed effect sizes in early phase cancer prevention clinical trials. Cancer Prev. Res. 16, 471–478 (2023).

    Article  Google Scholar 

  31. Faupel-Badger, J. et al. Defining precancer: a grand challenge for the cancer community. Nat. Rev. Cancer 24, 792–809 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. Curtius, K., Wright, N. A. & Graham, T. A. An evolutionary perspective on field cancerization. Nat. Rev. Cancer 18, 19–32 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Slaughter, D. P., Southwick, H. W. & Smejkal, W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6, 963–968 (1953).

    Article  CAS  PubMed  Google Scholar 

  34. Chang, Y.-L. et al. Clonality and prognostic implications of p53 and epidermal growth factor receptor somatic aberrations in multiple primary lung cancers. Clin. Cancer Res. 13, 52–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Kadara, H., Scheet, P., Wistuba, I. I. & Spira, A. E. Early events in the molecular pathogenesis of lung cancer. Cancer Prev. Res. 9, 518–527 (2016).

    Article  CAS  Google Scholar 

  36. Colom, B. et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 598, 510–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Karlsson, K. et al. Deterministic evolution and stringent selection during preneoplasia. Nature 618, 383–393 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Colom, B. et al. Spatial competition shapes the dynamic mutational landscape of normal esophageal epithelium. Nat. Genet. 52, 604–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kadara, H. et al. Driver mutations in normal airway epithelium elucidate spatiotemporal resolution of lung cancer. Am. J. Respir. Crit. Care Med. 200, 742–750 (2019). This study identifies the concept of mutational field carcinogenesis and field of injury in association with NSCLC.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hill, W. et al. Lung adenocarcinoma promotion by air pollutants. Nature 616, 159–167 (2023). This study demonstrates that not only known carcinogens like those in tobacco smoke but those in pollution may act to promote the development of LUAD in the lungs of those harbouring alterations such as EGFR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, T. et al. Genomic and evolutionary classification of lung cancer in never smokers. Nat. Genet. 53, 1348–1359 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Devarakonda, S. et al. Genomic profiling of lung adenocarcinoma in never-smokers. J. Clin. Oncol. 39, 3747–3758 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alexandrov, L. B. et al. Mutational signatures associated with tobacco smoking in human cancer. Science 354, 618–622 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, E. S. et al. Telomere length and recurrence risk after curative resection in patients with early-stage non-small-cell lung cancer: a prospective cohort study. J. Thorac. Oncol. 10, 302–308 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Beane, J. et al. Reversible and permanent effects of tobacco smoke exposure on airway epithelial gene expression. Genome Biol. 8, R201 (2007). This study demonstrates that transcriptional alterations that result from tobacco exposure are both reversible and not reversible upon cessation.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gower, A. C., Steiling, K., Brothers, J. F., Lenburg, M. E. & Spira, A. Transcriptomic studies of the airway field of injury associated with smoking-related lung disease. Proc. Am. Thorac. Soc. 8, 173–179 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Duclos, G. E. et al. Characterizing smoking-induced transcriptional heterogeneity in the human bronchial epithelium at single-cell resolution. Sci. Adv. 5, eaaw3413 (2019). This study demonstrates that novel cell subtypes result from chronic tobacco smoking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schamberger, A. C., Staab-Weijnitz, C. A., Mise-Racek, N. & Eickelberg, O. Cigarette smoke alters primary human bronchial epithelial cell differentiation at the air-liquid interface. Sci. Rep. 5, 8163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. AEGIS Study Team. Shared gene expression alterations in nasal and bronchial epithelium for lung cancer detection. J. Natl Cancer Inst. 109, djw327 (2017).

    Google Scholar 

  52. Silvestri, G. A. et al. A bronchial genomic classifier for the diagnostic evaluation of lung cancer. N. Engl. J. Med. 373, 243–251 (2015). This study establishes the use of the RNA gene signature in airway epithelium as a biomarker for the presence of NSCLC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, H. J. et al. Impact of the percepta genomic classifier on clinical management decisions in a multicenter prospective study. Chest 159, 401–412 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Lamb, C. R. et al. A nasal swab classifier to evaluate the probability of lung cancer in patients with pulmonary nodules. Chest 165, 1009–1019 (2024).

    Article  PubMed  Google Scholar 

  55. Beane, J. et al. Detecting the presence and progression of premalignant lung lesions via airway gene expression. Clin. Cancer Res. 23, 5091–5100 (2017). This study demonstrates that normal-appearing airway has distinct transcriptional changes in the presence of bronchial premalignant lesions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Beane, J. E. et al. Molecular subtyping reveals immune alterations associated with progression of bronchial premalignant lesions. Nat. Commun. 10, 1856 (2019). This study identifies molecular signatures for the detection of bronchial premalignant lesions that progress.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Han, G. et al. An atlas of epithelial cell states and plasticity in lung adenocarcinoma. Nature 627, 656–663 (2024). This study characterizes an alveolar intermediate cell that develops early and persists in KRAS-mutant tumour cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yanagawa, J. et al. Single-cell characterization of pulmonary nodules implicates suppression of immunosurveillance across early stages of lung adenocarcinoma. Cancer Res. 83, 3305–3319 (2023). This study characterizes the alveolar and immune cell phenotypes that are enriched in part solid and solid lung nodules that are early-stage LUAD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, Z. et al. Alveolar differentiation drives resistance to KRAS inhibition in lung adenocarcinoma. Cancer Discov. 14, 308–325 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Merrick, D. T. et al. Altered cell-cycle control, inflammation, and adhesion in high-risk persistent bronchial dysplasia. Cancer Res. 78, 4971–4983 (2018). This study establishes the epithelial and immune gene expression changes in persistent bronchial dysplasia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Teixeira, V. H. et al. Deciphering the genomic, epigenomic, and transcriptomic landscapes of pre-invasive lung cancer lesions. Nat. Med. 25, 517–525 (2019). This study establishes the mutational, transcriptional and epigenetic signatures that drive the progression of CIS lesions to invasive carcinoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mascaux, C. et al. Immune evasion before tumour invasion in early lung squamous carcinogenesis. Nature 571, 570–575 (2019). This study establishes the immune evasive landscape that is associated with increasing grades of bronchial dysplasia and invasive LUSC.

    Article  CAS  PubMed  Google Scholar 

  63. Sivakumar, S. et al. Genomic landscape of atypical adenomatous hyperplasia reveals divergent modes to lung adenocarcinoma. Cancer Res. 77, 6119–6130 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sivakumar, S. et al. Genomic landscape of allelic imbalance in premalignant atypical adenomatous hyperplasias of the lung. EBioMedicine 42, 296–303 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sinjab, A. et al. Resolving the spatial and cellular architecture of lung adenocarcinoma by multiregion single-cell sequencing. Cancer Discov. 11, 2506–2523 (2021). This study characterizes the cellular landscape of early-stage LUAD and the surrounding normal-appearing lung.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dejima, H. et al. Immune evolution from preneoplasia to invasive lung adenocarcinomas and underlying molecular features. Nat. Commun. 12, 2722 (2021). This study characterizes the immune landscape of premalignant LUAD lesions and early invasive LUAD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, Z. et al. Deciphering cell lineage specification of human lung adenocarcinoma with single-cell RNA sequencing. Nat. Commun. 12, 6500 (2021). This study characterizes the cellular landscape of premalignant LUAD lesions and early invasive LUAD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Krysan, K. et al. The immune contexture associates with the genomic landscape in lung adenomatous premalignancy. Cancer Res. 79, 5022–5033 (2019). This study characterizes the mutational and immune landscape of premalignant LUAD lesions and early invasive LUAD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Davis, J. D. & Wypych, T. P. Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol. 14, 978–990 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vieira Braga, F. A. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25, 1153–1163 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 319–324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin, B. et al. Airway hillocks are injury-resistant reservoirs of unique plastic stem cells. Nature 629, 869–877 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tago, Y. et al. Novel medium‐term carcinogenesis model for lung squamous cell carcinoma induced by N‐nitroso‐tris‐chloroethylurea in mice. Cancer Sci. 104, 1560 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ferone, G. et al. SOX2 is the determining oncogenic switch in promoting lung squamous cell carcinoma from different cells of origin. Cancer Cell 30, 519–532 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ruiz García, S. et al. Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures. Development 146, dev177428 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Auerbach, O., Stout, A. P., Hammond, E. C. & Garfinkel, L. Changes in bronchial epithelium in relation to cigarette smoking and in relation to lung cancer. N. Engl. J. Med. 265, 253–267 (1961).

    Article  CAS  PubMed  Google Scholar 

  78. van Boerdonk, R. A. A. et al. Close surveillance with long-term follow-up of subjects with preinvasive endobronchial lesions. Am. J. Respir. Crit. Care Med. 192, 1483–1489 (2015).

    Article  PubMed  Google Scholar 

  79. Tsao, M.-S., Nicholson, A. G., Maleszewski, J. J., Marx, A. & Travis, W. D. Introduction to 2021 WHO classification of thoracic tumors. J. Thorac. Oncol. 17, e1–e4 (2022).

    Article  PubMed  Google Scholar 

  80. Wistuba, I. I. & Gazdar, A. F. Lung cancer preneoplasia. Annu. Rev. Pathol. 1, 331–348 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Franklin, W. A. et al. Widely dispersed p53 mutation in respiratory epithelium. A novel mechanism for field carcinogenesis. J. Clin. Invest. 100, 2133–2137 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wistuba, I. I. et al. Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene 18, 643–650 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Wistuba, I. I. et al. Allelic losses at chromosome 8p21-23 are early and frequent events in the pathogenesis of lung cancer. Cancer Res. 59, 1973–1979 (1999).

    CAS  PubMed  Google Scholar 

  84. Wistuba, I. I. et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res. 60, 1949–1960 (2000).

    CAS  PubMed  Google Scholar 

  85. Massion, P. P. et al. Recurrent genomic gains in preinvasive lesions as a biomarker of risk for lung cancer. PLoS One 4, e5611 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. McCaughan, F. et al. Progressive 3q amplification consistently targets SOX2 in preinvasive squamous lung cancer. Am. J. Respir. Crit. Care Med. 182, 83–91 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Pipinikas, C. P. et al. Cell migration leads to spatially distinct but clonally related airway cancer precursors. Thorax 69, 548–557 (2014).

    Article  PubMed  Google Scholar 

  88. Belinsky, S. A. et al. Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clin. Cancer Res. 11, 6505–6511 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Belinsky, S. A. et al. Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Res. 62, 2370–2377 (2002).

    CAS  PubMed  Google Scholar 

  90. Rozenblatt-Rosen, O. et al. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Krishna, C. et al. An immunogenetic basis for lung cancer risk. Science 383, eadi3808 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pennycuick, A. et al. Immune surveillance in clinical regression of preinvasive squamous cell lung cancer. Cancer Discov. 10, 1489–1499 (2020). This study characterizes the immune landscape of CIS lesions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bons, J. et al. Data‐independent acquisition and quantification of extracellular matrix from human lung in chronic inflammation‐associated carcinomas. Proteomics 23, 2200021 (2023).

    Article  CAS  PubMed  Google Scholar 

  94. Schütz, S. et al. Functionally distinct cancer-associated fibroblast subpopulations establish a tumor promoting environment in squamous cell carcinoma. Nat. Commun. 14, 5413 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Strasser, M.K. et al. Concerted epithelial and stromal changes during progression of Barrett’s esophagus to invasive adenocarcinoma exposed by multi-scale, multi-omics analysis. Preprint at bioRxiv https://doi.org/10.1101/2023.06.08.544265 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Desai, T. J., Brownfield, D. G. & Krasnow, M. A. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507, 190–194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Travis, W. D. Pathology of lung cancer. Clin. Chest Med. 32, 669–692 (2011).

    Article  PubMed  Google Scholar 

  98. Tian, S. Classification and survival prediction for early-stage lung adenocarcinoma and squamous cell carcinoma patients. Oncol. Lett. 14, 5464–5470 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Mori, M., Rao, S. K., Popper, H. H., Cagle, P. T. & Fraire, A. E. Atypical adenomatous hyperplasia of the lung: a probable forerunner in the development of adenocarcinoma of the lung. Mod. Pathol. 14, 72–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Miller, R. R. Bronchioloalveolar cell adenomas. Am. J. Surg. Pathol. 14, 904–912 (1990).

    Article  CAS  PubMed  Google Scholar 

  101. WHO Classification of Tumours Editorial Board. Thoracic Tumours: WHO Classification of Tumours (World Health Organization, 2021).

  102. Iwata, H. Adenocarcinoma containing lepidic growth. J. Thorac. Dis. 8, E1050–E1052 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dong, Z.-Y. et al. Genetic and immune profiles of solid predominant lung adenocarcinoma reveal potential immunotherapeutic strategies. J. Thorac. Oncol. 13, 85–96 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Sainz de Aja, J., Dost, A. F. M. & Kim, C. F. Alveolar progenitor cells and the origin of lung cancer. J. Intern. Med. 289, 629–635 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Takamochi, K. et al. Loss of heterozygosity on chromosomes 9q and 16p in atypical adenomatous hyperplasia concomitant with adenocarcinoma of the lung. Am. J. Pathol. 159, 1941–1948 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kitaguchi, S., Takeshima, Y., Nishisaka, T. & Inai, K. Proliferative activity, p53 expression and loss of heterozygosity on 3p, 9p and 17p in atypical adenomatous hyperplasia of the lung. Hiroshima J. Med. Sci. 47, 17–25 (1998).

    CAS  PubMed  Google Scholar 

  107. Sakamoto, H. et al. Disproportionate representation of KRAS gene mutation in atypical adenomatous hyperplasia, but even distribution of EGFR gene mutation from preinvasive to invasive adenocarcinomas. J. Pathol. 212, 287–294 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Chen, H. et al. Genomic and immune profiling of pre-invasive lung adenocarcinoma. Nat. Commun. 10, 5472 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Alessi, J. V. et al. Impact of aneuploidy and chromosome 9p loss on tumor immune microenvironment and immune checkpoint inhibitor efficacy in NSCLC. J. Thorac. Oncol. 18, 1524–1537 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang, Y. et al. Evolutionary proteogenomic landscape from pre-invasive to invasive lung adenocarcinoma. Cell Rep. Med. 5, 101358 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dankort, D. et al. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 21, 379–384 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hu, X. et al. Multi-region exome sequencing reveals genomic evolution from preneoplasia to lung adenocarcinoma. Nat. Commun. 10, 2978 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Qian, J. et al. Genomic underpinnings of tumor behavior in in situ and early lung adenocarcinoma. Am. J. Respir. Crit. Care Med. 201, 697–706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Licchesi, J. D. F., Westra, W. H., Hooker, C. M. & Herman, J. G. Promoter hypermethylation of hallmark cancer genes in atypical adenomatous hyperplasia of the lung. Clin. Cancer Res. 14, 2570–2578 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Selamat, S. A. et al. DNA methylation changes in atypical adenomatous hyperplasia, adenocarcinoma in situ, and lung adenocarcinoma. PLoS One 6, e21443 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lavin, Y. et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169, 750–765.e17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Altorki, N. K. et al. Global evolution of the tumor microenvironment associated with progression from preinvasive invasive to invasive human lung adenocarcinoma. Cell Rep. 39, 110639 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hu, X. et al. Evolution of DNA methylome from precancerous lesions to invasive lung adenocarcinomas. Nat. Commun. 12, 687 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120–1133.e17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hao, D. et al. The single-cell immunogenomic landscape of B and plasma cells in early-stage lung adenocarcinoma. Cancer Discov. 12, 2626–2645 (2022). This study characterizes the B cell landscape of early LUAD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Leong, S. et al. Electromagnetic navigation bronchoscopy: a descriptive analysis. J. Thorac. Dis. 4, 173–185 (2012).

    PubMed  PubMed Central  Google Scholar 

  122. Tammemägi, M. C. et al. Selection criteria for lung-cancer screening. N. Engl. J. Med. 368, 728–736 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Wood, D. E. et al. NCCN Guidelines® Insights: lung cancer screening, version 1.2022. J. Natl Compr. Canc. Netw. 20, 754–764 (2022).

    Article  PubMed  Google Scholar 

  124. Brock, B. A. et al. Social and biological determinants in lung cancer disparity. Cancers 16, 612 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tammemägi, M. C. et al. Evaluation of the lung cancer risks at which to screen ever- and never-smokers: screening rules applied to the PLCO and NLST cohorts. PLoS Med. 11, e1001764 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Aldrich, M. C. et al. Evaluation of USPSTF lung cancer screening guidelines among African American adult smokers. JAMA Oncol. 5, 1318–1324 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Tammemagi, M. et al. Predicting malignancy risk of screen-detected lung nodules-mean diameter or volume. J. Thorac. Oncol. 14, 203–211 (2019).

    Article  PubMed  Google Scholar 

  128. Mikhael, P. G. et al. Sybil: a validated deep learning model to predict future lung cancer risk from a single low-dose chest computed tomography. J. Clin. Oncol. 41, 2191–2200 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kammer, M. N. et al. Integrated biomarkers for the management of indeterminate pulmonary nodules. Am. J. Respir. Crit. Care Med. 204, 1306–1316 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kammer, M. N. & Massion, P. P. Noninvasive biomarkers for lung cancer diagnosis, where do we stand? J. Thorac. Dis. 12, 3317–3330 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kalinke, L., Thakrar, R. & Janes, S. M. The promises and challenges of early non-small cell lung cancer detection: patient perceptions, low-dose CT screening, bronchoscopy and biomarkers. Mol. Oncol. 15, 2544–2564 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Mathios, D. et al. Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nat. Commun. 12, 5060 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kuriyama, M. et al. Quantitation of prostate-specific antigen in serum by a sensitive enzyme immunoassay. Cancer Res. 40, 4658–4662 (1980).

    CAS  PubMed  Google Scholar 

  134. Imperiale, T. F. et al. Next-generation multitarget stool DNA test for colorectal cancer screening. N. Engl. J. Med. 390, 984–993 (2024).

    Article  CAS  PubMed  Google Scholar 

  135. Schreiber, G. & McCrory, D. C. Performance characteristics of different modalities for diagnosis of suspected lung cancer: summary of published evidence. Chest 123, 115S–128S (2003).

    Article  PubMed  Google Scholar 

  136. Hubers, A. J., Prinsen, C. F. M., Sozzi, G., Witte, B. I. & Thunnissen, E. Molecular sputum analysis for the diagnosis of lung cancer. Br. J. Cancer 109, 530–537 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Heiden, B. T. et al. Association between surgical quality metric adherence and overall survival among US veterans with early-stage non-small cell lung cancer. JAMA Surg. 158, 293–301 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wu, Y. et al. The identification of genes associated T-cell exhaustion and construction of prognostic signature to predict immunotherapy response in lung adenocarcinoma. Sci. Rep. 13, 13415 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Keith, R. L. & Miller, Y. E. Lung cancer chemoprevention: current status and future prospects. Nat. Rev. Clin. Oncol. 10, 334–343 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Marjanovic, N. D. et al. Emergence of a high-plasticity cell state during lung cancer evolution. Cancer Cell 38, 229–246.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gómez-López, S., Whiteman, Z. E. & Janes, S. M. Mapping lung squamous cell carcinoma pathogenesis through in vitro and in vivo models. Commun. Biol. 4, 937 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hennekens, C. H. et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N. Engl. J. Med. 334, 1145–1149 (1996).

    Article  CAS  PubMed  Google Scholar 

  143. Omenn, G. S. et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 334, 1150–1155 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Keith, R. L. et al. Oral iloprost improves endobronchial dysplasia in former smokers. Cancer Prev. Res. 4, 793–802 (2011).

    Article  CAS  Google Scholar 

  145. Lam, S. et al. A randomized phase IIb trial of myo-inositol in smokers with bronchial dysplasia. Cancer Prev. Res. 9, 906–914 (2016).

    Article  CAS  Google Scholar 

  146. Keith, R. L. et al. A randomized phase II trial of pioglitazone for lung cancer chemoprevention in high-risk current and former smokers. Cancer Prev. Res. 12, 721–730 (2019).

    Article  CAS  Google Scholar 

  147. Tennis, M. A., Vanscoyk, M., Keith, R. L. & Winn, R. A. The role of prostacyclin in lung cancer. Transl. Res. 155, 57–61 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Roos, J. F. et al. Metformin for lung cancer prevention and improved survival: a novel approach. Eur. J. Cancer Prev. 28, 311–315 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Garon, E. B. et al. Canakinumab as adjuvant therapy in patients with completely resected non-small-cell lung cancer: results from the CANOPY — a double-blind, randomized clinical trial. J. Clin. Oncol. 42, 180–191 (2024).

    Article  CAS  PubMed  Google Scholar 

  150. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04931017 (2024).

  151. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03347838 (2024).

  152. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03634241 (2024).

  153. Tammemägi, M. C. et al. USPSTF2013 versus PLCOm2012 lung cancer screening eligibility criteria (International Lung Screening Trial): interim analysis of a prospective cohort study. Lancet Oncol. 23, 138–148 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197–218 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Korn, A. R. et al. Social determinants of health and US cancer screening interventions: a systematic review. CA Cancer J. Clin. 73, 461–479 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Investigators supported by in part by: the National Cancer Institute (NCI) Human Tumour Atlas Network (HTAN) (U2CCA233238-01) (A.E.S., S.M.D., S.A.M., H.K., S.M.J.); Stand Up To Cancer-LUNGevity-American Lung Association Lung Cancer Interception Dream Team Translational Cancer Research Grant (grant number: SU2C-AACR-DT23-17 to S.M.D. and A.E.S.). Stand Up To Cancer is a division of the Entertainment Industry Foundation. Research grants are administered by the American Association for Cancer Research, the scientific partner of SU2C.

Author information

Authors and Affiliations

Authors

Contributions

S.A.M., A.E.S., Z.R., M.J.R. and S.M.D. researched data for the article. S.A.M., A.E.S., S.M.J., H.K. and S.M.D. contributed substantially to discussion of the content. S.A.M., A.E.S., Z.R., M.J.R. and S.M.D. wrote the article. S.A.M., A.E.S., Z.R., S.M.J., H.K. and S.M.D. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Sarah A. Mazzilli or Avrum E. Spira.

Ethics declarations

Competing interests

A.E.S. is an employee of Johnson and Johnson Innovative Medicine. S.A.M., S.M.D. and H.K. have sponsor research agreements with Johnson and Johnson supporting research in the area. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Kathryn O’Donnell, Tae Min Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Bronchoscopy

A clinical endoscopic technique using a tube with a light and camera to visualize the bronchial airways.

Ground-glass opacities

(GGOs). Light, hazy areas of increased opacity that appear on LDCT images.

Immune cold

Tissue that lacks immune infiltration154.

Immune hot

Tissue with abundant immune infiltration154.

Low-dose computed tomography

(LDCT). Medical imaging technique that is employed for lung cancer screening and uses a low-dose x-ray to take serial images of the chest to create a 3D rendering.

Precancerous, premalignant, preneoplastic and pre-invasive lesions

Histopathological changes to the normal tissue architecture driven by genomic, transcriptional and epigenetic changes that suggest progression towards carcinoma but have the capacity to naturally resolve.

Social determinants of health

Non-medical factors that influence health outcomes, including the conditions in the environments where people are born, live, work, worship and age, that are impacted by policy, income and access to health care155.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzilli, S.A., Rahal, Z., Rouhani, M.J. et al. Translating premalignant biology to accelerate non-small-cell lung cancer interception. Nat Rev Cancer 25, 379–392 (2025). https://doi.org/10.1038/s41568-025-00791-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-025-00791-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer