Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ALK in cancer: from function to therapeutic targeting

Abstract

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that acts as an oncogenic driver in solid and haematological malignancies in both children and adults. Although ALK-expressing (ALK+) tumours show strong initial responses to the series of ALK inhibitors currently available, many patients will develop resistance. In this Review, we discuss recent advances in ALK oncogenic signalling, together with existing and promising new modalities to treat ALK-driven tumours, including currently approved ALK-directed therapies, namely tyrosine kinase inhibitors, and novel approaches such as ALK-specific immune therapies. Although ALK inhibitors have changed the management and clinical history of ALK+ tumours, they are still insufficient to cure most of the patients. Therefore, more effort is needed to further improve outcomes and prevent the tumour resistance, recurrence and metastatic spread that many patients with ALK+ tumours experience. Here, we outline how a multipronged approach directed against ALK and other essential pathways that sustain the persistence of ALK+ tumours, together with potent or specific immunotherapies, could achieve this goal. We envision that the lessons learned from treating ALK+ tumours in the clinic could ultimately accelerate the implementation of innovative combination therapies to treat tumours driven by other tyrosine kinases or oncogenes with similar properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alterations of the ALK protein in tumours are classified as fusions, point mutations and overexpression.
Fig. 2: ALK oncogenic signalling depends on the type of genetic alteration and cellular context.
Fig. 3: ALK+ cancer cells can bypass signalling blockade achieved by ALK tyrosine kinase inhibitors through both cell-intrinsic and cell-extrinsic mechanisms.
Fig. 4: The crystal structures of the kinase domain of ALK and the mutations associated with resistance to various tyrosine kinase inhibitors.
Fig. 5: ALK is a promising target for immunotherapies, owing to its oncogenicity, its spontaneous immunogenicity and that its expression is restricted to tumour cells.

Similar content being viewed by others

Data availability

The crystal structures used for Fig. 4 were downloaded from PDB with the following accessions: 3L9P for WT human ALK and neuroblastoma, 2XP2 for crizotinib; 3AOX for alectinib; 6MX8 for brigatinib; 4MKC of ceritinib, 4CLJ for lorlatinib; 9GBE for NVL-655. PyMol session files of the above structures with the in silico mutated residues reported in Fig. 4 are available in the public figshare repository (https://figshare.com/projects/ALK/234473).

References

  1. Hallberg, B. & Palmer, R. H. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat. Rev. Cancer 13, 685–700 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. De Munck, S. et al. Structural basis of cytokine-mediated activation of ALK family receptors. Nature 600, 143–147 (2021). With Reshetnyak et al. (ref. 3), this article describes the structure and mechanisms of activation of the ALK receptor.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Reshetnyak, A. V. et al. Mechanism for the activation of the anaplastic lymphoma kinase receptor. Nature 600, 153–157 (2021). With DeMunck et al. (ref. 2), this article describes the structure and mechanism of activation of the ALK receptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blandin, A. F. et al. ALK amplification and rearrangements are recurrent targetable events in congenital and adult glioblastoma. Clin. Cancer Res. 29, 2651–2667 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bergaggio, E. et al. ALK inhibitors increase ALK expression and sensitize neuroblastoma cells to ALK.CAR-T cells. Cancer Cell 41, 2100–2116.e2110 (2023). This paper demonstrates the efficacy of the combination of ALK.CAR T cells with lorlatinib in pre-clinical mouse models of neuroblastoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morris, S. W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263, 1281–1284 (1994). This is the seminal paper that descibes the discovery of the ALK gene as an oncogene in lymphoma.

    Article  CAS  PubMed  Google Scholar 

  7. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007). This paper was the first to demonstrate that ALK fusions can occur outside ALCL and that they can be oncogenic drivers in NSCLC.

    Article  CAS  PubMed  Google Scholar 

  8. Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Chiarle, R., Voena, C., Ambrogio, C., Piva, R. & Inghirami, G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer 8, 11–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Mano, H. ALKoma: a cancer subtype with a shared target. Cancer Discov. 2, 495–502 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Schneider, J. L., Lin, J. J. & Shaw, A. T. ALK-positive lung cancer: a moving target. Nat. Cancer 4, 330–343 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010). This seminal paper describes, for the first time, the efficacy of the ALK inhibitor crizotinib in patients with ALK+ NSCLC, opening the path to the development of several generations of ALK TKIs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shaw, A. T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368, 2385–2394 (2013). This study led to FDA approval of crizotinib as the first ALK TKI for lung cancer treatment.

    Article  CAS  PubMed  Google Scholar 

  14. Gambacorti Passerini, C. et al. Crizotinib in advanced, chemoresistant anaplastic lymphoma kinase-positive lymphoma patients. J. Natl Cancer Inst. 106, djt378 (2014).

    Article  PubMed  Google Scholar 

  15. Gambacorti-Passerini, C. et al. Long-term effects of crizotinib in ALK-positive tumors (excluding NSCLC): a phase 1b open-label study. Am. J. Hematol. 93, 607–614 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gambacorti-Passerini, C., Mussolin, L. & Brugieres, L. Abrupt relapse of ALK-positive lymphoma after discontinuation of crizotinib. N. Engl. J. Med. 374, 95–96 (2016). This works shows that ALK+ lymphoma persister cells survive for many years in patients who are otherwise in complete remission.

    Article  PubMed  Google Scholar 

  17. Lin, J. J., Riely, G. J. & Shaw, A. T. Targeting ALK: precision medicine takes on drug resistance. Cancer Discov. 7, 137–155 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Borenas, M. et al. ALK ligand ALKAL2 potentiates MYCN-driven neuroblastoma in the absence of ALK mutation. EMBO J. 40, e105784 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cheong, T. C. et al. Mechanistic patterns and clinical implications of oncogenic tyrosine kinase fusions in human cancers. Nat. Commun. 15, 5110 (2024). This work provides experimental evidence and mechanistic insights on the formation and selection of ALK fusions in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mathas, S. et al. Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma. Proc. Natl Acad. Sci. USA 106, 5831–5836 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ou, S. I., Zhu, V. W. & Nagasaka, M. Catalog of 5’ fusion partners in ALK-positive NSCLC circa 2020. JTO Clin. Res. Rep. 1, 100015 (2020).

    PubMed  PubMed Central  Google Scholar 

  22. Childress, M. A. et al. ALK fusion partners impact response to ALK inhibition: differential effects on sensitivity, cellular phenotypes, and biochemical properties. Mol. Cancer Res. 16, 1724–1736 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Armstrong, F. et al. Differential effects of X-ALK fusion proteins on proliferation, transformation, and invasion properties of NIH3T3 cells. Oncogene 23, 6071–6082 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Lasota, J. et al. Colorectal adenocarcinomas harboring ALK fusion genes: a clinicopathologic and molecular genetic study of 12 cases and review of the literature. Am. J. Surg. Pathol. 44, 1224–1234 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yoshida, T. et al. Differential crizotinib response duration among ALK fusion variants in ALK-positive non-small-cell lung cancer. J. Clin. Oncol. 34, 3383–3389 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Woo, C. G. et al. Differential protein stability and clinical responses of EML4-ALK fusion variants to various ALK inhibitors in advanced ALK-rearranged non-small cell lung cancer. Ann. Oncol. 28, 791–797 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Lin, J. J. et al. Impact of EML4-ALK variant on resistance mechanisms and clinical outcomes in ALK-positive lung cancer. J. Clin. Oncol. 36, 1199–1206 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Richards, M. W. et al. Crystal structure of EML1 reveals the basis for Hsp90 dependence of oncogenic EML4-ALK by disruption of an atypical beta-propeller domain. Proc. Natl Acad. Sci. USA 111, 5195–5200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Christopoulos, P. et al. EML4-ALK fusion variant V3 is a high-risk feature conferring accelerated metastatic spread, early treatment failure and worse overall survival in ALK+ non-small cell lung cancer. Int. J. Cancer 142, 2589–2598 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Christopoulos, P. et al. Identification of a highly lethal V3+ TP53+ subset in ALK+ lung adenocarcinoma. Int. J. Cancer 144, 190–199 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Camidge, D. R. et al. Brigatinib versus crizotinib in ALK inhibitor-naive advanced ALK-positive NSCLC: final results of phase 3 ALTA-1L trial. J. Thorac. Oncol. 16, 2091–2108 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Penzel, R., Schirmacher, P. & Warth, A. A novel EML4-ALK variant: exon 6 of EML4 fused to exon 19 of ALK. J. Thorac. Oncol. 7, 1198–1199 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Anai, S. et al. A case of lung adenocarcinoma resistant to crizotinib harboring a novel EML4-ALK variant, exon 6 of EML4 fused to exon 18 of ALK. J. Thorac. Oncol. 11, e126–e128 (2016).

    Article  PubMed  Google Scholar 

  34. Le, A. T., Varella-Garcia, M. & Doebele, R. C. Oncogenic fusions involving exon 19 of ALK. J. Thorac. Oncol. 7, e44 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Delsol, G. et al. A new subtype of large B-cell lymphoma expressing the ALK kinase and lacking the 2; 5 translocation. Blood 89, 1483–1490 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Kemps, P. G. et al. ALK-positive histiocytosis: a new clinicopathologic spectrum highlighting neurologic involvement and responses to ALK inhibition. Blood 139, 256–280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guerreiro Stucklin, A. S. et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat. Commun. 10, 4343 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hiwatari, M. et al. Novel TENM3-ALK fusion is an alternate mechanism for ALK activation in neuroblastoma. Oncogene 41, 2789–2797 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Chiarle, R. et al. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood 101, 1919–1927 (2003). This is the first paper to demonstarte that the NPM–ALK fusion acts as an oncogenic driver of lymphoma in mouse models.

    Article  CAS  PubMed  Google Scholar 

  40. Kreutmair, S. et al. Existence of reprogrammed lymphoma stem cells in a murine ALCL-like model. Leukemia 34, 3242–3255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Soda, M. et al. A mouse model for EML4-ALK-positive lung cancer. Proc. Natl Acad. Sci. USA 105, 19893–19897 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Voena, C. et al. Efficacy of a cancer vaccine against ALK-rearranged lung tumors. Cancer Immunol. Res. 3, 1333–1343 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maddalo, D. et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516, 423–427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Blasco, R. B. et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep. 9, 1219–1227 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Hallberg, B. & Palmer, R. H. ALK and NSCLC: targeted therapy with ALK inhibitors. F1000 Med. Rep. 3, 21 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mosse, Y. P. et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930–935 (2008). With George et al. (ref. 47), this article demonstrates that ALK mutations are found in familiar and sporadic neuroblastomas and cause a constitutive activation of the ALK receptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. George, R. E. et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455, 975–978 (2008). With Mosse et al. (ref. 46), this article demonstrates that ALK mutations are found in familiar and sporadic neuroblastomas and cause a constitutive activation of the ALK receptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Janoueix-Lerosey, I. et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455, 967–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Chen, Y. et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455, 971–974 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Bresler, S. C. et al. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell 26, 682–694 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bresler, S. C. et al. Differential inhibitor sensitivity of anaplastic lymphoma kinase variants found in neuroblastoma. Sci. Transl. Med. 3, 108ra114 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Berry, T. et al. The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell 22, 117–130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Heukamp, L. C. et al. Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Sci. Transl. Med. 4, 141ra191 (2012).

    Article  Google Scholar 

  54. Zhu, S. et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 21, 362–373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Javanmardi, N. et al. Analysis of ALK, MYCN, and the ALK ligand ALKAL2 (FAM150B/AUGalpha) in neuroblastoma patient samples with chromosome arm 2p rearrangements. Genes Chromosomes Cancer 59, 50–57 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Schleiermacher, G. et al. Emergence of new ALK mutations at relapse of neuroblastoma. J. Clin. Oncol. 32, 2727–2734 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Murugan, A. K. & Xing, M. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res. 71, 4403–4411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ohshima, K. et al. Integrated analysis of gene expression and copy number identified potential cancer driver genes with amplification-dependent overexpression in 1,454 solid tumors. Sci. Rep. 7, 641 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Caren, H., Abel, F., Kogner, P. & Martinsson, T. High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem. J. 416, 153–159 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Pillay, K., Govender, D. & Chetty, R. ALK protein expression in rhabdomyosarcomas. Histopathology 41, 461–467 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. van Gaal, J. C. et al. Anaplastic lymphoma kinase aberrations in rhabdomyosarcoma: clinical and prognostic implications. J. Clin. Oncol. 30, 308–315 (2012).

    Article  PubMed  Google Scholar 

  62. Wiesner, T. et al. Alternative transcription initiation leads to expression of a novel ALK isoform in cancer. Nature 526, 453–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Inam, H. et al. Genomic and experimental evidence that ALK(ATI) does not predict single agent sensitivity to ALK inhibitors. iScience 24, 103343 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Couts, K. L. et al. ALK inhibitor response in melanomas expressing EML4-ALK fusions and alternate ALK isoforms. Mol. Cancer Ther. 17, 222–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Hrustanovic, G. et al. RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer. Nat. Med. 21, 1038–1047 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tulpule, A. et al. Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell 184, 2649–2664.e2618 (2021). This work shows new modalities by which EML4–ALK fusion can activate downstrean signalling including the MAPK pathway in NSCLC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Menotti, M. et al. Wiskott-Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nat. Med. 25, 130–140 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Umapathy, G. et al. The kinase ALK stimulates the kinase ERK5 to promote the expression of the oncogene MYCN in neuroblastoma. Sci. Signal. 7, ra102 (2014).

    Article  PubMed  Google Scholar 

  69. Eleveld, T. F. et al. Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat. Genet. 47, 864–871 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zamo, A. et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 21, 1038–1047 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Chiarle, R. et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat. Med. 11, 623–629 (2005). This work reaveals the crucial importance of the JAK–STAT3 pathway in ALK+ ALCL.

    Article  CAS  PubMed  Google Scholar 

  72. Werner, M. T., Zhao, C., Zhang, Q. & Wasik, M. A. Nucleophosmin-anaplastic lymphoma kinase: the ultimate oncogene and therapeutic target. Blood 129, 823–831 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Ambrogio, C. et al. NPM-ALK oncogenic tyrosine kinase controls T-cell identity by transcriptional regulation and epigenetic silencing in lymphoma cells. Cancer Res. 69, 8611–8619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Piva, R. et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J. Clin. Oncol. 28, 1583–1590 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Amin, H. M. et al. Selective inhibition of STAT3 induces apoptosis and G(1) cell cycle arrest in ALK-positive anaplastic large cell lymphoma. Oncogene 23, 5426–5434 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Bai, L. et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell 36, 498–511.e417 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Garces de Los Fayos Alonso, I. et al. PDGFRbeta promotes oncogenic progression via STAT3/STAT5 hyperactivation in anaplastic large cell lymphoma. Mol. Cancer 21, 172 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, J. P. et al. A novel model of controlling PD-L1 expression in ALK+ anaplastic large cell lymphoma revealed by CRISPR screening. Blood 134, 171–185 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liang, H. C. et al. Super-enhancer-based identification of a BATF3/IL-2R-module reveals vulnerabilities in anaplastic large cell lymphoma. Nat. Commun. 12, 5577 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu, C. et al. STAT1 is phosphorylated and downregulated by the oncogenic tyrosine kinase NPM-ALK in ALK-positive anaplastic large-cell lymphoma. Blood 126, 336–345 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Rajan, S. S. et al. The mechanism of cancer drug addiction in ALK-positive T-cell lymphoma. Oncogene 39, 2103–2117 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Takezawa, K., Okamoto, I., Nishio, K., Janne, P. A. & Nakagawa, K. Role of ERK-BIM and STAT3-survivin signaling pathways in ALK inhibitor-induced apoptosis in EML4-ALK-positive lung cancer. Clin. Cancer Res. 17, 2140–2148 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Slupianek, A. et al. Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res. 61, 2194–2199 (2001).

    CAS  PubMed  Google Scholar 

  84. Mastini, C. et al. Targeting CCR7-PI3Kgamma overcomes resistance to tyrosine kinase inhibitors in ALK-rearranged lymphoma. Sci. Transl. Med. 15, eabo3826 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sampson, J., Richards, M. W., Choi, J., Fry, A. M. & Bayliss, R. Phase-separated foci of EML4-ALK facilitate signalling and depend upon an active kinase conformation. EMBO Rep. 22, e53693 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dardaei, L. et al. SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors. Nat. Med. 24, 512–517 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ota, K. et al. Induction of PD-L1 expression by the EML4-ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin. Cancer Res. 21, 4014–4021 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Li, J. et al. Tumour-derived substrate-adherent cells promote neuroblastoma survival through secreted trophic factors. Mol. Oncol. 15, 2011–2025 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Claeys, S. et al. ALK positively regulates MYCN activity through repression of HBP1 expression. Oncogene 38, 2690–2705 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Hassler, M. R. et al. Insights into the pathogenesis of anaplastic large-cell lymphoma through genome-wide DNA methylation profiling. Cell Rep. 17, 596–608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pawlicki, J. M. et al. NPM-ALK-induced reprogramming of mature TCR-stimulated T cells results in dedifferentiation and malignant transformation. Cancer Res. 81, 3241–3254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Turner, S. D., Yeung, D., Hadfield, K., Cook, S. J. & Alexander, D. R. The NPM-ALK tyrosine kinase mimics TCR signalling pathways, inducing NFAT and AP-1 by RAS-dependent mechanisms. Cell Signal. 19, 740–747 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Ambrogio, C. et al. The anaplastic lymphoma kinase controls cell shape and growth of anaplastic large cell lymphoma through Cdc42 activation. Cancer Res. 68, 8899–8907 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Choudhari, R. et al. Redundant and nonredundant roles for Cdc42 and Rac1 in lymphomas developed in NPM-ALK transgenic mice. Blood 127, 1297–1306 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Colomba, A. et al. Activation of Rac1 and the exchange factor Vav3 are involved in NPM-ALK signaling in anaplastic large cell lymphomas. Oncogene 27, 2728–2736 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Younes, A. et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N. Engl. J. Med. 363, 1812–1821 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Garcia-Bermudez, J. et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567, 118–122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, Q. et al. Chimeric kinase ALK induces expression of NAMPT and selectively depends on this metabolic enzyme to sustain its own oncogenic function. Leukemia 37, 2436–2447 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Prutsch, N. et al. STAT3 couples activated tyrosine kinase signaling to the oncogenic core transcriptional regulatory circuitry of anaplastic large cell lymphoma. Cell Rep. Med. 5, 101472 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schiefer, A. I., Vesely, P., Hassler, M. R., Egger, G. & Kenner, L. The role of AP-1 and epigenetics in ALCL. Front. Biosci. 7, 226–235 (2015).

    Article  Google Scholar 

  101. Atsaves, V. et al. Constitutive control of AKT1 gene expression by JUNB/CJUN in ALK+ anaplastic large-cell lymphoma: a novel crosstalk mechanism. Leukemia 29, 2162–2172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Borenas, M. et al. ALK signaling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition. Proc. Natl Acad. Sci. USA 121, e2315242121 (2024).

    Article  PubMed  Google Scholar 

  103. Martinengo, C. et al. ALK-dependent control of hypoxia inducible factors mediates tumor growth and metastasis. Cancer Res 74, 6094–6106 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Voena, C. et al. Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1. Oncotarget 7, 33316–33330 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Pashley, S. L. et al. The mesenchymal morphology of cells expressing the EML4-ALK V3 oncogene is dependent on phosphorylation of Eg5 by NEK7. J. Biol. Chem. 300, 107144 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Moog-Lutz, C. et al. Activation and inhibition of anaplastic lymphoma kinase receptor tyrosine kinase by monoclonal antibodies and absence of agonist activity of pleiotrophin. J. Biol. Chem. 280, 26039–26048 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Riera, L. et al. Involvement of Grb2 adaptor protein in nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-mediated signaling and anaplastic large cell lymphoma growth. J. Biol. Chem. 285, 26441–26450 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ceccon, M. et al. Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency. Oncogene 35, 3854–3865 (2016). With Amin et al. (ref. 109), this article demonstrates that NPM–ALK fusion signalling in lymphoma causes oncogene addiction and oncogenic stress.

    Article  CAS  PubMed  Google Scholar 

  109. Amin, A. D. et al. Evidence suggesting that discontinuous dosing of ALK kinase inhibitors may prolong control of ALK+ tumors. Cancer Res 75, 2916–2927 (2015). With Ceccon et al. (ref. 108), this article demonstrates that NPM–ALK fusion signalling in lymphoma causes oncogene addiction and oncogenic stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Karaca Atabay, E. et al. Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma. Blood 139, 717–731 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Honorat, J. F., Ragab, A., Lamant, L., Delsol, G. & Ragab-Thomas, J. SHP1 tyrosine phosphatase negatively regulates NPM-ALK tyrosine kinase signaling. Blood 107, 4130–4138 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Han, Y. et al. Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteosome degradation of JAK3 and NPM-ALK in ALK+ anaplastic large-cell lymphoma. Blood 108, 2796–2803 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Han, Y. et al. Restoration of shp1 expression by 5-AZA-2′-deoxycytidine is associated with downregulation of JAK3/STAT3 signaling in ALK-positive anaplastic large cell lymphoma. Leukemia 20, 1602–1609 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Ng, S. Y. et al. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat. Commun. 9, 2024 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Baumgartner, C. K. et al. The PTPN2/PTPN1 inhibitor ABBV-CLS-484 unleashes potent anti-tumour immunity. Nature 622, 850–862 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sodir, N. M. et al. SHP2: a pleiotropic target at the interface of cancer and its microenvironment. Cancer Discov. 13, 2339–2355 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Boutterin, M. C. et al. Control of ALK (wild type and mutated forms) phosphorylation: specific role of the phosphatase PTP1B. Cell Signal. 25, 1505–1513 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Voena, C. et al. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration. Cancer Res. 67, 4278–4286 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Valencia-Sama, I. et al. SHP2 inhibition with TNO155 increases efficacy and overcomes resistance of ALK inhibitors in neuroblastoma. Cancer Res. Commun. 3, 2608–2622 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Mura, G. et al. Regulation of CD45 phosphatase by oncogenic ALK in anaplastic large cell lymphoma. Front. Oncol. 12, 1085672 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Malcolm, T. I. et al. Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat. Commun. 7, 10087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kielbowski, K., Zychowska, J. & Becht, R. Anaplastic lymphoma kinase inhibitors—a review of anticancer properties, clinical efficacy, and resistance mechanisms. Front. Pharmacol. 14, 1285374 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zou, H. Y. et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 67, 4408–4417 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Mosse, Y. P. et al. Targeting ALK with crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: a Children’s Oncology Group Study. J. Clin. Oncol. 35, 3215–3221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mosse, Y. P. et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 14, 472–480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pearson, A. D. J. et al. Second Paediatric Strategy Forum for anaplastic lymphoma kinase (ALK) inhibition in paediatric malignancies: ACCELERATE in collaboration with the European Medicines Agency with the participation of the Food and Drug Administration. Eur. J. Cancer 157, 198–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Butrynski, J. E. et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N. Engl. J. Med. 363, 1727–1733 (2010). With Bossi et al. (ref. 129), this article shows the potent antitumour activity of the ALK TKI crisotinib in other tumours such as ALK+ IMT and in ALK+ ALCL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gambacorti-Passerini, C., Messa, C. & Pogliani, E. M. Crizotinib in anaplastic large-cell lymphoma. N. Engl. J. Med. 364, 775–776 (2011).

    Article  PubMed  Google Scholar 

  129. Bossi, E. et al. Phase two study of crizotinib in patients with anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma relapsed/refractory to chemotherapy. Am. J. Hematol. 95, E319–E321 (2020). With Butrynski et al. (ref. 127), this article shows the potent antitumour activity of the ALK TKI crisotinib in other tumours such as ALK+ IMT and in ALK+ ALCL.

    Article  CAS  PubMed  Google Scholar 

  130. Rindone, G. et al. A monocentric analysis of the long-term safety and efficacy of crizotinib in relapsed/refractory ALK+ lymphomas. Blood Adv. 7, 314–316 (2023).

    Article  CAS  PubMed  Google Scholar 

  131. Brugieres, L. et al. Efficacy and safety of crizotinib in ALK-positive systemic anaplastic large-cell lymphoma in children, adolescents, and adult patients: results of the French AcSe-crizotinib trial. Eur. J. Cancer 191, 112984 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Foster, J. H. et al. Activity of crizotinib in patients with ALK-aberrant relapsed/refractory neuroblastoma: a Children’s Oncology Group Study (ADVL0912). Clin. Cancer Res. 27, 3543–3548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Doebele, R. C. et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin. Cancer Res. 18, 1472–1482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chun, S. G., Choe, K. S., Iyengar, P., Yordy, J. S. & Timmerman, R. D. Isolated central nervous system progression on crizotinib: an Achilles heel of non-small cell lung cancer with EML4-ALK translocation? Cancer Biol. Ther. 13, 1376–1383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Peters, S. et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 377, 829–838 (2017). This work led to the approval of alectinib as a a first-line treatment for ALK+ NSCLC.

    Article  CAS  PubMed  Google Scholar 

  136. Camidge, D. R. et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 379, 2027–2039 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Shaw, A. T. et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med. 370, 1189–1197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shaw, A. T. et al. Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 18, 874–886 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Gadgeel, S. et al. Alectinib versus crizotinib in treatment-naive anaplastic lymphoma kinase-positive (ALK+) non-small-cell lung cancer: CNS efficacy results from the ALEX study. Ann. Oncol. 29, 2214–2222 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sakamoto, H. et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell 19, 679–690 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Horn, L. et al. Ensartinib vs crizotinib for patients with anaplastic lymphoma kinase-positive non-small cell lung cancer: a randomized clinical trial. JAMA Oncol. 7, 1617–1625 (2021).

    Article  Google Scholar 

  142. Gadgeel, S. M. et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 15, 1119–1128 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Fischer, M. et al. Ceritinib in paediatric patients with anaplastic lymphoma kinase-positive malignancies: an open-label, multicentre, phase 1, dose-escalation and dose-expansion study. Lancet Oncol. 22, 1764–1776 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Veleanu, L., Lamant, L. & Sibon, D. Brigatinib in ALK-positive ALCL after failure of brentuximab vedotin. N. Engl. J. Med. 390, 2129–2130 (2024).

    Article  PubMed  Google Scholar 

  145. Johnson, T. W. et al. Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations. J. Med. Chem. 57, 4720–4744 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Gainor, J. F. et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 6, 1118–1133 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shaw, A. T. et al. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N. Engl. J. Med. 383, 2018–2029 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Camidge, D. R. Lorlatinib should not be considered as the preferred first-line option in patients with advanced ALK rearranged NSCLC. J. Thorac. Oncol. 16, 528–531 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Fukano, R. et al. Alectinib for relapsed or refractory anaplastic lymphoma kinase-positive anaplastic large cell lymphoma: an open-label phase II trial. Cancer Sci. 111, 4540–4547 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang, Q. A., Chen, H. W., Wu, R. C. & Wu, C. E. Update of diagnosis and targeted therapy for ALK+ inflammation myofibroblastic tumor. Curr. Treat. Options Oncol. 24, 1683–1702 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Infarinato, N. R. et al. The ALK/ROS1 inhibitor PF-06463922 overcomes primary resistance to crizotinib in ALK-driven neuroblastoma. Cancer Discov. 6, 96–107 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Goldsmith, K. C. et al. Lorlatinib with or without chemotherapy in ALK-driven refractory/relapsed neuroblastoma: phase 1 trial results. Nat. Med. 29, 1092–1102 (2023). This study shows the efficacy of the ALK TKI lorlatinib in patients with neuroblastoma carrying ALK genetic alterations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shiba-Ishii, A. et al. Analysis of lorlatinib analogs reveals a roadmap for targeting diverse compound resistance mutations in ALK-positive lung cancer. Nat. Cancer 3, 710–722 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Soumerai, J. D. et al. Next-generation ALK inhibitors are highly active in ALK-positive large B-cell lymphoma. Blood 140, 1822–1826 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhu, L., Ma, S. & Xia, B. Remarkable response to alectinib for metastatic papillary thyroid cancer with STRN-ALK fusion: a case report. Front. Oncol. 12, 1009076 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Bagchi, A. et al. Lorlatinib in a child with ALK-fusion-positive high-grade glioma. N. Engl. J. Med. 385, 761–763 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Ou, S. I., Nagasaka, M., Brazel, D., Hou, Y. & Zhu, V. W. Will the clinical development of 4th-generation “double mutant active” ALK TKIs (TPX-0131 and NVL-655) change the future treatment paradigm of ALK+ NSCLC? Transl. Oncol. 14, 101191 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Murray, B. W. et al. TPX-0131, a potent CNS-penetrant, next-generation inhibitor of wild-type ALK and ALK-resistant mutations. Mol. Cancer Ther. 20, 1499–1507 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04849273 (2023).

  160. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05384626 (2024).

  161. Lin, J. J. et al. NVL-655 is a selective and brain-penetrant inhibitor of diverse ALK-mutant oncoproteins, including lorlatinib-resistant compound mutations. Cancer Discov. 14, 2367–2386 (2024). This work shows the efficacy of the fourth-generation ALK TKI NVL-655 in patients that failed previous ALK TKIs.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Mizuta, H. et al. Gilteritinib overcomes lorlatinib resistance in ALK-rearranged cancer. Nat. Commun. 12, 1261 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ando, C. et al. Efficacy of gilteritinib in comparison with alectinib for the treatment of ALK-rearranged non-small cell lung cancer. Cancer Sci. 114, 4343–4354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06225427 (2024).

  165. Drilon, A. et al. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 7, 400–409 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02568267 (2025).

  167. Treis, D. et al. Sustained response to entrectinib in an infant with a germline ALKAL2 variant and refractory metastatic neuroblastoma with chromosomal 2p gain and anaplastic lymphoma kinase and tropomyosin receptor kinase activation. JCO Precis. Oncol. 6, e2100271 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Keam, S. J. Iruplinalkib: first approval. Drugs 83, 1717–1721 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Yang, Y. et al. Envonalkib versus crizotinib for treatment-naive ALK-positive non-small cell lung cancer: a randomized, multicenter, open-label, phase III trial. Signal Transduct. Target. Ther. 8, 301 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Boike, L., Henning, N. J. & Nomura, D. K. Advances in covalent drug discovery. Nat. Rev. Drug Discov. 21, 881–898 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Schneider, M. et al. The PROTACtable genome. Nat. Rev. Drug Discov. 20, 789–797 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Bekes, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yan, G. et al. Targeting cysteine located outside the active site: an effective strategy for covalent ALKi design. J. Med. Chem. 64, 1558–1569 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Powell, C. E. et al. Chemically induced degradation of anaplastic lymphoma kinase (ALK). J. Med. Chem. 61, 4249–4255 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sun, N. et al. Development of a Brigatinib degrader (SIAIS117) as a potential treatment for ALK positive cancer resistance. Eur. J. Med. Chem. 193, 112190 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Gao, Y. et al. Catalytic degraders effectively address kinase site mutations in EML4-ALK oncogenic fusions. J. Med. Chem. 66, 5524–5535 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chang, L. et al. Systematic profiling of conditional pathway activation identifies context-dependent synthetic lethalities. Nat. Genet. 55, 1709–1720 (2023).

    Article  CAS  PubMed  Google Scholar 

  178. Ceccon, M. et al. Mitochondrial hyperactivation and enhanced ROS production are involved in toxicity induced by oncogenic kinases over-signaling. Cancers 10, 509 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lin, J. J., Gainor, J. F., Lam, V. K. & Lovly, C. M. Unlocking the next frontier in precision oncology: addressing drug-tolerant residual disease. Cancer Discov. 14, 915–919 (2024).

    Article  CAS  PubMed  Google Scholar 

  180. Waliany, S. et al. P1.12B.02 Mechanisms of resistance to first-line vs later-line alectinib in ALK fusion-positive non-small cell lung cancer. J. Thorac. Oncol. 19 (Suppl. 10), S199–S200 (2024).

    Article  Google Scholar 

  181. Yoda, S. et al. Sequential ALK inhibitors can select for lorlatinib-resistant compound ALK mutations in ALK-positive lung cancer. Cancer Discov. 8, 714–729 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Solomon, B. J. et al. Lorlatinib versus crizotinib in patients with advanced ALK-positive non-small cell lung cancer: 5-year outcomes from the phase III CROWN study. J. Clin. Oncol. 42, 3400–3409 (2024).

    Article  CAS  PubMed  Google Scholar 

  183. Dagogo-Jack, I. et al. Treatment with next-generation ALK inhibitors fuels plasma ALK mutation diversity. Clin. Cancer Res. 25, 6662–6670 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Choi, Y. L. et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med. 363, 1734–1739 (2010). This seminal paper shows that mutations affecting the ALK kinase domain are frequent mechanisms of resistance to ALK TKIs.

    Article  CAS  PubMed  Google Scholar 

  185. Berko, E. R. et al. Circulating tumor DNA reveals mechanisms of lorlatinib resistance in patients with relapsed/refractory ALK-driven neuroblastoma. Nat. Commun. 14, 2601 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Desai, A. & Lovly, C. M. Strategies to overcome resistance to ALK inhibitors in non-small cell lung cancer: a narrative review. Transl. Lung Cancer Res. 12, 615–628 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Dagogo-Jack, I. et al. MET alterations are a recurring and actionable resistance mechanism in ALK-positive lung cancer. Clin. Cancer Res. 26, 2535–2545 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Katayama, R. et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci. Transl. Med. 4, 120ra117 (2012).

    Article  Google Scholar 

  189. Lovly, C. M. et al. Rationale for co-targeting IGF-1R and ALK in ALK fusion-positive lung cancer. Nat. Med. 20, 1027–1034 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Tanizaki, J. et al. Activation of HER family signaling as a mechanism of acquired resistance to ALK inhibitors in EML4-ALK-positive non-small cell lung cancer. Clin. Cancer Res. 18, 6219–6226 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Voena, C. et al. The EGFR family members sustain the neoplastic phenotype of ALK+ lung adenocarcinoma via EGR1. Oncogenesis 2, e43 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lee, H. J. et al. Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells. Cancer Cell 26, 207–221 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Cooper, A. J., Sequist, L. V. & Lin, J. J. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat. Rev. Clin. Oncol. 19, 499–514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Isozaki, H. et al. Non-small cell lung cancer cells acquire resistance to the ALK inhibitor alectinib by activating alternative receptor tyrosine kinases. Cancer Res. 76, 1506–1516 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Crystal, A. S. et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346, 1480–1486 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Horn, L. et al. Monitoring therapeutic response and resistance: analysis of circulating tumor DNA in patients with ALK+ lung cancer. J. Thorac. Oncol. 14, 1901–1911 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Recondo, G. et al. Diverse resistance mechanisms to the third-generation ALK inhibitor lorlatinib in ALK-rearranged lung cancer. Clin. Cancer Res. 26, 242–255 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Yun, M. R. et al. Targeting YAP to overcome acquired resistance to ALK inhibitors in ALK-rearranged lung cancer. EMBO Mol. Med. 11, e10581 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Haderk, F. et al. Focal adhesion kinase-YAP signaling axis drives drug-tolerant persister cells and residual disease in lung cancer. Nat. Commun. 15, 3741 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04292119 (2021).

  201. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03202940 (2024).

  202. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04005144 (2022).

  203. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04800822 (2024).

  204. Drilon, A. et al. SHP2 inhibition sensitizes diverse oncogene-addicted solid tumors to re-treatment with targeted therapy. Cancer Discov. 13, 1789–1801 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Ek, T. et al. Long-lasting response to lorlatinib in patients with ALK-driven relapsed or refractory neuroblastoma monitored with circulating tumor DNA analysis. Cancer Res. Commun. 4, 2553–2564 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Prokoph, N. et al. IL10RA modulates crizotinib sensitivity in NPM1-ALK+ anaplastic large cell lymphoma. Blood 136, 1657–1669 (2020).

    PubMed  PubMed Central  Google Scholar 

  207. Laimer, D. et al. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat. Med. 18, 1699–1704 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Levacq, D., D’Haene, N., de Wind, R., Remmelink, M. & Berghmans, T. Histological transformation of ALK rearranged adenocarcinoma into small cell lung cancer: a new mechanism of resistance to ALK inhibitors. Lung Cancer 102, 38–41 (2016).

    Article  PubMed  Google Scholar 

  209. Takegawa, N. et al. Transformation of ALK rearrangement-positive adenocarcinoma to small-cell lung cancer in association with acquired resistance to alectinib. Ann. Oncol. 27, 953–955 (2016).

    Article  CAS  PubMed  Google Scholar 

  210. Kaiho, T., Nakajima, T., Iwasawa, S., Yonemori, Y. & Yoshino, I. ALK rearrangement adenocarcinoma with histological transformation to squamous cell carcinoma resistant to alectinib and ceritinib. Onco Targets Ther. 13, 1557–1560 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Koyama, K. et al. Overexpression of CD 133 and BCL-2 in non-small cell lung cancer with neuroendocrine differentiation after transformation in ALK rearrangement-positive adenocarcinoma. Pathol. Int. 69, 294–299 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Siaw, J. T. et al. 11q Deletion or ALK activity curbs DLG2 expression to maintain an undifferentiated state in neuroblastoma. Cell Rep. 32, 108171 (2020).

    Article  CAS  PubMed  Google Scholar 

  213. Fukuda, K. et al. Epithelial-to-mesenchymal transition is a mechanism of ALK inhibitor resistance in lung cancer independent of ALK mutation status. Cancer Res. 79, 1658–1670 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Meads, M. B., Gatenby, R. A. & Dalton, W. S. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat. Rev. Cancer 9, 665–674 (2009).

    Article  CAS  PubMed  Google Scholar 

  215. Yamada, T. et al. Paracrine receptor activation by microenvironment triggers bypass survival signals and ALK inhibitor resistance in EML4-ALK lung cancer cells. Clin. Cancer Res. 18, 3592–3602 (2012).

    Article  CAS  PubMed  Google Scholar 

  216. Hu, H. et al. Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell 39, 1531–1547.e1510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Desai, B. et al. Peristromal niches protect lung cancers from targeted therapies through a combined effect of multiple molecular mediators. Preprint at bioRxiv https://doi.org/10.1101/2024.04.24.590626 (2024).

  218. Chuang, T. P. et al. ALK fusion NSCLC oncogenes promote survival and inhibit NK cell responses via SERPINB4 expression. Proc. Natl Acad. Sci. USA 120, e2216479120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Gainor, J. F. et al. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin. Cancer Res. 19, 4273–4281 (2013).

    Article  CAS  PubMed  Google Scholar 

  220. Awad, M. M. et al. Acquired resistance to KRAS(G12C) inhibition in cancer. N. Engl. J. Med. 384, 2382–2393 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Offin, M. et al. Acquired ALK and RET gene fusions as mechanisms of resistance to osimertinib in EGFR-mutant lung cancers. JCO Precis. Oncol. 2, PO.18.00126 (2018).

    PubMed  PubMed Central  Google Scholar 

  222. Hebart, H., Lang, P. & Woessmann, W. Nivolumab for refractory anaplastic large cell lymphoma: a case report. Ann. Intern. Med. 165, 607–608 (2016).

    Article  PubMed  Google Scholar 

  223. Rigaud, C. et al. Efficacy of nivolumab in a patient with systemic refractory ALK+ anaplastic large cell lymphoma. Pediatr. blood Cancer 65, e26902 (2018).

    Article  Google Scholar 

  224. Gainor, J. F. et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin. Cancer Res. 22, 4585–4593 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Spigel, D. R. et al. Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of anaplastic lymphoma kinase translocation—positive advanced non-small cell lung cancer (CheckMate 370). J. Thorac. Oncol. 13, 682–688 (2018).

    Article  PubMed  Google Scholar 

  226. Mastini, C., Martinengo, C., Inghirami, G. & Chiarle, R. Anaplastic lymphoma kinase: an oncogene for tumor vaccination. J. Mol. Med. 87, 669–677 (2009).

    Article  CAS  PubMed  Google Scholar 

  227. Ait-Tahar, K. et al. Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk. Blood 115, 3314–3319 (2010). This paper shows the prognostic impact of spontaneous immune responses to the ALK antigen in patients with ALK+ ALCL.

    Article  CAS  PubMed  Google Scholar 

  228. Passoni, L. et al. In vivo T-cell immune response against anaplastic lymphoma kinase in patients with anaplastic large cell lymphomas. Haematologica 91, 48–55 (2006).

    CAS  PubMed  Google Scholar 

  229. Mota, I. et al. ALK peptide vaccination restores the immunogenicity of ALK-rearranged non-small cell lung cancer. Nat. Cancer 4, 1016–1035 (2023). This paper identifies ALK peptides that are immunogenic in mice and humans.

    Article  CAS  PubMed  Google Scholar 

  230. Awad, M. M. et al. Epitope mapping of spontaneous autoantibodies to anaplastic lymphoma kinase (ALK) in non-small cell lung cancer. Oncotarget 8, 92265–92274 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Cheever, M. A. et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin. Cancer Res. 15, 5323–5337 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Chiarle, R. et al. The anaplastic lymphoma kinase is an effective oncoantigen for lymphoma vaccination. Nat. Med. 14, 676–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  233. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05950139 (2024).

  234. Carpenter, E. L. et al. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene 31, 4859–4867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Sano, R. et al. An antibody-drug conjugate directed to the ALK receptor demonstrates efficacy in preclinical models of neuroblastoma. Sci. Transl. Med. 11, eaau9732 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Li, T. et al. Structural basis for ligand reception by anaplastic lymphoma kinase. Nature 600, 148–152 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Walker, A. J. et al. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol. Ther. 25, 2189–2201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Mazot, P. et al. The constitutive activity of the ALK mutated at positions F1174 or R1275 impairs receptor trafficking. Oncogene 30, 2017–2025 (2011).

    Article  CAS  PubMed  Google Scholar 

  239. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT06803875 (2025).

  240. Mecca, C. et al. Discovery of ALK-specific TCR clonotypes for the development of TCR-T cell therapies against ALK-positive cancers. Cancer Res. 84, 21 (2024).

    Article  Google Scholar 

  241. Stadler, S. et al. Endogenous CD4 T cells that recognize ALK and the NPM1::ALK fusion protein can be expanded from human peripheral blood. Cancer Immunologist. Res. https://doi.org/10.1158/2326-6066.CIR-24-0445 (2025).

    Article  Google Scholar 

  242. Solomon, B. J. et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 371, 2167–2177 (2014).

    Article  PubMed  Google Scholar 

  243. Awad, M. M. & Shaw, A. T. ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. Clin. Adv. Hematol. Oncol. 12, 429–439 (2014).

    PubMed  PubMed Central  Google Scholar 

  244. Schoffski, P. et al. Long-term efficacy update of crizotinib in patients with advanced, inoperable inflammatory myofibroblastic tumour from EORTC trial 90101 CREATE. Eur. J. Cancer 156, 12–23 (2021).

    Article  CAS  PubMed  Google Scholar 

  245. Soria, J. C. et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet 389, 917–929 (2017).

    Article  CAS  PubMed  Google Scholar 

  246. Camidge, D. R. et al. Updated efficacy and safety data and impact of the EML4-ALK fusion variant on the efficacy of alectinib in untreated ALK-positive advanced non-small cell lung cancer in the global phase III ALEX study. J. Thorac. Oncol. 14, 1233–1243 (2019).

    Article  CAS  PubMed  Google Scholar 

  247. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02767804 (2024).

  248. Shaw, A. T. et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 18, 1590–1599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Solomon, B. J. et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol. 19, 1654–1667 (2018).

    Article  CAS  PubMed  Google Scholar 

  250. Solomon, B. J. et al. Efficacy and safety of first-line lorlatinib versus crizotinib in patients with advanced, ALK-positive non-small-cell lung cancer: updated analysis of data from the phase 3, randomised, open-label CROWN study. Lancet Respir. Med. 11, 354–366 (2023).

    Article  CAS  PubMed  Google Scholar 

  251. Lin, J. J. et al. Safety and preliminary activity of the selective ALK inhibitor NVL-655 in patients with ALK fusion-positive solid tumors. Mol. Cancer Ther. 22, B154 (2023).

    Article  Google Scholar 

  252. Ardini, E. et al. Entrectinib, a Pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications. Mol. Cancer Ther. 15, 628–639 (2016).

    Article  CAS  PubMed  Google Scholar 

  253. Parker, A. R. et al. Novel covalent modification of human anaplastic lymphoma kinase (ALK) and potentiation of crizotinib-mediated inhibition of ALK activity by BNP7787. Onco Targets Ther. 8, 375–383 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Zhang, C. et al. Proteolysis targeting chimeras (PROTACs) of anaplastic lymphoma kinase (ALK). Eur. J. Med. Chem. 151, 304–314 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Kang, C. H. et al. Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC). Biochem. Biophys. Res. Commun. 505, 542–547 (2018).

    Article  CAS  PubMed  Google Scholar 

  256. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02729961 (2019).

  257. Guan, J. et al. Anaplastic lymphoma kinase L1198F and G1201E mutations identified in anaplastic thyroid cancer patients are not ligand-independent. Oncotarget 8, 11566–11578 (2017).

    Article  PubMed  Google Scholar 

  258. Wu, W., Haderk, F. & Bivona, T. G. Non-canonical thinking for targeting ALK-fusion onco-proteins in lung cancer. Cancers 9, 164 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Katic, L. & Priscan, A. Multifaceted roles of ALK family receptors and augmentor ligands in health and disease: a comprehensive review. Biomolecules 13, 1490 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Inoue, T. & Thomas, J. H. Suppressors of transforming growth factor-beta pathway mutants in the Caenorhabditis elegans dauer formation pathway. Genetics 156, 1035–1046 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Englund, C. et al. Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature 425, 512–516 (2003). With Lee et al. (ref. 262), this article provides preliminary evidence about the roles for the ALK receptor in normal development in Drosophila.

    Article  CAS  PubMed  Google Scholar 

  262. Lee, H. H., Norris, A., Weiss, J. B. & Frasch, M. Jelly belly protein activates the receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature 425, 507–512 (2003). With Englund et al. (ref. 261), this article provides preliminary evidence about the roles for the ALK receptor in normal development in Drosophila.

    Article  CAS  PubMed  Google Scholar 

  263. Yao, S. et al. Anaplastic lymphoma kinase is required for neurogenesis in the developing central nervous system of zebrafish. PLoS ONE 8, e63757 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Fadeev, A., Krauss, J., Singh, A. P. & Nusslein-Volhard, C. Zebrafish Leucocyte tyrosine kinase controls iridophore establishment, proliferation and survival. Pigment. Cell Melanoma Res. 29, 284–296 (2016).

    Article  CAS  PubMed  Google Scholar 

  265. Bilsland, J. G. et al. Behavioral and neurochemical alterations in mice deficient in anaplastic lymphoma kinase suggest therapeutic potential for psychiatric indications. Neuropsychopharmacology 33, 685–700 (2008).

    Article  CAS  PubMed  Google Scholar 

  266. Witek, B. et al. Targeted disruption of ALK reveals a potential role in hypogonadotropic hypogonadism. PLoS ONE 10, e0123542 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Guan, J. et al. FAM150A and FAM150B are activating ligands for anaplastic lymphoma kinase. eLife 4, e09811 (2015). With Reshetnyak et al. (ref. 268), this article demonstates the physiological ligands of the ALK receptor.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Reshetnyak, A. V. et al. Augmentor alpha and beta (FAM150) are ligands of the receptor tyrosine kinases ALK and LTK: hierarchy and specificity of ligand-receptor interactions. Proc. Natl Acad. Sci. USA 112, 15862–15867 (2015). With Guan et al. (ref. 267), this article demonstates the physiological ligands of the ALK receptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Zhang, H. et al. Deorphanization of the human leukocyte tyrosine kinase (LTK) receptor by a signaling screen of the extracellular proteome. Proc. Natl Acad. Sci. USA 111, 15741–15745 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Orthofer, M. et al. Identification of ALK in thinness. Cell 181, 1246–1262.e1222 (2020).

    Article  CAS  PubMed  Google Scholar 

  271. Defaye, M. et al. The neuronal tyrosine kinase receptor ligand ALKAL2 mediates persistent pain. J. Clin. Invest. 132, e154317 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank N. Chamberlin for her critical reading of the text. The work has been supported by grants from the NIH/NCI R01 CA196703-01, the NIH/NCI P50 CA265826-01A1_LUNG SPORE, the LUNGevity ALK-positive Lung Cancer Research Award, the PoweRD 2 CureALK+ Lung Cancer TeamLab support, the AIRC IG 2021 — ID. 26011 project to R.C.; AIRC under IG 2019 — ID. 23146 to C.V.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. R.C., C.A. and C.V. contributed substantially to discussion of the content. R.C., C.A. and C.V. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Claudia Voena or Roberto Chiarle.

Ethics declarations

Competing interests

R.C. is the founder and consultant of ALKEMIST Bio. C.V., F.I. and C.A. declare no conflict of interest.

Peer review

Peer review information

Nature Reviews Cancer thanks Keith Ligon, Aaron Hata and Bengt Hallberg for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antibody–drug conjugates

(ADC). Targeted therapies that link an antibody to a cytotoxic drug, delivering the drug specifically to cancer cells by binding to the antigen expressed on their surface.

Basket trials

Clinical trials that test the effectiveness of a single drug or treatment on multiple types of cancer that share a common genetic mutation, regardless of the cancer cell of origin or cancer type.

Breakpoint variants

Different, yet specific, locations within the same gene in which chromosomal breaks occur, leading to structural rearrangements such as translocations or fusions.

Circulating tumour DNA

(ctDNA). Fragments of DNA released into the bloodstream from cancer cells, which can be analysed to detect and monitor presence, progression and response to treatment.

Complete remission

The absence of all detectable signs of disease following cancer treatment.

Compound ALK mutants

The presence of two or more mutations within the same gene, occurring either on the same allele (cis) or different alleles (trans). They usually arise as a mechanism of resistance to targeted therapy.

Drug-tolerant persister cells

A small subpopulation of cancer cells that enter a dormant state, allowing them to survive harsh conditions or treatments, such as chemotherapy or tyrosine kinase inhibitor, and potentially cause recurrence or treatment failure.

First-line therapy

The initial treatment recommended for a particular disease or condition, typically based on its effectiveness and safety.

Oncogenic stress

A detrimental effect on tumour cell fitness that results from the overexpression or excessive activation of an oncogene, which can cause cellular stress, senescence or death, which can be exploited for cancer therapy.

Partner gene

One of the two genes involved in a fusion event, often due to chromosomal rearrangements, that can lead to abnormal gene function.

Patient-derived xenograft models

(PDX models). Models in which tumour tissue from a patient is implanted into immunodeficient mice, allowing researchers to study the tumour’s growth, drug response and biology in vivo while maintaining its original characteristics.

Steric hindrance

The prevention of chemical reactions or interactions owing to physical obstruction caused by the spatial arrangement of atoms or groups within a molecule.

Tyrosine kinase inhibitors

(TKIs). Small drugs capable of binding to the catalytic domain of a tyrosine kinase and disrupting the kinase activity and downstream signal transduction pathways.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voena, C., Ambrogio, C., Iannelli, F. et al. ALK in cancer: from function to therapeutic targeting. Nat Rev Cancer 25, 359–378 (2025). https://doi.org/10.1038/s41568-025-00797-9

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-025-00797-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer