Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiac epigenome in heart development and disease

Abstract

Genetic and acquired forms of heart disease are leading causes of death worldwide. The epigenome, which governs cellular identity by modulating the accessibility of genetic regulatory elements, is established during development by transcription factors and has a pivotal role in the execution of cellular programmes. The epigenetic layers include DNA methylation, histone modifications and chromatin accessibility, which are dynamically regulated during development and in response to stress. Advances in single-cell and cell type-resolved epigenome analyses have provided unprecedented insights into the heterocellular nature of organs such as the heart, via the identification of epigenetic mechanisms and disease-associated epigenetic alterations in cardiomyocytes and other cardiac cell types. Chromatin remodelling, driven by specific modifiers, transcription factors and chaperones, orchestrates cardiac gene expression and contributes to disease manifestation and progression. Understanding how to modulate these epigenetic pathways in a cell type-specific manner offers promising avenues for therapeutic intervention, including epigenome editing for targeted modulation of regulatory elements. In this Review, we highlight studies decoding the various layers of the cardiac epigenome, emphasizing the interplay between cell type-specific mechanisms, describe emerging methods to study the cardiac epigenome, and discuss the translational potential of targeting epigenetic mechanisms for the prevention and treatment of cardiac diseases.

Key points

  • Epigenetic mechanisms govern transcriptional programmes in cardiac development and disease.

  • Different epigenetic layers control the establishment and activity of cardiac regulatory elements.

  • Cell type-specific or single-cell epigenome analysis is essential to decode mechanisms of epigenetic regulation in the heterocellular heart.

  • Epigenetic annotation provides insights into the disease pathogenesis underlying certain non-coding genetic variants.

  • Functional epigenetic editing and inhibition of epigenetic modulators provide novel avenues for treatment of heart disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epigenetic signatures of active and inactive chromatin in mature cardiomyocytes.
Fig. 2: Epigenetic signatures of the heterocellular heart.
Fig. 3: Cardiomyocyte epigenetics in development and disease.
Fig. 4: Functional epigenetic modulation of cardiac cells.

Similar content being viewed by others

References

  1. ENCODE Project Consortium. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Article  Google Scholar 

  2. Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Klose, R. J. & Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Bird, A. P. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 8, 1499–1504 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ponger, L., Duret, L. & Mouchiroud, D. Determinants of CpG islands: expression in early embryo and isochore structure. Genome Res. 11, 1854–1860 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Angeloni, A. & Bogdanovic, O. Sequence determinants, function, and evolution of CpG islands. Biochem. Soc. Trans. 49, 1109–1119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Isbel, L., Grand, R. S. & Schubeler, D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat. Rev. Genet. 23, 728–740 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Domcke, S. et al. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528, 575–579 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Yin, Y. et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356, eaaj2239 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Movassagh, M. et al. Distinct epigenomic features in end-stage failing human hearts. Circulation 124, 2411–2422 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Movassagh, M. et al. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS ONE 5, e8564 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kranzhofer, D. K. et al. 5′-Hydroxymethylcytosine precedes loss of CpG methylation in enhancers and genes undergoing activation in cardiomyocyte maturation. PLoS ONE 11, e0166575 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Greco, C. M. et al. DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy. Nat. Commun. 7, 12418 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laird, P. W. Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet. 11, 191–203 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morrison, J. et al. Evaluation of whole-genome DNA methylation sequencing library preparation protocols. Epigenetics Chromatin 14, 28 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pidsley, R. et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 17, 208 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hon, G. C. et al. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45, 1198–1206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He, Y. et al. Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature 583, 752–759 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gilsbach, R. et al. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat. Commun. 9, 391 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gunthel, M., Barnett, P. & Christoffels, V. M. Development, proliferation, and growth of the mammalian heart. Mol. Ther. 26, 1599–1609 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ivey, M. J. et al. Resident fibroblast expansion during cardiac growth and remodeling. J. Mol. Cell Cardiol. 114, 161–174 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Meder, B. et al. Epigenome-Wide Association Study identifies cardiac gene patterning and a novel class of biomarkers for heart failure. Circulation 136, 1528–1544 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Haas, J. et al. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol. Med. 5, 413–429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pepin, M. E. et al. Racial and socioeconomic disparity associates with differences in cardiac DNA methylation among men with end-stage heart failure. Am. J. Physiol. Heart Circ. Physiol. 320, H2066–H2079 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pepin, M. E. et al. DNA methylation reprograms cardiac metabolic gene expression in end-stage human heart failure. Am. J. Physiol. Heart Circ. Physiol. 317, H674–H684 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chapski, D. J. et al. Early adaptive chromatin remodeling events precede pathologic phenotypes and are reinforced in the failing heart. J. Mol. Cell. Cardiol. 160, 73–86 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, H. et al. DNA methylation indicates susceptibility to isoproterenol-induced cardiac pathology and is associated with chromatin states. Circ. Res. 118, 786–797 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oeing, C. U. et al. Indirect epigenetic testing identifies a diagnostic signature of cardiomyocyte DNA methylation in heart failure. Basic Res. Cardiol. 118, 9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baubec, T., Ivanek, R., Lienert, F. & Schubeler, D. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153, 480–492 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Hara, M. et al. Disturbance of cardiac gene expression and cardiomyocyte structure predisposes Mecp2-null mice to arrhythmias. Sci. Rep. 5, 11204 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mayer, S. C. et al. Adrenergic repression of the epigenetic reader MeCP2 facilitates cardiac adaptation in chronic heart failure. Circ. Res. 117, 622–633 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bin Akhtar, G., Buist, M. & Rastegar, M. MeCP2 and transcriptional control of eukaryotic gene expression. Eur. J. Cell Biol. 101, 151237 (2022).

    Article  Google Scholar 

  36. Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341–356 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mellen, M., Ayata, P., Dewell, S., Kriaucionis, S. & Heintz, N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151, 1417–1430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Preissl, S., Gaulton, K. J. & Ren, B. Characterizing cis-regulatory elements using single-cell epigenomics. Nat. Rev. Genet. 24, 21–43 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. He, B. et al. Tissue-specific 5-hydroxymethylcytosine landscape of the human genome. Nat. Commun. 12, 4249 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bhattacharyya, S. et al. Accurate classification of cardiomyopathy diagnosis by chromatin accessibility. Circulation 146, 878–881 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tyagi, M., Imam, N., Verma, K. & Patel, A. K. Chromatin remodelers: we are the drivers!!. Nucleus 7, 388–404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scherba, J. C. et al. BRG1 is a biomarker of hypertrophic cardiomyopathy in human heart specimens. Sci. Rep. 12, 7996 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alexander, J. M. et al. Brg1 modulates enhancer activation in mesoderm lineage commitment. Development 142, 1418–1430 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hang, C. T. et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466, 62–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Millan-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modifications - cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Raisner, R. et al. Enhancer activity requires CBP/P300 bromodomain-dependent histone H3K27 acetylation. Cell Rep. 24, 1722–1729 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Yao, T. P. et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361–372 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Shikama, N. et al. Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. EMBO J. 22, 5175–5185 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miyamoto, S. et al. Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo. Circulation 113, 679–690 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Blow, M. J. et al. ChIP-Seq identification of weakly conserved heart enhancers. Nat. Genet. 42, 806–810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. May, D. et al. Large-scale discovery of enhancers from human heart tissue. Nat. Genet. 44, 89–93 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Papait, R. et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc. Natl Acad. Sci. USA 110, 20164–20169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hohl, M. et al. HDAC4 controls histone methylation in response to elevated cardiac load. J. Clin. Invest. 123, 1359–1370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tan, W. L. W. et al. Epigenomes of human hearts reveal new genetic variants relevant for cardiac disease and phenotype. Circ. Res. 127, 761–777 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pei, J. et al. H3K27ac acetylome signatures reveal the epigenomic reorganization in remodeled non-failing human hearts. Clin. Epigenetics 12, 106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dickel, D. E. et al. Genome-wide compendium and functional assessment of in vivo heart enhancers. Nat. Commun. 7, 12923 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. He, A. et al. Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease. Nat. Commun. 5, 4907 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Gorkin, D. U. et al. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 583, 744–751 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nord, A. S. et al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155, 1521–1531 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hawe, J. S. et al. Genetic variation influencing DNA methylation provides insights into molecular mechanisms regulating genomic function. Nat. Genet. 54, 18–29 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Michels, K. B. et al. Recommendations for the design and analysis of epigenome-wide association studies. Nat. Methods 10, 949–955 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Teschendorff, A. E., Zhu, T., Breeze, C. E. & Beck, S. EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-Seq data. Genome Biol. 21, 221 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schmidt, M., Maie, T., Dahl, E., Costa, I. G. & Wagner, W. Deconvolution of cellular subsets in human tissue based on targeted DNA methylation analysis at individual CpG sites. BMC Biol. 18, 178 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Titus, A. J., Gallimore, R. M., Salas, L. A. & Christensen, B. C. Cell-type deconvolution from DNA methylation: a review of recent applications. Hum. Mol. Genet. 26, R216–R224 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van den Oord, E., Xie, L. Y., Tran, C. J., Zhao, M. & Aberg, K. A. A targeted solution for estimating the cell-type composition of bulk samples. BMC Bioinform. 22, 462 (2021).

    Article  Google Scholar 

  69. Lother, A. et al. Diabetes changes gene expression but not DNA methylation in cardiac cells. J. Mol. Cell. Cardiol. 151, 74–87 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Gilsbach, R. et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat. Commun. 5, 5288 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Preissl, S. et al. Deciphering the epigenetic code of cardiac myocyte transcription. Circ. Res. 117, 413–423 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Jugdutt, B. I. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108, 1395–1403 (2003).

    Article  PubMed  Google Scholar 

  73. Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Voigt, P., Tee, W. W. & Reinberg, D. A double take on bivalent promoters. Genes Dev. 27, 1318–1338 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Macrae, T. A., Fothergill-Robinson, J. & Ramalho-Santos, M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat. Rev. Mol. Cell Biol. 24, 6–26 (2022).

    Article  PubMed  Google Scholar 

  76. Toker, L. et al. Genome-wide histone acetylation analysis reveals altered transcriptional regulation in the Parkinson’s disease brain. Mol. Neurodegener. 16, 31 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mancarci, B. O. et al. Cross-laboratory analysis of brain cell type transcriptomes with applications to interpretation of bulk tissue data. eNeuro https://doi.org/10.1523/ENEURO.0212-17.2017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Murphy, K. B., Ye, Y., Tsalenchuk, M., Nott, A. & Marzi, S. J. CHAS infers cell type-specific signatures in bulk brain histone acetylation studies of neurological and psychiatric disorders. Cell Rep. Methods 5, 101032 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Toker, L., Nido, G. S. & Tzoulis, C. Not every estimate counts - evaluation of cell composition estimation approaches in brain bulk tissue data. Genome Med. 15, 41 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gasperini, M., Tome, J. M. & Shendure, J. Towards a comprehensive catalogue of validated and target-linked human enhancers. Nat. Rev. Genet. 21, 292–310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, K. et al. A single-cell atlas of chromatin accessibility in the human genome. Cell 184, 5985–6001 e5919 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hocker, J. D. et al. Cardiac cell type-specific gene regulatory programs and disease risk association. Sci. Adv. 7, eabf1444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature 608, 766–777 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Nuhrenberg, T. G. et al. Cardiac myocyte de novo DNA methyltransferases 3a/3b are dispensable for cardiac function and remodeling after chronic pressure overload in mice. PLoS ONE 10, e0131019 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nothjunge, S. et al. DNA methylation signatures follow preformed chromatin compartments in cardiac myocytes. Nat. Commun. 8, 1667 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Vujic, A. et al. Experimental heart failure modelled by the cardiomyocyte-specific loss of an epigenome modifier, DNMT3B. J. Mol. Cell Cardiol. 82, 174–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Lahm, H. et al. Congenital heart disease risk loci identified by genome-wide association study in European patients. J. Clin. Invest. 131, e141837 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stenzig, J. et al. Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats. J. Mol. Cell. Cardiol. 120, 53–63 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Madsen, A. et al. An important role for DNMT3A-mediated DNA methylation in cardiomyocyte metabolism and contractility. Circulation 142, 1562–1578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Madsen, A. et al. Hypertrophic signaling compensates for contractile and metabolic consequences of DNA methyltransferase 3A loss in human cardiomyocytes. J. Mol. Cell. Cardiol. 154, 115–123 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Tatton-Brown, K. et al. The Tatton-Brown–Rahman syndrome: a clinical study of 55 individuals with de novo constitutive DNMT3A variants. Wellcome Open Res. 3, 46 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tatton-Brown, K. et al. Mutations in epigenetic regulation genes are a major cause of overgrowth with intellectual disability. Am. J. Hum. Genet. 100, 725–736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Burger, L., Gaidatzis, D., Schubeler, D. & Stadler, M. B. Identification of active regulatory regions from DNA methylation data. Nucleic Acids Res. 41, e155 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sonmezer, C. et al. Molecular co-occupancy identifies transcription factor binding cooperativity in vivo. Mol. Cell 81, 255–267 (2021).

    Article  PubMed  Google Scholar 

  98. Luna-Zurita, L. et al. Complex interdependence regulates heterotypic transcription factor distribution and coordinates cardiogenesis. Cell 164, 999–1014 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. He, A., Kong, S. W., Ma, Q. & Pu, W. T. Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc. Natl Acad. Sci. USA 108, 5632–5637 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Akerberg, B. N. et al. A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers. Nat. Commun. 10, 4907 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ang, Y. S. et al. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis. Cell 167, 1734–1749 e1722 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jurado Acosta, A. et al. Phosphorylation of GATA4 at serine 105 is required for left ventricular remodelling process in angiotensin II-induced hypertension in rats. Basic Clin. Pharmacol. Toxicol. 127, 178–195 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liang, Q. et al. The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo. J. Biol. Chem. 276, 30245–30253 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Zhou, P., He, A. & Pu, W. T. Regulation of GATA4 transcriptional activity in cardiovascular development and disease. Curr. Top. Dev. Biol. 100, 143–169 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Hon, G. C. et al. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol. Cell 56, 286–297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lan, Y. et al. Stage-specific regulation of DNA methylation by TET enzymes during human cardiac differentiation. Cell Rep. 37, 110095 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fang, S. et al. Tet inactivation disrupts YY1 binding and long-range chromatin interactions during embryonic heart development. Nat. Commun. 10, 4297 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Weintraub, A. S. et al. YY1 is a structural regulator of enhancer-promoter loops. Cell 171, 1573–1588 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dahlet, T. et al. Genome-wide analysis in the mouse embryo reveals the importance of DNA methylation for transcription integrity. Nat. Commun. 11, 3153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  PubMed  Google Scholar 

  111. Wamstad, J. A. et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151, 206–220 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fu, J. D. et al. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Rep. 1, 235–247 (2013).

    Article  CAS  Google Scholar 

  114. VanDusen, N. J. et al. Massively parallel in vivo CRISPR screening identifies RNF20/40 as epigenetic regulators of cardiomyocyte maturation. Nat. Commun. 12, 4442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xin, M., Olson, E. N. & Bassel-Duby, R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat. Rev. Mol. Cell Biol. 14, 529–541 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nguyen, A. T. et al. DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev. 25, 263–274 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cattaneo, P. et al. DOT1L regulates chamber-specific transcriptional networks during cardiogenesis and mediates postnatal cell cycle withdrawal. Nat. Commun. 13, 7444 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hesse, M. et al. Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nat. Commun. 3, 1076 (2012).

    Article  PubMed  Google Scholar 

  119. Monroe, T. O. et al. YAP partially reprograms chromatin accessibility to directly induce adult cardiogenesis in vivo. Dev. Cell 48, 765–779 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen, Y. et al. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science 373, 1537–1540 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Garry, G. A. & Olson, E. N. Reprogramming of cardiac cell fate as a therapeutic strategy for ischemic heart disease. J. Mol. Cell. Cardiol. 179, 2–6 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Hashimoto, H. et al. Cardiac reprogramming factors synergistically activate genome-wide cardiogenic stage-specific enhancers. Cell Stem Cell 25, 69–86 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gunthel, M. et al. Epigenetic state changes underlie metabolic switch in mouse post-infarction border zone cardiomyocytes. J. Cardiovasc. Dev. Dis. 8, 134 (2021).

    PubMed  PubMed Central  Google Scholar 

  124. Lee, D. P. et al. Robust CTCF-based chromatin architecture underpins epigenetic changes in the heart failure stress-gene response. Circulation 139, 1937–1956 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Zhang, Y. et al. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51, 1380–1388 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Montefiori, L. E. et al. A promoter interaction map for cardiovascular disease genetics. eLife 7, e35788 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Greenwald, W. W. et al. Subtle changes in chromatin loop contact propensity are associated with differential gene regulation and expression. Nat. Commun. 10, 1054 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Bertero, A. et al. Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nat. Commun. 10, 1538 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Haydar, S. et al. Linking chamber-specific spatial chromatin interactions to disease variants and gene programs in human cardiomyocytes. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-5039927/v1 (2024).

  130. Man, J. C. K. et al. Variant intronic enhancer controls SCN10A-short expression and heart conduction. Circulation 144, 229–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Man, J. C. K. et al. Genetic dissection of a super enhancer controlling the Nppa-Nppb cluster in the heart. Circ. Res. 128, 115–129 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Anene-Nzelu, C. G. et al. Assigning distal genomic enhancers to cardiac disease-causing genes. Circulation 142, 910–912 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L. A. VISTA enhancer browser — a database of tissue-specific human enhancers. Nucleic Acids Res. 35, D88–D92 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. van Duijvenboden, K. et al. Conserved NPPB+ border zone switches from MEF2- to AP-1-driven gene program. Circulation 140, 864–879 (2019).

    Article  PubMed  Google Scholar 

  135. Leblanc, F. J. A. et al. Atrial fibrillation variant-to-gene prioritization through cross-ancestry eQTL and single-nucleus multiomic analyses. iScience 27, 110660 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kosicki, M. et al. VISTA Enhancer browser: an updated database of tissue-specific developmental enhancers. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae940 (2024).

    Article  PubMed Central  Google Scholar 

  137. Xiao, F. et al. Functional dissection of human cardiac enhancers and noncoding de novo variants in congenital heart disease. Nat. Genet. 56, 420–430 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, Z. et al. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat. Med. 22, 1131–1139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Thienpont, B. et al. The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy. J. Clin. Invest. 127, 335–348 (2017).

    Article  PubMed  Google Scholar 

  140. Papait, R. et al. Histone methyltransferase G9a is required for cardiomyocyte homeostasis and hypertrophy. Circulation 136, 1233–1246 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Gillette, T. G. & Hill, J. A. Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ. Res. 116, 1245–1253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Neumayr, C. et al. Differential cofactor dependencies define distinct types of human enhancers. Nature 606, 406–413 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Litvinukova, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Reichart, D. et al. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science 377, eabo1984 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7612 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Chan, A. S. F. et al. Spatio-temporal dynamics of the fibrotic niche in cardiac repair. Preprint at bioRxiv https://doi.org/10.1101/2024.11.10.622609 (2024).

  149. Kanemaru, K. et al. Spatially resolved multiomics of human cardiac niches. Nature 619, 801–810 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gaulton, K. J., Preissl, S. & Ren, B. Interpreting non-coding disease-associated human variants using single-cell epigenomics. Nat. Rev. Genet. 24, 516–534 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cuomo, A. S. E., Nathan, A., Raychaudhuri, S., MacArthur, D. G. & Powell, J. E. Single-cell genomics meets human genetics. Nat. Rev. Genet. 24, 535–549 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sweat, M. E. et al. Tbx5 maintains atrial identity in post-natal cardiomyocytes by regulating an atrial-specific enhancer network. Nat. Cardiovasc. Res. 2, 881–898 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Steimle, J. D. et al. Decoding the PITX2-controlled genetic network in atrial fibrillation. JCI Insight 7, e158895 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zaidi, S. et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 498, 220–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Richter, F. et al. Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nat. Genet. 52, 769–777 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ameen, M. et al. Integrative single-cell analysis of cardiogenesis identifies developmental trajectories and non-coding mutations in congenital heart disease. Cell 185, 4937–4953 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, L. et al. Single-cell dual-omics reveals the transcriptomic and epigenomic diversity of cardiac non-myocytes. Cardiovasc. Res. 118, 1548–1563 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Alexanian, M. et al. Chromatin remodelling drives immune cell-fibroblast communication in heart failure. Nature https://doi.org/10.1038/s41586-024-08085-6 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Alexanian, M. et al. A transcriptional switch governs fibroblast activation in heart disease. Nature 595, 438–443 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Amrute, J. M. et al. Defining cardiac functional recovery in end-stage heart failure at single-cell resolution. Nat. Cardiovasc. Res. 2, 399–416 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Amrute, J. M. et al. Targeting immune-fibroblast cell communication in heart failure. Nature https://doi.org/10.1038/s41586-024-08008-5 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Su, Q. et al. Single-cell insights: pioneering an integrated atlas of chromatin accessibility and transcriptomic landscapes in diabetic cardiomyopathy. Cardiovasc. Diabetol. 23, 139 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ren, L. et al. Recent advances in epigenetic anticancer therapeutics and future perspectives. Front. Genet. 13, 1085391 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Perner, F., Gadrey, J. Y., Armstrong, S. A. & Kuhn, M. W. M. Targeting the Menin-KMT2A interaction in leukemia: lessons learned and future directions. Int. J. Cancer https://doi.org/10.1002/ijc.35332 (2025).

    Article  PubMed  Google Scholar 

  166. Abend, A. & Kehat, I. Histone deacetylases as therapeutic targets–from cancer to cardiac disease. Pharmacol. Ther. 147, 55–62 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Haldar, S. M. & McKinsey, T. A. BET-ting on chromatin-based therapeutics for heart failure. J. Mol. Cell Cardiol. 74, 98–102 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Kee, H. J. et al. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113, 51–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Granger, A. et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J. 22, 3549–3560 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Travers, J. G. et al. HDAC inhibition reverses preexisting diastolic dysfunction and blocks covert extracellular matrix remodeling. Circulation 143, 1874–1890 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ranjbarvaziri, S. et al. Targeting HDAC6 to treat heart failure with preserved ejection fraction in mice. Nat. Commun. 15, 1352 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lu, J., Qian, S. & Sun, Z. Targeting histone deacetylase in cardiac diseases. Front. Physiol. 15, 1405569 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Chun, P. Therapeutic effects of histone deacetylase inhibitors on heart disease. Arch. Pharm. Res. 43, 1276–1296 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. McKinsey, T. A. et al. Emerging epigenetic therapies of cardiac fibrosis and remodelling in heart failure: from basic mechanisms to early clinical development. Cardiovasc. Res. 118, 3482–3498 (2023).

    Article  PubMed  Google Scholar 

  175. Jebessa, Z. H. et al. The lipid droplet-associated protein ABHD5 protects the heart through proteolysis of HDAC4. Nat. Metab. 1, 1157–1167 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lehmann, L. H. et al. A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway. Nat. Med. 24, 62–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Finke, D. et al. Histone deacetylase 4 deletion broadly affects cardiac epigenetic repression and regulates transcriptional susceptibility via H3K9 methylation. J. Mol. Cell. Cardiol. 162, 119–129 (2022).

    Article  CAS  PubMed  Google Scholar 

  178. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Padmanabhan, A. et al. BRD4 (bromodomain-containing protein 4) interacts with GATA4 (GATA binding protein 4) to govern mitochondrial homeostasis in adult cardiomyocytes. Circulation 142, 2338–2355 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Anand, P. et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 154, 569–582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Schwalm, M. P. & Knapp, S. BET bromodomain inhibitors. Curr. Opin. Chem. Biol. 68, 102148 (2022).

    Article  CAS  PubMed  Google Scholar 

  183. Pervaiz, M., Mishra, P. & Gunther, S. Bromodomain drug discovery - the past, the present, and the future. Chem. Rec. 18, 1808–1817 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Stratton, M. S. et al. Dynamic chromatin targeting of BRD4 stimulates cardiac fibroblast activation. Circ. Res. 125, 662–677 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Alexanian, M. et al. Chromatin remodelling drives immune cell-fibroblast communication in heart failure. Nature 635, 434–443 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Stratton, M. S., Haldar, S. M. & McKinsey, T. A. BRD4 inhibition for the treatment of pathological organ fibrosis. F1000Res 6, F1000 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Hsu, A. et al. Targeting transcription in heart failure via CDK7/12/13 inhibition. Nat. Commun. 13, 4345 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Nunez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Schoger, E., Zimmermann, W. H., Cyganek, L. & Zelarayan, L. C. Establishment of a second generation homozygous CRISPRa human induced pluripotent stem cell (hiPSC) line for enhanced levels of endogenous gene activation. Stem Cell Res. 56, 102518 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Schoger, E. et al. CRISPR-mediated activation of endogenous gene expression in the postnatal heart. Circ. Res. 126, 6–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Laurette, P. et al. In vivo silencing of regulatory elements using a single AAV-CRISPRi vector. Circ. Res. 134, 223–225 (2024).

    Article  CAS  PubMed  Google Scholar 

  193. Han, J. L., Heinson, Y. W., Chua, C. J., Liu, W. & Entcheva, E. CRISPRi gene modulation and all-optical electrophysiology in post-differentiated human iPSC-cardiomyocytes. Commun. Biol. 6, 1236 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Amrute, J. M. et al. Single cell variant to enhancer to gene map for coronary artery disease. Preprint at medRxiv https://doi.org/10.1101/2024.11.13.24317257 (2024).

  195. Deng, L. et al. Atlas of cardiac endothelial cell enhancer elements linking the mineralocorticoid receptor to pathological gene expression. Sci. Adv. 10, eadj5101 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Thakore, P. I. et al. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat. Commun. 9, 1674 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Tycko, J. et al. Development of compact transcriptional effectors using high-throughput measurements in diverse contexts. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02442-6 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Vora, S. et al. Rational design of a compact CRISPR-Cas9 activator for AAV-mediated delivery. Preprint at bioRxiv https://doi.org/10.1101/298620 (2018).

  199. Weinmann, J. et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat. Commun. 11, 5432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Mazurek, R. et al. AAV delivery strategy with mechanical support for safe and efficacious cardiac gene transfer in swine. Nat. Commun. 15, 10450 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lek, A. et al. Death after high-dose rAAV9 gene therapy in a patient with Duchenne’s muscular dystrophy. N. Engl. J. Med. 389, 1203–1210 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Engreitz, J. M. et al. Deciphering the impact of genomic variation on function. Nature 633, 47–57 (2024).

    Article  Google Scholar 

  203. Matharu, N. et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363, eaau0629 (2019).

    Article  CAS  PubMed  Google Scholar 

  204. O’Connell, T. D., Rodrigo, M. C. & Simpson, P. C. Isolation and culture of adult mouse cardiac myocytes. Methods Mol. Biol. 357, 271–296 (2007).

    PubMed  Google Scholar 

  205. Ackers-Johnson, M. & Foo, R. S. Langendorff-free isolation and propagation of adult mouse cardiomyocytes. Methods Mol. Biol. 1940, 193–204 (2019).

    Article  CAS  PubMed  Google Scholar 

  206. Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Li, H. et al. Optimized Langendorff perfusion system for cardiomyocyte isolation in adult mouse heart. J. Cell. Mol. Med. 24, 14619–14625 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Liu, B. et al. Comparative study on isolation and mitochondrial function of adult mouse and rat cardiomyocytes. J. Mol. Cell. Cardiol. 136, 64–71 (2019).

    Article  CAS  PubMed  Google Scholar 

  209. Nicks, A. M. et al. Standardised method for cardiomyocyte isolation and purification from individual murine neonatal, infant, and adult hearts. J. Mol. Cell. Cardiol. 170, 47–59 (2022).

    Article  CAS  PubMed  Google Scholar 

  210. Larcher, V. et al. An autofluorescence-based method for the isolation of highly purified ventricular cardiomyocytes. Cardiovasc. Res. 114, 409–416 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Bergmann, O. et al. Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover. Exp. Cell Res. 317, 188–194 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Robinson, E. L. et al. MSK-mediated phosphorylation of histone H3 Ser28 couples MAPK signalling with early gene induction and cardiac hypertrophy. Cells 11, 604 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Hill, M. C. & Martin, J. F. Epigenetic assays in purified cardiomyocyte nuclei. Methods Mol. Biol. 2158, 307–321 (2021).

    Article  CAS  PubMed  Google Scholar 

  216. See, K. et al. Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-regulated de-differentiation and cell cycle stress-response in vivo. Nat. Commun. 8, 225 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Cui, M. & Olson, E. N. Protocol for single-nucleus transcriptomics of diploid and tetraploid cardiomyocytes in murine hearts. STAR Protoc. 1, 100049 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Chatterjee, A. et al. MOF acetyl transferase regulates transcription and respiration in mitochondria. Cell 167, 722–738 (2016).

    Article  CAS  PubMed  Google Scholar 

  219. Cheedipudi, S. M. et al. Genomic reorganization of lamin-associated domains in cardiac myocytes is associated with differential gene expression and DNA methylation in human dilated cardiomyopathy. Circ. Res. 124, 1198–1213 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Raulf, A. et al. Transgenic systems for unequivocal identification of cardiac myocyte nuclei and analysis of cardiomyocyte cell cycle status. Basic Res. Cardiol. 110, 33 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

    Article  PubMed  Google Scholar 

  222. Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  223. Wu, A. Z. et al. Phospholamban is concentrated in the nuclear envelope of cardiomyocytes and involved in perinuclear/nuclear calcium handling. J. Mol. Cell. Cardiol. 100, 1–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  224. Hesse, M. et al. Proximity to injury, but neither number of nuclei nor ploidy define pathological adaptation and plasticity in cardiomyocytes. J. Mol. Cell. Cardiol. 152, 95–104 (2021).

    Article  CAS  PubMed  Google Scholar 

  225. Krane, M. et al. Sequential defects in cardiac lineage commitment and maturation cause hypoplastic left heart syndrome. Circulation 144, 1409–1428 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  226. van Ouwerkerk, A. F. et al. Patient-specific TBX5-G125R variant induces profound transcriptional deregulation and atrial dysfunction. Circulation 145, 606–619 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Wirth, L. et al. Gene expression networks in endothelial cells from failing human hearts. Am. J. Physiol. Heart Circ. Physiol. 327, H573–H581 (2024).

    Article  CAS  PubMed  Google Scholar 

  228. Mo, A. et al. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86, 1369–1384 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Bhattacharyya, S., Sathe, A. A., Bhakta, M., Xing, C. & Munshi, N. V. PAN-INTACT enables direct isolation of lineage-specific nuclei from fibrous tissues. PLoS ONE 14, e0214677 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Yucel, N. et al. Cardiac endothelial cells maintain open chromatin and expression of cardiomyocyte myofibrillar genes. eLife 9, e55730 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Zhang, M., Lui, K. O. & Zhou, B. Application of new lineage tracing techniques in cardiovascular development and physiology. Circ. Res. 134, 445–458 (2024).

    Article  CAS  PubMed  Google Scholar 

  232. Yoshida, Y. & Yamanaka, S. Induced pluripotent stem cells 10 years later: for cardiac applications. Circ. Res. 120, 1958–1968 (2017).

    Article  CAS  PubMed  Google Scholar 

  233. Buikema, J. W. & Wu, S. M. Untangling the biology of genetic cardiomyopathies with pluripotent stem cell disease models. Curr. Cardiol. Rep. 19, 30 (2017).

    Article  PubMed  Google Scholar 

  234. Brandao, K. O., Tabel, V. A., Atsma, D. E., Mummery, C. L. & Davis, R. P. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies. Dis. Model. Mech. 10, 1039–1059 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Morton, S. U., Quiat, D., Seidman, J. G. & Seidman, C. E. Genomic frontiers in congenital heart disease. Nat. Rev. Cardiol. 19, 26–42 (2022).

    Article  PubMed  Google Scholar 

  236. Mills, R. J. & Hudson, J. E. Bioengineering adult human heart tissue: how close are we? APL Bioeng. 3, 010901 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Cho, S., Discher, D. E., Leong, K. W., Vunjak-Novakovic, G. & Wu, J. C. Challenges and opportunities for the next generation of cardiovascular tissue engineering. Nat. Methods https://doi.org/10.1038/s41592-022-01591-3 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to the authors whose essential contributions to the field of cardiac epigenetics could not be cited owing to space limitations. The authors received support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — SFB1550 — Project ID 464424253, A02: Collaborative Research Center 1550 (CRC1550) ‘Molecular Circuits of Heart Disease’, the SFB1425 — Project ID 422681845, P02/S03: Collaborative Research Center 1425 (CRC1425) ‘ScarCare’ and Project ID 558598989. They thank S. Preissl (University of Freiburg, Germany, and University of Graz, Austria) for discussing and proofreading the manuscript for initial submission, and J. Backs (University of Heidelberg, Germany) for supporting and discussing the initial concept of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Ralf Gilsbach.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Vincent Christoffels and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

5-Hydroxymethylcytosine

(5hmC). The first oxidized derivative of 5-methylcytosine (5mC) produced by ten-eleven translocation (TET) family enzymes during DNA demethylation in mammalian cells and associated with the establishment of accessible chromatin or regulatory activity.

Accessible chromatin

Nucleosome-free genomic loci accessible to DNA-binding factors.

Acquired heart disease

Heart disease that arises from non-genetic risk factors, such as metabolic syndrome, stress and hypertension.

Chromatin

Complex of DNA and proteins that packages genomic information in the nucleus and regulates access to DNA-binding factors.

Chromatin remodelling

Dynamic repositioning, exchange or eviction of nucleosomes to modulate DNA accessibility to transcription factors and other regulatory proteins.

Cis-regulatory elements

(CREs). Non-coding DNA sequences bound by transcription factors and required for proper spatiotemporal regulation of target gene promoters in cis.

Congenital heart disease

Structural and functional heart defects present at birth and caused by genetic and/or non-genetic causes.

CpG

A dinucleotide consisting of a cytosine followed by a guanine. Cytosines in a CpG context are commonly methylated in mammalian cells. CpG methylation is inversely correlated with the regulatory activity of DNA-binding factors.

DNA methylation

Methylation of DNA, most commonly at cytosine position 5 (5mC), predominantly at CpG dinucleotides in mammals and generally associated with transcriptional repression.

Enhancers

Distal cis-regulatory elements that promote transcriptional activity of target genes, typically marked by histone 3 lysine 4 monomethylation (H3K4me1), H3K27 acetylation and low levels of CpG methylation.

Epigenetic writers, erasers and readers

Proteins that can establish (writers), remove (erasers) or interpret (readers) epigenetic modifications, thereby regulating genome function and transcriptional activity.

Epigenetics

Covers all inheritable changes in gene expression or phenotype that are not mediated by changes in the DNA sequence. The epigenetic layers in mammalian cells include DNA methylation, histone modifications and chromatin accessibility.

Epigenome editing

Site-specific modification of the epigenome, mostly achieved by targeted recruitment of repressor or activator domains using CRISPR-based methods (CRISPR interference and CRISPR activation).

Genetic heart disease

Heart disease elicited by inherited pathogenic genetic risk variants.

Histone modification

Post-translational modification of histones is essential for epigenetic annotation of regulatory elements and is implicated in epigenetic regulation of gene expression.

Induced pluripotent stem cell

(iPS cell). Somatic cell reprogrammed to a pluripotent state, which can be differentiated into different cell types, including cardiac cell types.

Pioneering transcription factors

Transcription factors that can bind to inaccessible chromatin and initiate the establishment of regulatory elements during cell lineage specification.

Promoters

Proximal regulatory elements adjacent to transcriptional start sites, typically marked by histone 3 lysine 4 trimethylation (H3K4me3), low levels of CpG methylation and accessible chromatin.

Quantitative trait loci

Region of the genome associated with variability in quantitative traits, such as phenotype, gene expression, chromatin accessibility or histone acetylation.

Silencers

Cis-regulatory elements that repress gene expression by recruiting transcriptional repressors and chromatin modifying and remodelling complexes.

Transcription factors

DNA-binding proteins that modulate transcriptional activity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurette, P., Gilsbach, R. Cardiac epigenome in heart development and disease. Nat Rev Cardiol (2026). https://doi.org/10.1038/s41569-025-01223-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41569-025-01223-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing