Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular damage associated with ageing drives inflammation in cardiovascular disease

Abstract

Chronic inflammation has long been recognized as a major risk factor for and a causal contributor to cardiovascular disease (CVD). However, advances in omics technologies and deepening insights into CVD pathogenesis have expanded our understanding of the underlying mechanisms. Inflammation is now seen not as an isolated cause, but as one of several biological responses to cumulative tissue damage over time. In this Review, we propose that inflammation initially functions as a resilience mechanism, acting to resolve molecular and cellular damage driven by environmental stressors and intrinsic age-related entropy. With ageing, however, this protective response can become dysregulated and maladaptive, promoting collateral pathological changes. We illustrate this theory through two examples, atherosclerosis and age-related impairment of tissue perfusion, and support these conceptual models using proteomic data from large population studies with cardiovascular outcomes. Our findings reaffirm the central role of inflammation in CVD pathophysiology, but also indicate that the upstream biological driver of inflammation is molecular damage that is either not readily prevented or repaired by inadequate resilience mechanisms. Understanding the coordination of these responses offers new opportunities for targeted prevention and treatment of CVD.

Key points

  • Ageing, endothelial dysfunction and impaired perfusion lead to molecular damage and trigger resilience mechanisms to maintain tissue integrity.

  • Persistent, unrepaired molecular damage activates inflammatory responses that, over time, contribute to atherosclerosis.

  • In ageing, impaired vascular regulation and tissue fibrosis can cause recurrent hypoperfusion, leading to energy deficits and progressive molecular damage.

  • Chronic inflammation acts as a component of stress response pathways that, ultimately, lead to the onset and progression of cardiovascular disease.

  • Biomarkers of cardiovascular disease, such as fibroblast growth factor 23 and growth/differentiation factor 15, reflect not only inflammation, but also changes in the extracellular matrix, cellular senescence and proteostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Resilience mechanisms that counter ageing-related cellular insults.
Fig. 2: Coordinated stress and inflammatory signalling network during atherosclerosis.
Fig. 3: Factors and mechanisms that modulate vascular regulation of tissue perfusion.
Fig. 4: Protein biomarkers of cardiovascular disease.

Similar content being viewed by others

Data availability

Datasets and the custom R source code used in the proteomic meta-analysis are available on the Open Science Framework repository117.

References

  1. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ferrucci, L. et al. The origins of age-related proinflammatory state. Blood 105, 2294–2299 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A 69, S4–S9 (2014).

    Article  Google Scholar 

  4. Ridker, P. M. Closing the loop on inflammation and atherothrombosis: why perform the CIRT and CANTOS trials? Trans. Am. Clin. Climatol. Assoc. 124, 174–190 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. Dalton, J. E. et al. Failure of traditional risk factors to adequately predict cardiovascular events in older populations. J. Am. Geriatr. Soc. 68, 754–761 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Walker, K. A. et al. Connecting aging biology and inflammation in the omics era. J. Clin. Invest. 132, e158448 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Picard, M. M. & Murugan, N. J. The energy resistance principle. Cell Metab. 37, 2107–2127 (2025).

    Article  CAS  PubMed  Google Scholar 

  8. Patel, S. et al. GDF15 provides an endocrine signal of nutritional stress in mice and humans. Cell Metab. 29, 707–718.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Bortz, W. M. 2nd. Aging as entropy. Exp. Gerontol. 21, 321–328 (1986).

    Article  PubMed  Google Scholar 

  11. Ferrucci, L. et al. Measuring biological aging in humans: a quest. Aging Cell 19, e13080 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. McMillen, P. & Levin, M. Collective intelligence: a unifying concept for integrating biology across scales and substrates. Commun. Biol. 7, 378 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schumacher, B. et al. The central role of DNA damage in the ageing process. Nature 592, 695–703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ren, P., Dong, X. & Vijg, J. Age-related somatic mutation burden in human tissues. Front. Aging 3, 1018119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vijg, J. & Dong, X. Pathogenic mechanisms of somatic mutation and genome mosaicism in aging. Cell 182, 12–23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shaulson, E. D., Cohen, A. A. & Picard, M. The brain–body energy conservation model of aging. Nat. Aging 4, 1354–1371 (2024).

    Article  PubMed  Google Scholar 

  17. Zhao, Y. et al. DNA damage and repair in age-related inflammation. Nat. Rev. Immunol. 23, 75–89 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, B. et al. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat. Rev. Mol. Cell Biol. 25, 958–978 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421–438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Picca, A. et al. Mitophagy in human health, ageing and disease. Nat. Metab. 5, 2047–2061 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Walker, E. M. et al. Retrograde mitochondrial signaling governs the identity and maturity of metabolic tissues. Science 388, eadf2034 (2025).

    Article  CAS  PubMed  Google Scholar 

  22. Minamino, T. & Komuro, I. Vascular cell senescence: contribution to atherosclerosis. Circ. Res. 100, 15–26 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Phua, T. J. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. Front. Aging 4, 1196648 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Steinberg, D. In celebration of the 100th anniversary of the lipid hypothesis of atherosclerosis. J. Lipid Res. 54, 2946–2949 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ross, R. Atherosclerosis — an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Warboys, C. M. et al. Disturbed flow promotes endothelial senescence via a p53-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 34, 985–995 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Jia, G. et al. Endothelial cell senescence in aging-related vascular dysfunction. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1802–1809 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Erusalimsky, J. D. Vascular endothelial senescence: from mechanisms to pathophysiology. J. Appl. Physiol. 106, 326–332 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Belcastro, E. et al. Fluorescent nanocarriers targeting VCAM-1 for early detection of senescent endothelial cells. Nanomedicine 34, 102379 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Minamino, T. et al. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105, 1541–1544 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, C. & Khismatullin, D. B. Oxidized low-density lipoprotein contributes to atherogenesis via co-activation of macrophages and mast cells. PLoS ONE 10, e0123088 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chinetti-Gbaguidi, G., Colin, S. & Staels, B. Macrophage subsets in atherosclerosis. Nat. Rev. Cardiol. 12, 10–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Bloom, S. I. et al. Mechanisms and consequences of endothelial cell senescence. Nat. Rev. Cardiol. 20, 38–51 (2023).

    Article  PubMed  Google Scholar 

  34. Hwang, H. J. et al. Endothelial cells under therapy-induced senescence secrete CXCL11, which increases aggressiveness of breast cancer cells. Cancer Lett. 490, 100–110 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Jia, G. et al. Vascular stiffness in insulin resistance and obesity. Front. Physiol. 6, 231 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gardner, S. E. et al. Senescent vascular smooth muscle cells drive inflammation through an interleukin-1α-dependent senescence-associated secretory phenotype. Arterioscler. Thromb. Vasc. Biol. 35, 1963–1974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Herman, A. B. et al. DPP4 inhibition impairs senohemostasis to improve plaque stability in atherosclerotic mice. J. Clin. Invest. 133, e165933 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Owens, G. K. Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity. Novartis Found. Symp. 283, 174–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Shankman, L. S. et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat. Med. 21, 628–637 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bennett, M. R., Sinha, S. & Owens, G. K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 118, 692–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kawai, K. et al. Differences in stable and unstable atherosclerotic plaque. Arterioscler. Thromb. Vasc. Biol. 44, 1474–1484 (2024).

    Article  CAS  PubMed  Google Scholar 

  42. Virmani, R. et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20, 1262–1275 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Nakajima, A. et al. Biomarkers associated with coronary high-risk plaques. J. Thromb. Thrombolysis 54, 647–659 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Kigka, V. I. et al. Serum biomarkers in carotid artery disease. Diagnostics 11, 2143 (2012).

    Article  Google Scholar 

  45. Lutsey, P. L. et al. Fibroblast growth factor-23 and incident coronary heart disease, heart failure, and cardiovascular mortality: the Atherosclerosis Risk in Communities study. J. Am. Heart Assoc. 3, e000936 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chen, M. C., Hsu, B. G., Lee, C. J. & Wang, J. H. High-serum angiopoietin-like protein 3 levels associated with cardiovascular outcome in patients with coronary artery disease. Int. J. Hypertens. 2020, 2980954 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schickling, B. M. & Miller, F. J. Jr. Outside-in signaling by adventitial fibroblasts. Arterioscler. Thromb. Vasc. Biol. 41, 711–713 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sartore, S. et al. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ. Res. 89, 1111–1121 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Sirois, M. G., Simons, M. & Edelman, E. R. Antisense oligonucleotide inhibition of PDGFR-β receptor subunit expression directs suppression of intimal thickening. Circulation 95, 669–676 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Herrmann, J. et al. Differential effect of experimental hypertension and hypercholesterolemia on adventitial remodeling. Arterioscler. Thromb. Vasc. Biol. 25, 447–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Stenmark, K. R. et al. The adventitia: essential regulator of vascular wall structure and function. Annu. Rev. Physiol. 75, 23–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Buono, M. F. et al. Human plaque myofibroblasts to study mechanisms of atherosclerosis. J. Am. Heart Assoc. 12, e030243 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dabravolski, S. A. et al. Molecular mechanisms underlying pathological and therapeutic roles of pericytes in atherosclerosis. Int. J. Mol. Sci. 23, 11663 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Campagnolo, P. et al. Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation 121, 1735–1745 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang, N. et al. Novel mechanism of the pericyte–myofibroblast transition in renal interstitial fibrosis: core fucosylation regulation. Sci. Rep. 7, 16914 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schrimpf, C. et al. TIMP3 is regulated by pericytes upon shear stress detection leading to a modified endothelial cell response. Eur. J. Vasc. Endovasc. Surg. 54, 524–533 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. de Vries, M. R. & Quax, P. H. Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization. Curr. Opin. Lipidol. 27, 499–506 (2016).

    Article  PubMed  Google Scholar 

  58. Kong, P. et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 7, 131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Matter, M. A. et al. Inflammation in acute myocardial infarction: the good, the bad and the ugly. Eur. Heart J. 45, 89–103 (2024).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, C. et al. Insight into cerebral microvessel endothelial regulation of cognitive impairment: a systematic review of the causes and consequences. Exp. Neurol. 385, 115116 (2025).

    Article  PubMed  Google Scholar 

  61. Halvorson, B. D. et al. Scoping review: integration of the major mechanisms underlying the regulation of arteriolar tone. J. Vasc. Res. 61, 1–15 (2024).

    Article  PubMed  Google Scholar 

  62. Altura, B. M. Chemical and humoral regulation of blood flow through the precapillary sphincter. Microvasc. Res. 3, 361–384 (1971).

    Article  CAS  PubMed  Google Scholar 

  63. Zambach, S. A. et al. Precapillary sphincters and pericytes at first-order capillaries as key regulators for brain capillary perfusion. Proc. Natl Acad. Sci. USA 118, e2023749118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rhodin, J. A. The ultrastructure of mammalian arterioles and precapillary sphincters. J. Ultrastruct. Res. 18, 181–223 (1967).

    Article  CAS  PubMed  Google Scholar 

  65. Federspiel, W. J. & Popel, A. S. A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries. Microvasc. Res. 32, 164–189 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dore-Duffy, P. & Cleary, K. Morphology and properties of pericytes. Methods Mol. Biol. 686, 49–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Banks, W. A. et al. Healthy aging and the blood–brain barrier. Nat. Aging 1, 243–254 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Avolio, E. et al. The role of cardiac pericytes in health and disease: therapeutic targets for myocardial infarction. Nat. Rev. Cardiol. 21, 106–118 (2024).

    Article  PubMed  Google Scholar 

  69. Donato, A. J., Machin, D. R. & Lesniewski, L. A. Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ. Res. 123, 825–848 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mick, E. et al. Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell. eLife 9, e49178 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stasch, J. P. et al. Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J. Clin. Invest. 116, 2552–2561 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Landmesser, U. et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Invest. 111, 1201–1209 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. AlGhatrif, M. et al. Longitudinal decline in peak Vo2 with aging in a healthy population is associated with a reduction in peripheral oxygen utilization but not in cardiac output. Am. J. Physiol. Heart Circ. Physiol 327, H509–H517 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ungvari, Z. et al. Mechanisms of vascular aging. Circ. Res. 123, 849–867 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu, H. H. et al. Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Res. Rev. 60, 101063 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Janotka, M. & Ostadal, P. Biochemical markers for clinical monitoring of tissue perfusion. Mol. Cell Biochem. 476, 1313–1326 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Coppel, J. et al. A comparison of the quality of image acquisition between two different sidestream dark field video-microscopes. J. Clin. Monit. Comput. 35, 577–583 (2021).

    Article  PubMed  Google Scholar 

  78. McDermott, M. M. et al. Lower ankle/brachial index, as calculated by averaging the dorsalis pedis and posterior tibial arterial pressures, and association with leg functioning in peripheral arterial disease. J. Vasc. Surg. 32, 1164–1171 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Oberdier, M. T. et al. Ankle-brachial index and energy production in people without peripheral artery disease: the blsa. J. Am. Heart Assoc. 11, e019014 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kim, J., Kim, H. S. & Chung, J. H. Molecular mechanisms of mitochondrial DNA release and activation of the cGAS–STING pathway. Exp. Mol. Med. 55, 510–519 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zampino, M. et al. Poor mitochondrial health and systemic inflammation? Test of a classic hypothesis in the Baltimore longitudinal study of aging. Geroscience 42, 1175–1182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Morciano, G. et al. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol. Rev. Camb. Philos. Soc. 96, 2489–2521 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Ershler, W. B. et al. Serum erythropoietin and aging: a longitudinal analysis. J. Am. Geriatr. Soc. 53, 1360–1365 (2005).

    Article  PubMed  Google Scholar 

  84. Ren, J. et al. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat. Rev. Cardiol. 18, 499–521 (2021).

    Article  PubMed  Google Scholar 

  85. Chipurupalli, S., Samavedam, U. & Robinson, N. Crosstalk between ER stress, autophagy and inflammation. Front. Med. 8, 758311 (2021).

    Article  Google Scholar 

  86. Pluquet, O., Pourtier, A. & Abbadie, C. The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. Am. J. Physiol. Cell Physiol 308, C415–C425 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Costa-Mattioli, M. & Walter, P. The integrated stress response: from mechanism to disease. Science 368, eaat5314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pakos-Zebrucka, K. et al. The integrated stress response. EMBO Rep. 17, 1374–1395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Roy, R. et al. Epigenetic signature of human immune aging in the GESTALT study. eLife 12, e86136 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McGuire, D. K. et al. Oral semaglutide and cardiovascular outcomes in high-risk type 2 diabetes. N. Engl. J. Med. 392, 2001–2012 (2025).

    Article  CAS  PubMed  Google Scholar 

  91. Knauf, C. et al. Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J. Clin. Invest. 115, 3554–3563 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xu, X. Y. et al. GLP-1 in the hypothalamic paraventricular nucleus promotes sympathetic activation and hypertension. J. Neurosci. 44, e2032232024 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Aung, M. M. et al. Locally delivered GLP-1 analogues liraglutide and exenatide enhance microvascular perfusion in individuals with and without type 2 diabetes. Diabetologia 62, 1701–1711 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wei, R. et al. Exenatide exerts direct protective effects on endothelial cells through the AMPK/Akt/eNOS pathway in a GLP-1 receptor-dependent manner. Am. J. Physiol. Endocrinol. Metab. 310, E947–E957 (2016).

    Article  PubMed  Google Scholar 

  95. Smits, M. M. et al. GLP-1 receptor agonist exenatide increases capillary perfusion independent of nitric oxide in healthy overweight men. Arterioscler. Thromb. Vasc. Biol. 35, 1538–1543 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Ho, J. E. et al. Protein biomarkers of cardiovascular disease and mortality in the community. J. Am. Heart Assoc. 7, e008108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hoogeveen, R. M. et al. Improved cardiovascular risk prediction using targeted plasma proteomics in primary prevention. Eur. Heart J. 41, 3998–4007 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nurmohamed, N. S. et al. Targeted proteomics improves cardiovascular risk prediction in secondary prevention. Eur. Heart J. 43, 1569–1577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Williams, S. A. et al. A proteomic surrogate for cardiovascular outcomes that is sensitive to multiple mechanisms of change in risk. Sci. Transl. Med. 14, eabj9625 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Helgason, H. et al. Evaluation of large-scale proteomics for prediction of cardiovascular events. JAMA 330, 725–735 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mazidi, M. et al. Plasma proteomics to identify drug targets for ischemic heart disease. J. Am. Coll. Cardiol. 82, 1906–1920 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Carrasco-Zanini, J. et al. Proteomic signatures improve risk prediction for common and rare diseases. Nat. Med. 30, 2489–2498 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ho, F. K. et al. A proteomics-based approach for prediction of different cardiovascular diseases and dementia. Circulation 151, 277–287 (2025).

    Article  CAS  PubMed  Google Scholar 

  104. Kuku, K. O. et al. Development and validation of a protein risk score for mortality in heart failure: a community cohort study. Ann. Intern. Med. 177, 39–49 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ramonfaur, D. et al. High throughput plasma proteomics and risk of heart failure and frailty in late life. JAMA Cardiol. 9, 649–658 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Schuermans, A. et al. Integrative proteomic analyses across common cardiac diseases yield mechanistic insights and enhanced prediction. Nat. Cardiovasc. Res. 3, 1516–1530 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Titova, O. E. et al. Plasma proteome and incident myocardial infarction: sex-specific differences. Eur. Heart J. 45, 4647–4657 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Wiley, C. D. et al. SILAC analysis reveals increased secretion of hemostasis-related factors by senescent cells. Cell Rep. 28, 3329–3337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Basisty, N. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Casella, G. et al. Transcriptome signature of cellular senescence. Nucleic Acids Res. 47, 7294–7305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, Y. et al. PCSK9 affects vascular senescence through the SIRT1 pathway. Exp. Gerontol. 201, 112701 (2025).

    Article  CAS  PubMed  Google Scholar 

  114. GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  Google Scholar 

  115. Oh, H. S. et al. Organ aging signatures in the plasma proteome track health and disease. Nature 624, 164–172 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kivimaki, M. et al. Proteomic organ-specific ageing signatures and 20-year risk of age-related diseases: the Whitehall II observational cohort study. Lancet Digit. Health 7, e195–e204 (2025).

    Article  CAS  PubMed  Google Scholar 

  117. Candia, J. Aging-associated accumulation of molecular damage drives inflammation in cardiovascular disease. Open Science Framework https://osf.io/p4kbg/files/xvjcy (2025).

  118. Kapil, V. et al. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: a randomized, phase 2, double-blind, placebo-controlled study. Hypertension 65, 320–327 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Cosentino, F. et al. Chronic treatment with tetrahydrobiopterin reverses endothelial dysfunction and oxidative stress in hypercholesterolaemia. Heart 94, 487–492 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Lewis, G. D. et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation 116, 1555–1562 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Hickson, L. J. et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kooy, A. et al. Long-term effects of metformin on metabolism and microvascular and macrovascular disease in patients with type 2 diabetes mellitus. Arch. Intern. Med. 169, 616–625 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Mannick, J. B. et al. mTOR inhibition improves immune function in the elderly. Sci. Transl. Med. 6, 268ra179 (2014).

    Article  PubMed  Google Scholar 

  124. Rossman, M. J. et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension 71, 1056–1063 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Martens, C. R. et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat. Commun. 9, 1286 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Mortensen, S. A. et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail. 2, 641–649 (2014).

    Article  PubMed  Google Scholar 

  127. Daubert, M. A. et al. Novel mitochondria-targeting peptide in heart failure treatment: a randomized, placebo-controlled trial of elamipretide. Circ. Heart Fail. 10, e004389 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Andreux, P. A. et al. The mitophagy activator urolithin a is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat. Metab. 1, 595–603 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Singh, A. et al. Direct supplementation with urolithin a overcomes limitations of dietary exposure and gut microbiome variability in healthy adults to achieve consistent levels across the population. Eur. J. Clin. Nutr. 76, 297–308 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Singh, A. et al. Urolithin a improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle-aged adults. Cell Rep. Med. 3, 100633 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Intramural Research Program of the National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Luigi Ferrucci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Mika Kivimaki, Esther Lutgens, Andrew Steptoe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Biomarkers

Measurable indicators of biological and pathogenic processes or therapeutic efficacy.

Cellular senescence

A state of stable cell cycle arrest caused by sublethal DNA damage and stress.

Entropy

The measure of a system’s thermal energy per unit temperature that is unavailable for doing useful work.

Immunosenescence

Innate and adaptive immune dysregulation that occurs with ageing.

Integrated stress response

The signalling pathway activated in response to various forms of stress, including nutrient and oxygen deprivation, oxidative stress and viral infections.

Macromolecular damage

The accumulation of structural and chemical alterations in DNA, proteins, lipids and polysaccharides within cells.

Perfusion

The passing of a fluid through spaces.

Proteostasis or proteostatic

Protein homeostasis or homeostatic state.

Resilience response

The capacity of an organism to adapt or recover from stress. The response involves molecular pathways that detect stress, promote survival and enable repair.

Senescence-associated secretory phenotype

The secretion of bioactive molecules associated with damage-induced cellular senescence.

Stochastic

Occurring by chance or random variables.

Thermodynamics

The relationships between heat, work, temperature and energy.

Unfolded protein response

The signalling pathway responsible for the fidelity of protein folding in the lumen of the endoplasmic reticulum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herman, A.B., Candia, J., Wilson, D.M. et al. Molecular damage associated with ageing drives inflammation in cardiovascular disease. Nat Rev Cardiol (2026). https://doi.org/10.1038/s41569-026-01253-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41569-026-01253-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing