Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ESCRT-III function in membrane fission and repair

Subjects

Abstract

The endosomal sorting complex required for transport (ESCRT) machinery is an evolutionarily conserved multisubunit protein complex that remodels cellular membranes. Beyond its classical role in endosomal sorting, the ESCRT machinery has been implicated in an ever-growing number of functions, including viral budding, cytokinesis, autophagy, extracellular vesicle release, pruning of synaptic processes and the repair and closure of holes in cellular membranes. Membrane remodelling functions are typically ascribed to the ESCRT-III subcomplex. In this Review, we discuss recent mechanistic and structural insights into how these proteins assemble and are remodelled to achieve membrane severing. We focus particularly on how ESCRT-III is engaged at different subcellular compartments during both interphase and mitosis to repair and remodel membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The ESCRT membrane remodelling machinery.
Fig. 2: Models of ESCRT-III-mediated membrane fission.
Fig. 3: ESCRT activity during membrane repair.
Fig. 4: ESCRT-III roles in autophagy.
Fig. 5: Regulation of ESCRT-III activity during cell division.

Similar content being viewed by others

References

  1. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B. & Emr, S. D. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell 3, 283–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Babst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T. & Emr, S. D. Escrt-III An endosome-associated heterooligomeric protein complex required for mvb sorting. Dev. Cell 3, 271–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Vietri, M., Radulovic, M. & Stenmark, H. The many functions of ESCRTs. Nat. Rev. Mol. Cell Biol. 21, 25–42 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Wollert, T. & Hurley, J. H. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464, 864–869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat. Cell Biol. 4, 394–398 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Mizuno, E., Kawahata, K., Kato, M., Kitamura, N. & Komada, M. STAM proteins bind ubiquitinated proteins on the early endosome via the VHS domain and ubiquitin-interacting motif. Mol. Biol. Cell 14, 3675–3689 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luhtala, N. & Odorizzi, G. Bro1 coordinates deubiquitination in the multivesicular body pathway by recruiting Doa4 to endosomes. J. Cell Biol. 166, 717–729 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Agromayor, M. & Martin-Serrano, J. Interaction of AMSH with ESCRT-III and deubiquitination of endosomal cargo*. J. Biol. Chem. 281, 23083–23091 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. McCullough, J. et al. Activation of the endosome-associated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery. Curr. Biol. 16, 160–165 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Bowers, K. et al. Degradation of endocytosed epidermal growth factor and virally ubiquitinated major histocompatibility complex class I is independent of mammalian ESCRTII*. J. Biol. Chem. 281, 5094–5105 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, J. et al. Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily. Cell 184, 3660–3673.e18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schlösser, L., Sachse, C., Low, H. H. & Schneider, D. Conserved structures of ESCRT-III superfamily members across domains of life. Trends Biochem. Sci. 48, 993–1004 (2023).

    Article  PubMed  Google Scholar 

  14. Carlton, J. G. & Baum, B. Roles of ESCRT-III polymers in cell division across the tree of life. Curr. Opin. Cell Biol. 85, 102274 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adell, M. A. Y. et al. Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding. eLife 6, e31652 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mierzwa, B. E. et al. Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nat. Cell Biol. 19, 787–798 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Muzioł, T. et al. Structural basis for budding by the ESCRT-III factor CHMP3. Dev. Cell 10, 821–830 (2006).

    Article  PubMed  Google Scholar 

  18. Xiao, J. et al. Structural basis of Ist1 function and Ist1–Did2 interaction in the multivesicular body pathway and cytokinesis. Mol. Biol. Cell 20, 3514–3524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bajorek, M. et al. Structural basis for ESCRT-III protein autoinhibition. Nat. Struct. Mol. Biol. 16, 754–762 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCullough, J. et al. Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350, 1548–1551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nguyen, H. C. et al. Membrane constriction and thinning by sequential ESCRT-III polymerization. Nat. Struct. Mol. Biol. 27, 392–399 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bodon, G. et al. Charged multivesicular body protein 2B (CHMP2B) of the endosomal sorting complex required for transport-III (ESCRT-III) polymerizes into helical structures deforming the plasma membrane. J. Biol. Chem. 286, 40276–40286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buchkovich, N. J., Henne, W. M., Tang, S. & Emr, S. D. Essential N-terminal insertion motif anchors the ESCRT-III filament during MVB vesicle formation. Dev. Cell 27, 201–214 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Huber, S. T., Mostafavi, S., Mortensen, S. A. & Sachse, C. Structure and assembly of ESCRT-III helical Vps24 filaments. Sci. Adv. 6, eaba4897 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Azad, K. et al. Structural basis of CHMP2A–CHMP3 ESCRT-III polymer assembly and membrane cleavage. Nat. Struct. Mol. Biol. 30, 81–90 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Webster, B. M. et al. Chm7 and Heh1 collaborate to link nuclear pore complex quality control with nuclear envelope sealing. EMBO 35, 2447–2467 (2016).

    Article  CAS  Google Scholar 

  27. Bauer, I., Brune, T., Preiss, R. & Kölling, R. Evidence for a nonendosomal function of the Saccharomyces cerevisiae ESCRT-III-like protein Chm7. Genetics 201, 1439–1452 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Agromayor, M. et al. Essential role of hIST1 in cytokinesis. Mol. Biol. Cell 20, 1374–1387 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clippinger, A. K. et al. IST1 regulates select recycling pathways. Traffic 25, e12921 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Allison, R. et al. Defects in ER–endosome contacts impact lysosome function in hereditary spastic paraplegia. J. Cell Biol. 216, 1337–1355 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lata, S. et al. Structural basis for autoinhibition of ESCRT-III CHMP3. J. Mol. Biol. 378, 818–827 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shim, S., Kimpler, L. A. & Hanson, P. I. Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain. Traffic 8, 1068–1079 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Strack, B., Calistri, A., Craig, S., Popova, E. & Göttlinger, H. G. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689–699 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Tang, S. et al. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments. eLife 4, e12548 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Appen, A. et al. LEM2 phase separation promotes ESCRT-mediated nuclear envelope reformation. Nature 582, 115–118 (2020).

    Article  Google Scholar 

  36. Tang, S. et al. ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis. eLife 5, e15507 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gu, M. et al. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells. Proc. Natl Acad. Sci. USA 114, E2166–E2175 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fyfe, I., Schuh, A. L., Edwardson, J. M. & Audhya, A. Association of the endosomal sorting complex ESCRT-II with the Vps20 subunit of ESCRT-III generates a curvature-sensitive complex capable of nucleating ESCRT-III filaments. J. Biol. Chem. 286, 34262–34270 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Teis, D., Saksena, S. & Emr, S. D. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev. Cell 15, 578–589 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Teo, H., Perisic, O., González, B. & Williams, R. L. ESCRT-II, an endosome-associated complex required for protein sorting crystal structure and interactions with ESCRT-III and membranes. Dev. Cell 7, 559–569 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. YORIKAWA, C. et al. Human CHMP6, a myristoylated ESCRT-III protein, interacts directly with an ESCRT-II component EAP20 and regulates endosomal cargo sorting. Biochem. J. 387, 17–26 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hanson, P. I., Roth, R., Lin, Y. & Heuser, J. E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180, 389–402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maity, S. et al. VPS4 triggers constriction and cleavage of ESCRT-III helical filaments. Sci. Adv. 5, eaau7198 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Glover, J. et al. UMAD1 contributes to ESCRT-III dynamic subunit turnover during cytokinetic abscission. J. Cell Sci. 136, jcs261097 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ghazi-Tabatabai, S. et al. Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24. Structure 16, 1345–1356 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Lata, S. et al. Helical structures of ESCRT-III are disassembled by VPS4. Science 321, 1354–1357 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pires, R. et al. A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 17, 843–856 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Effantin, G. et al. ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding. Cell. Microbiol. 15, 213–226 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Shen, Q.-T. et al. Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly. J. Cell Biol. 206, 763–777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chiaruttini, N. et al. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163, 866–879 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Henne, W. M., Buchkovich, N. J., Zhao, Y. & Emr, S. D. The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell 151, 356–371 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Guizetti, J. et al. Cortical constriction during abscission involves helices of ESCRT-III–dependent filaments. Science 331, 1616–1620 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Goliand, I. et al. Resolving ESCRT-III spirals at the intercellular bridge of dividing cells using 3D STORM. Cell Rep. 24, 1756–1764 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Cashikar, A. G. et al. Structure of cellular ESCRT-III spirals and their relationship to HIV budding. eLife 3, e02184 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lee, I.-H., Kai, H., Carlson, L.-A., Groves, J. T. & Hurley, J. H. Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly. Proc. Natl Acad. Sci. USA 112, 15892–15897 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bertin, A. et al. Human ESCRT-III polymers assemble on positively curved membranes and induce helical membrane tube formation. Nat. Commun. 11, 2663 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Filseck, J. M. et al. Anisotropic ESCRT-III architecture governs helical membrane tube formation. Nat. Commun. 11, 1516 (2020).

    Article  Google Scholar 

  58. Franceschi, N. D. et al. The ESCRT protein CHMP2B acts as a diffusion barrier on reconstituted membrane necks. J. Cell Sci. 132, jcs217968 (2018).

    Article  PubMed  Google Scholar 

  59. Junglas, B. et al. Structural basis for Vipp1 membrane binding: from loose coats and carpets to ring and rod assemblies. Nat. Struct. Mol. Biol. 32, 555–570 (2025).

    Article  CAS  PubMed  Google Scholar 

  60. Naskar, S. et al. Mechanism for Vipp1 spiral formation, ring biogenesis, and membrane repair. Nat. Struct. Mol. Biol. 32, 571–584 (2025).

    Article  CAS  PubMed  Google Scholar 

  61. Pan, S. et al. The cyanobacterial protein VIPP1 forms ESCRT-III-like structures on lipid bilayers. Nat. Struct. Mol. Biol. 32, 543–554 (2025).

    Article  CAS  PubMed  Google Scholar 

  62. Harker-Kirschneck, L., Baum, B. & Šarić, A. Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico. BMC Biol. 17, 82 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jukic, N., Perrino, A. P., Humbert, F., Roux, A. & Scheuring, S. Snf7 spirals sense and alter membrane curvature. Nat. Commun. 13, 2174 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moss, F. R. et al. Brominated lipid probes expose structural asymmetries in constricted membranes. Nat. Struct. Mol. Biol. 30, 167–175 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Scheuring, S. et al. Mammalian cells express two VPS4 proteins both of which are involved in intracellular protein trafficking. J. Mol. Biol. 312, 469–480 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Dvilansky, I., Altaras, Y., Kamenetsky, N., Nachmias, D. & Elia, N. The human AAA-ATPase VPS4A isoform and its co-factor VTA1 have a unique function in regulating mammalian cytokinesis abscission. PLoS Biol. 22, e3002327 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Das, D. et al. VPS4A is the selective receptor for lipophagy in mice and humans. Mol. Cell 84, 4436–4453.e8 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, D. et al. VPS4B deficiency causes early embryonic lethality and induces signal transduction disorders of cell endocytosis. Genesis 59, e23415 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Wenzel, D. M. et al. Comprehensive analysis of the human ESCRT-III-MIT domain interactome reveals new cofactors for cytokinetic abscission. eLife 11, e77779 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Monroe, N. et al. The oligomeric state of the active Vps4 AAA ATPase. J. Mol. Biol. 426, 510–525 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Han, H. et al. Binding of substrates to the central pore of the Vps4 ATPase is autoinhibited by the microtubule interacting and trafficking (MIT) domain and activated by MIT interacting motifs (MIMs). J. Biol. Chem. 290, 13490–13499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Monroe, N., Han, H., Shen, P. S., Sundquist, W. I. & Hill, C. P. Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase. eLife 6, e24487 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yang, B., Stjepanovic, G., Shen, Q., Martin, A. & Hurley, J. H. Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. Nat. Struct. Mol. Biol. 22, 492–498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Scott, A. et al. Structure and ESCRT-III protein interactions of the MIT domain of human VPS4A. Proc. Natl Acad. Sci. USA 102, 13813–13818 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stuchell-Brereton, M. D. et al. ESCRT-III recognition by VPS4 ATPases. Nature 449, 740–744 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Obita, T. et al. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735–739 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Shim, S., Merrill, S. A. & Hanson, P. I. Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly. Mol. Biol. Cell 19, 2661–2672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Merrill, S. A. & Hanson, P. I. Activation of human VPS4A by ESCRT-III proteins reveals ability of substrates to relieve enzyme autoinhibition*. J. Biol. Chem. 285, 35428–35438 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Azmi, I. F. et al. ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1. Dev. Cell 14, 50–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Vild, C. J., Li, Y., Guo, E. Z., Liu, Y. & Xu, Z. A novel mechanism of regulating the ATPase VPS4 by Its Cofactor LIP5 and the endosomal sorting complex required for transport (ESCRT)-III protein CHMP5*. J. Biol. Chem. 290, 7291–7303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xiao, J. et al. Structural basis of Vta1 function in the multivesicular body sorting pathway. Dev. Cell 14, 37–49 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Caillat, C., Maity, S., Miguet, N., Roos, W. H. & Weissenhorn, W. The role of VPS4 in ESCRT-III polymer remodeling. Biochem. Soc. Trans. 47, 441–448 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Pfitzner, A.-K., Filseck, J. M. von & Roux, A. Principles of membrane remodeling by dynamic ESCRT-III polymers. Trends Cell Biol. 31, 856–868 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Fabrikant, G. et al. Computational model of membrane fission catalyzed by ESCRT-III. PLoS Comput. Biol. 5, e1000575 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lenz, M., Crow, D. J. G. & Joanny, J.-F. Membrane buckling induced by curved filaments. Phys. Rev. Lett. 103, 038101 (2009).

    Article  PubMed  Google Scholar 

  86. Liu, M. et al. Three-dimensional architecture of ESCRT-III flat spirals on the membrane. Proc. Natl Acad. Sci. USA 121, e2319115121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schöneberg, J., Lee, I.-H., Iwasa, J. H. & Hurley, J. H. Reverse-topology membrane scission by the ESCRT proteins. Nat. Rev. Mol. Cell Biol. 18, 5–17 (2017).

    Article  PubMed  Google Scholar 

  88. Pfitzner, A.-K. et al. An ESCRT-III polymerization sequence drives membrane deformation and fission. Cell 182, 1140–1155.e18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schöneberg, J. et al. ATP-dependent force generation and membrane scission by ESCRT-III and Vps4. Science 362, 1423–1428 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ader, N. R. et al. An ESCRT grommet cooperates with a diffusion barrier to maintain nuclear integrity. Nat. Cell Biol. 25, 1465–1477 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rue, S. M., Mattei, S., Saksena, S. & Emr, S. D. Novel Ist1-Did2 Complex functions at a late step in multivesicular body sorting. Mol. Biol. Cell 19, 475–484 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dimaano, C., Jones, C. B., Hanono, A., Curtiss, M. & Babst, M. Ist1 regulates Vps4 localization and assembly. Mol. Biol. Cell 19, 465–474 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bajorek, M. et al. Biochemical analyses of human IST1 and its function in cytokinesis. Mol. Biol. Cell 20, 1360–1373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Morita, E. et al. ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe 9, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kozlovsky, Y. & Kozlov, M. M. Membrane fission: model for intermediate structures. Biophys. J. 85, 85–96 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kozlov, M. M., McMahon, H. T. & Chernomordik, L. V. Protein-driven membrane stresses in fusion and fission. Trends Biochem. Sci. 35, 699–706 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Johnson, D. S., Bleck, M. & Simon, S. M. Timing of ESCRT-III protein recruitment and membrane scission during HIV-1 assembly. eLife 7, e36221 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Cada, A. K. et al. Friction-driven membrane scission by the human ESCRT-III proteins CHMP1B and IST1. Proc. Natl. Acad. Sci. USA 119, e2204536119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Flower, T. G. et al. A helical assembly of human ESCRT-I scaffolds reverse-topology membrane scission. Nat. Struct. Mol. Biol. 27, 570–580 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, Y. et al. Biomolecular condensates mediate bending and scission of endosome membranes. Nature 634, 1204–1210 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. King, M. C., Lusk, C. P. & Ader, N. R. Sense, plug, and seal: proteins as both rapid responders and constitutive barriers supporting organelle compartmentalization. Mol. Biol. Cell 36, pe6 (2025).

    Article  CAS  PubMed  Google Scholar 

  102. Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Hatch, E. M. & Hetzer, M. W. Nuclear envelope rupture is induced by actin-based nucleus confinement. J. Cell Biol. 215, 27–36 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang, Q. et al. Local, transient tensile stress on the nuclear membrane causes membrane rupture. Mol. Biol. Cell 30, 899–906 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kovacs, M. T. et al. DNA damage induces nuclear envelope rupture through ATR-mediated phosphorylation of lamin A/C. Mol. Cell 83, 3659–3668.e10 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, N. Y. et al. Fibroblasts lacking nuclear lamins do not have nuclear blebs or protrusions but nevertheless have frequent nuclear membrane ruptures. Proc. Natl Acad. Sci. USA 115, 10100–10105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Heerden, D. V., Klima, S. & Bout, I. V. D. How nuclear envelope dynamics can direct laminopathy phenotypes. Curr. Opin. Cell Biol. 86, 102290 (2024).

    Article  PubMed  Google Scholar 

  109. Olmos, Y., Hodgson, L., Mantell, J., Verkade, P. & Carlton, J. G. ESCRT-III controls nuclear envelope reformation. Nature 522, 236–239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vietri, M. et al. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522, 231–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Halfmann, C. T. et al. Repair of nuclear ruptures requires barrier-to-autointegration factor. J. Cell Biol. 218, 2136–2149 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Haraguchi, T. et al. BAF is required for emerin assembly into the reforming nuclear envelope. J. Cell Sci. 114, 4575–4585 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Haraguchi, T. et al. Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. J. Cell Sci. 121, 2540–2554 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Samwer, M. et al. DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes. Cell 170, 956–972.e23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Olmos, Y., Perdrix-Rosell, A. & Carlton, J. G. Membrane binding by CHMP7 coordinates ESCRT-III-dependent nuclear envelope reformation. Curr. Biol. 26, 2635–2641 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pieper, G. H., Sprenger, S., Teis, D. & Oliferenko, S. ESCRT-III/Vps4 controls heterochromatin-nuclear envelope attachments. Dev. Cell 53, 27–41.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Barger, S. R., Penfield, L. & Bahmanyar, S. Nuclear envelope assembly relies on CHMP-7 in the absence of BAF–LEM-mediated hole closure. J. Cell Sci. 136, jcs261385 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Thaller, D. J. et al. Direct binding of ESCRT protein Chm7 to phosphatidic acid-rich membranes at nuclear envelope herniations. J. Cell Biol. 220, e202004222 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wallis, S. S. et al. The ESCRT machinery counteracts Nesprin-2G-mediated mechanical forces during nuclear envelope repair. Dev. Cell 56, 3192–3202.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Thaller, D. J. et al. An ESCRT-LEM protein surveillance system is poised to directly monitor the nuclear envelope and nuclear transport system. eLife 8, e45284 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Schwedler et al. The protein network of HIV budding. Cell 114, 701–713 (2003).

    Article  Google Scholar 

  122. Adell, M. A. Y. et al. Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation. J. Cell Biol. 205, 33–49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Krupina, K., Goginashvili, A. & Cleveland, D. W. Causes and consequences of micronuclei. Curr. Opin. Cell Biol. 70, 91–99 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu, S. et al. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561, 551–555 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Willan, J. et al. ESCRT-III is necessary for the integrity of the nuclear envelope in micronuclei but is aberrant at ruptured micronuclear envelopes generating damage. Oncogenesis 8, 29 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Vietri, M. et al. Unrestrained ESCRT-III drives micronuclear catastrophe and chromosome fragmentation. Nat. Cell Biol. 22, 856–867 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Gatta, A. T. et al. CDK1 controls CHMP7-dependent nuclear envelope reformation. eLife 10, e59999 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bona, M. D. et al. Micronuclear collapse from oxidative damage. Science 385, eadj8691 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Martin, S. et al. A p62-dependent rheostat dictates micronuclei catastrophe and chromosome rearrangements. Science 385, eadj7446 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cheng, X., Zhang, X., Yu, L. & Xu, H. Calcium signaling in membrane repair. Semin. Cell Dev. Biol. 45, 24–31 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jimenez, A. J. et al. ESCRT machinery is required for plasma membrane repair. Science 343, 1247136 (2014).

    Article  PubMed  Google Scholar 

  133. Scheffer, L. L. et al. Mechanism of Ca2+-triggered ESCRT assembly and regulation of cell membrane repair. Nat. Commun. 5, 5646 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Sønder, S. L. et al. Annexin A7 is required for ESCRT III-mediated plasma membrane repair. Sci. Rep. 9, 6726 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Gong, Y.-N. et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169, 286–300.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rühl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    Article  PubMed  Google Scholar 

  137. Ritter, A. T. et al. ESCRT-mediated membrane repair protects tumor-derived cells against T cell attack. Science 376, 377–382 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Stefani, C. et al. LITAF protects against pore-forming protein-induced cell death by promoting membrane repair. Sci. Immunol. 9, eabq6541 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rodríguez-Silvestre, P. et al. Perforin-2 is a pore-forming effector of endocytic escape in cross-presenting dendritic cells. Science 380, 1258–1265 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Skowyra, M. L., Schlesinger, P. H., Naismith, T. V. & Hanson, P. I. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science 360, eaar5078 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Radulovic, M. et al. ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival. EMBO J. 37, EMBJ201899753 (2018).

    Article  Google Scholar 

  142. Shukla, S., Larsen, K. P., Ou, C., Rose, K. & Hurley, J. H. In vitro reconstitution of calcium-dependent recruitment of the human ESCRT machinery in lysosomal membrane repair. Proc. Natl Acad. Sci. USA 119, e2205590119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shukla, S. et al. Mechanism and cellular function of direct membrane binding by the ESCRT and ERES-associated Ca2+-sensor ALG-2. Proc. Natl Acad. Sci. USA 121, e2318046121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chen, W., Motsinger, M. M., Li, J., Bohannon, K. P. & Hanson, P. I. Ca2+-sensor ALG-2 engages ESCRTs to enhance lysosomal membrane resilience to osmotic stress. Proc. Natl Acad. Sci. USA 121, e2318412121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mercier, V. et al. Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation. Nat. Cell Biol. 22, 947–959 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rose, K. et al. Tau fibrils induce nanoscale membrane damage and nucleate cytosolic tau at lysosomes. Proc. Natl Acad. Sci. USA 121, e2315690121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen, J. J. et al. Compromised function of the ESCRT pathway promotes endolysosomal escape of tau seeds and propagation of tau aggregation. J. Biol. Chem. 294, 18952–18966 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bussi, C. et al. Stress granules plug and stabilize damaged endolysosomal membranes. Nature 623, 1062–1069 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ebstrup, M. L. et al. Annexin A7 mediates lysosome repair independently of ESCRT-III. Front. Cell Dev. Biol. 11, 1211498 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Radulovic, M., Yang, C. & Stenmark, H. Lysosomal membrane homeostasis and its importance in physiology and disease. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-025-00873-w (2025).

  151. Bohannon, K. P. & Hanson, P. I. ESCRT puts its thumb on the nanoscale: fixing tiny holes in endolysosomes. Curr. Opin. Cell Biol. 65, 122–130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nozawa, T. et al. Rab41-mediated ESCRT machinery repairs membrane rupture by a bacterial toxin in xenophagy. Nat. Commun. 14, 6230 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yamamoto, H., Zhang, S. & Mizushima, N. Autophagy genes in biology and disease. Nat. Rev. Genet. 24, 382–400 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Filimonenko, M. et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485–500 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lee, J.-A., Beigneux, A., Ahmad, S. T., Young, S. G. & Gao, F.-B. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr. Biol. 17, 1561–1567 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Rusten, T. E. et al. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr. Biol. 17, 1817–1825 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Takahashi, Y. et al. An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat. Commun. 9, 2855 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Zhen, Y. et al. ESCRT-mediated phagophore sealing during mitophagy. Autophagy 16, 826–841 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Takahashi, Y. et al. VPS37A directs ESCRT recruitment for phagophore closure. J. Cell Biol. 218, 3336–3354 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhou, F. et al. Rab5-dependent autophagosome closure by ESCRT. J. Cell Biol. 218, 1908–1927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Liao, Y.-C. et al. COPII with ALG2 and ESCRTs control lysosome-dependent microautophagy of ER exit sites. Dev. Cell 59, 1410–1424.e4 (2024).

    Article  CAS  PubMed  Google Scholar 

  162. Wang, W. et al. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. Proc. Natl Acad. Sci. USA 112, E1373–E1381 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. McGourty, C. A. et al. Regulation of the CUL3 ubiquitin ligase by a calcium-dependent co-adaptor. Cell 167, 525–538.e14 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Lie-Jensen, A. et al. Centralspindlin recruits ALIX to the midbody during cytokinetic abscission in drosophila via a mechanism analogous to virus budding. Curr. Biol. 29, 3538–3548.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tedeschi, A. et al. Cep55 promotes cytokinesis of neural progenitors but is dispensable for most mammalian cell divisions. Nat. Commun. 11, 1746 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Goliand, I., Nachmias, D., Ofir, G. & Elia, N. Inhibition of ESCRT II-CHMP6 interactions impede cytokinetic abscission and leads to cell death. Mol. Biol. Cell 25, mbc.E14–08-1317 (2014).

    Article  Google Scholar 

  169. Christ, L. et al. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J. Cell Biol. 212, 499–513 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Elia, N., Sougrat, R., Spurlin, T. A., Hurley, J. H. & Lippincott-Schwartz, J. Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc. Natl Acad. Sci. USA 108, 4846–4851 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Schiel, J. A. et al. FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis. Nat. Cell Biol. 14, 1068–1078 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Frémont, S. et al. Oxidation of F-actin controls the terminal steps of cytokinesis. Nat. Commun. 8, 14528 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Addi, C. et al. The Flemmingsome reveals an ESCRT-to-membrane coupling via ALIX/syntenin/syndecan-4 required for completion of cytokinesis. Nat. Commun. 11, 1941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Connell, J. W., Lindon, C., Luzio, J. P. & Reid, E. Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 10, 42–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Advedissian, T., Frémont, S. & Echard, A. Cytokinetic abscission requires actin-dependent microtubule severing. Nat. Commun. 15, 1949 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yang, D. et al. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nat. Struct. Mol. Biol. 15, 1278–1286 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Eikenes, ÅH. et al. ALIX and ESCRT-III coordinately control cytokinetic abscission during germline stem cell division in vivo. PLoS Genet. 11, e1004904 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Matias, N. R., Mathieu, J. & Huynh, J.-R. Abscission is regulated by the ESCRT-III protein shrub in drosophila germline stem cells. PLoS Genet. 11, e1004653 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Hermant, C., Matias, N. R., Michel-Hissier, P., Huynh, J.-R. & Mathieu, J. Lethal giant disc is a target of Cdk1 and regulates ESCRT-III localization during germline stem cell abscission. Development 151, dev202306 (2024).

    Article  CAS  PubMed  Google Scholar 

  180. Carlton, J. G., Caballe, A., Agromayor, M., Kloc, M. & Martin-Serrano, J. ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336, 220–225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Capalbo, L. et al. The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis. Open. Biol. 2, 120070 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Mackay, D. R., Makise, M. & Ullman, K. S. Defects in nuclear pore assembly lead to activation of an Aurora B–mediated abscission checkpoint. J. Cell Biol. 191, 923–931 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Mackay, D. R. & Ullman, K. S. ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission. Mol. Biol. Cell 26, 2217–2226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Strohacker, L. K. et al. Identification of abscission checkpoint bodies as structures that regulate ESCRT factors to control abscission timing. eLife 10, e63743 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Thoresen, S. B. et al. ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat. Cell Biol. 16, 547–557 (2014).

    Article  Google Scholar 

  186. Lafaurie-Janvore, J. et al. ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge. Science 339, 1625–1629 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Andrade, V. et al. Caveolae promote successful abscission by controlling intercellular bridge tension during cytokinesis. Sci. Adv. 8, eabm5095 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. McMillan, B. J. et al. Structural basis for regulation of ESCRT-III complexes by lgd. Cell Rep. 19, 1750–1757 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Martinelli, N. et al. CC2D1A is a regulator of ESCRT-III CHMP4B. J. Mol. Biol. 419, 75–88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ventimiglia, L. N. et al. CC2D1B coordinates ESCRT-III activity during the mitotic reformation of the nuclear envelope. Dev. Cell 47, 547–563.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Raiborg, C. et al. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J. Cell Sci. 114, 2255–2263 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Katzmann, D. J., Stefan, C. J., Babst, M. & Emr, S. D. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol. 162, 413–423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Merigliano, C. et al. AKTIP interacts with ESCRT I and is needed for the recruitment of ESCRT III subunits to the midbody. PLoS Genet. 17, e1009757 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Caballe, A. et al. ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins. eLife 4, e06547 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Paine, E. L. et al. The Calpain-7 protease functions together with the ESCRT-III protein IST1 within the midbody to regulate the timing and completion of abscission. eLife 12, e84515 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Richard, A. et al. Methylation of ESCRT-III components regulates the timing of cytokinetic abscission. Nat. Commun. 15, 4023 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Crespo-Yàñez, X. et al. CHMP1B is a target of USP8/UBPY regulated by ubiquitin during endocytosis. PLoS Genet. 14, e1007456 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Mathieu, J., Michel-Hissier, P., Boucherit, V. & Huynh, J.-R. The deubiquitinase USP8 targets ESCRT-III to promote incomplete cell division. Science 376, 818–823 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Hurtig, F. et al. The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division. Sci. Adv. 9, eade5224 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Pulschen, A. A. et al. Live imaging of a hyperthermophilic archaeon reveals distinct roles for two ESCRT-III homologs in ensuring a robust and symmetric division. Curr. Biol. 30, 2852–2859.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Risa, G. T. et al. The proteasome controls ESCRT-III–mediated cell division in an archaeon. Science 369, eaaz2532 (2020).

    Article  PubMed Central  Google Scholar 

  202. Clayton, E. L. et al. Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology. Acta Neuropathol. 130, 511–523 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat. Genet. 37, 806–808 (2005).

    Article  CAS  PubMed  Google Scholar 

  204. Holm, I. E., Englund, E., Mackenzie, I. R. A., Johannsen, P. & Isaacs, A. M. A reassessment of the neuropathology of frontotemporal dementia linked to chromosome 3. J. Neuropathol. Exp. Neurol. 66, 884–891 (2007).

    Article  PubMed  Google Scholar 

  205. Deng, X. et al. CHMP2B regulates TDP-43 phosphorylation and cytotoxicity independent of autophagy via CK1. J. Cell Biol. 221, e202103033 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Belly, A. et al. CHMP2B mutants linked to frontotemporal dementia impair maturation of dendritic spines. J. Cell Sci. 123, 2943–2954 (2010).

    Article  CAS  PubMed  Google Scholar 

  207. Chassefeyre, R. et al. Regulation of postsynaptic function by the dementia-related ESCRT-III subunit CHMP2B. J. Neurosci. 35, 3155–3173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Clayton, E. L., Bonnycastle, K., Isaacs, A. M., Cousin, M. A. & Schorge, S. A novel synaptopathy-defective synaptic vesicle protein trafficking in the mutant CHMP2B mouse model of frontotemporal dementia. J. Neurochem. 160, 412–425 (2022).

    Article  CAS  PubMed  Google Scholar 

  209. Coyne, A. N. et al. Nuclear accumulation of CHMP7 initiates nuclear pore complex injury and subsequent TDP-43 dysfunction in sporadic and familial ALS. Sci. Transl. Med. 13, eabe1923 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Rodger, C. et al. De novo VPS4A mutations cause multisystem disease with abnormal neurodevelopment. Am. J. Hum. Genet. 107, 1129–1148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Scourfield, E. J. & Martin-Serrano, J. Growing functions of the ESCRT machinery in cell biology and viral replication. Biochem. Soc. Trans. 45, 613–634 (2017).

    Article  CAS  PubMed  Google Scholar 

  212. Rheinemann, L. et al. RetroCHMP3 blocks budding of enveloped viruses without blocking cytokinesis. Cell 184, 5419–5431.e16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Arii, J. et al. ESCRT-III mediates budding across the inner nuclear membrane and regulates its integrity. Nat. Commun. 9, 3379 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Mattissek, C. & Teis, D. The role of the endosomal sorting complexes required for transport (ESCRT) in tumorigenesis. Mol. Membr. Biol. 31, 111–119 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Szymańska, E. et al. Synthetic lethality between VPS4A and VPS4B triggers an inflammatory response in colorectal cancer. EMBO Mol. Med. 12, EMMM201910812 (2020).

    Article  Google Scholar 

  216. Neggers, J. E. et al. Synthetic lethal interaction between the ESCRT paralog enzymes VPS4A and VPS4B in cancers harboring loss of chromosome 18q or 16q. Cell Rep. 33, 108493 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Kolmus, K. et al. Concurrent depletion of Vps37 proteins evokes ESCRT-I destabilization and profound cellular stress responses. J. Cell Sci. 134, jcs250951 (2021).

    Article  CAS  PubMed  Google Scholar 

  218. Bernareggi, D. et al. CHMP2A regulates tumor sensitivity to natural killer cell-mediated cytotoxicity. Nat. Commun. 13, 1899 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zheng, Y. et al. CHMP3 promotes the progression of hepatocellular carcinoma by inhibiting caspase-1-dependent pyroptosis. Int. J. Oncol. 64, 8 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Song, S. et al. CHMP4A stimulates CD8+ T-lymphocyte infiltration and inhibits breast tumor growth via the LSD1/IFNβ axis. Cancer Sci. 114, 3162–3175 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Lin, S., Wang, M., Cao, Q. & Li, Q. Chromatin modified protein 4C (CHMP4C) facilitates the malignant development of cervical cancer cells. FEBS Open. Bio 10, 1295–1303 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Yu, L. et al. CHMP4C promotes pancreatic cancer progression by inhibiting necroptosis via the RIPK1/RIPK3/MLKL pathway. J. Adv. Res. https://doi.org/10.1016/j.jare.2025.01.040 (2025).

  223. Sadler, J. B. A. et al. A cancer-associated polymorphism in ESCRT-III disrupts the abscission checkpoint and promotes genome instability. Proc. Natl Acad. Sci. USA 115, E8900–E8908 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Umphred-Wilson, K. et al. The ESCRT protein CHMP5 promotes T cell leukemia by enabling BRD4-p300-dependent transcription. Nat. Commun. 16, 4133 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Monypenny, J. et al. ALIX regulates tumor-mediated immunosuppression by controlling EGFR activity and PD-L1 presentation. Cell Rep. 24, 630–641 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Baietti, M. F. et al. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677–685 (2012).

    Article  CAS  PubMed  Google Scholar 

  227. Yeat, N. Y., Liu, L.-H., Chang, Y.-H., Lai, C. P.-K. & Chen, R.-H. Bro1 proteins determine tumor immune evasion and metastasis by controlling secretion or degradation of multivesicular bodies. Dev. Cell 60, 2114–2130 (2025).

    Article  CAS  PubMed  Google Scholar 

  228. Shiels, A. et al. CHMP4B, a novel gene for autosomal dominant cataracts linked to chromosome 20q. Am. J. Hum. Genet. 81, 596–606 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Gulluni, F. et al. PI(3,4)P2-mediated cytokinetic abscission prevents early senescence and cataract formation. Science 374, eabk0410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Sagona, A. P., Nezis, I. P. & Stenmark, H. Association of CHMP4B and autophagy with micronuclei: implications for cataract formation. BioMed. Res. Int. 2014, 974393 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Zhou, Y., Bennett, T. M. & Shiels, A. A charged multivesicular body protein (CHMP4B) is required for lens growth and differentiation. Differentiation 109, 16–27 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.G.C. is a Wellcome Trust Senior Research Fellow (grant no. 224484/Z/21/Z) and is supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (grant no. CC1002), the UK Medical Research Council (grant no. CC1002) and the Wellcome Trust (grant no. CC1002). M.B. is supported by an EMBO Postdoctoral Fellowship (grant no. ALTF 754-2023) and a Marie Skłodowska-Curie Actions via Horizon Europe Fellowship, underwritten through the EPSRC Horizon Europe Guarantee scheme. This research was funded in whole, or in part, by the Wellcome Trust (grant no. 224484/Z/21/Z, CC1002). For the purpose of Open Access, the authors have applied a Creative Commons Attribution (CC BY) public copyright licence to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to J. G. Carlton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Katharine Ullman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Coarse-grained simulations

Modelling techniques that simplify complex systems by grouping atoms or molecules into larger units (called beads), enabling the study of larger assemblies and longer timescales.

Laminopathies

A group of rare genetic disorders caused by mutations in genes encoding nuclear lamina protein, leading to abnormalities in nuclear shape and structure and resulting in conditions such as progeria syndromes and muscular dystrophies.

Midbody

A transient, protein-rich structure that assembles at the intercellular bridge during cytokinesis in mammalian cells.

Open mitosis

A type of cell division in higher eukaryotes where the nuclear envelope completely breaks down to allow chromosome segregation.

Stochastic optical reconstruction microscopy

A super-resolution imaging technique that uses the random switching of fluorescent molecules on and off to reconstruct highly detailed images beyond the diffraction limit.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burigotto, M., Carlton, J.G. ESCRT-III function in membrane fission and repair. Nat Rev Mol Cell Biol (2025). https://doi.org/10.1038/s41580-025-00909-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41580-025-00909-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing