Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heterogeneity, dynamics and organelle interactions of lipid droplets

Abstract

Lipid droplets (LDs) are emerging as key factors in cellular physiology, with roles beyond energy storage, including metabolic homeostasis, signalling and development. Together with a growing list of functions, diverse LD populations are being identified in different tissue types as well as within the context of single cells. Here we summarize recent work highlighting LD diversity from three perspectives: their lipid and protein compositional heterogeneity; differences in abundance, size and spatial organization within cells; and the diverse contacts they form with other organelles, all of which contribute to LD function. We also discuss tools and approaches used to visualize LD heterogeneity, the role of LDs in pathophysiology and disease, and open questions in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The life cycle of an LD.
Fig. 2: LD compositional and spatial heterogeneity.
Fig. 3: Heterogeneity of LD–organelle contacts.

Similar content being viewed by others

References

  1. Thiam, A. R., Farese, R. V. Jr. & Walther, T. C. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 14, 775–786 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wolk, M. & Fedorova, M. The lipid droplet lipidome. FEBS Lett. 598, 1215–1225 (2024).

    Article  PubMed  Google Scholar 

  3. Bersuker, K. et al. A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes. Dev. Cell 44, 97–112.e117 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Krahmer, N. et al. Protein correlation profiles identify lipid droplet proteins with high confidence. Mol. Cell Proteom. 12, 1115–1126 (2013).

    Article  CAS  Google Scholar 

  5. Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cohen, S. Lipid droplets as organelles. Int. Rev. Cell Mol. Biol. 337, 83–110 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Henne, W. M. The (social) lives, deaths, and biophysical phases of lipid droplets. Curr. Opin. Cell Biol. 82, 102178 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Petan, T., Jarc, E. & Jusovic, M. Lipid droplets in cancer: guardians of fat in a stressful world. Molecules 23, 1941 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Walther, T. C., Chung, J. & Farese, R. V. Jr. Lipid droplet biogenesis. Annu. Rev. Cell Dev. Biol. 33, 491–510 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jackson, C. L. Lipid droplet biogenesis. Curr. Opin. Cell Biol. 59, 88–96 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Zadoorian, A., Du, X. & Yang, H. Lipid droplet biogenesis and functions in health and disease. Nat. Rev. Endocrinol. 19, 443–459 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Farese, R. V. Jr. & Walther, T. C. Glycerolipid synthesis and lipid droplet formation in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 15, a041246 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bersuker, K. & Olzmann, J. A. Establishing the lipid droplet proteome: mechanisms of lipid droplet protein targeting and degradation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 1166–1177 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Dhiman, R., Caesar, S., Thiam, A. R. & Schrul, B. Mechanisms of protein targeting to lipid droplets: a unified cell biological and biophysical perspective. Semin. Cell Dev. Biol. 108, 4–13 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Olarte, M. J., Swanson, J. M. J., Walther, T. C. & Farese, R. V. Jr. The CYTOLD and ERTOLD pathways for lipid droplet–protein targeting. Trends Biochem. Sci. 47, 39–51 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Choudhary, V., Ojha, N., Golden, A. & Prinz, W. A. A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J. Cell Biol. 211, 261–271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jacquier, N. et al. Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J. Cell Sci. 124, 2424–2437 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Cottier, S. & Schneiter, R. Lipid droplets form a network interconnected by the endoplasmic reticulum through which their proteins equilibrate. J. Cell Sci. 135, jcs258819 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Kumar, A., Yadav, S. & Choudhary, V. The evolving landscape of ER–LD contact sites. Front. Cell Dev. Biol. 12, 1483902 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162–167 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, H. et al. Seipin is required for converting nascent to mature lipid droplets. eLife 5, e16582 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Salo, V. T. et al. Seipin facilitates triglyceride flow to lipid droplet and counteracts droplet ripening via endoplasmic reticulum contact. Dev. Cell 50, 478–493.e479 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Sui, X. et al. Cryo-electron microscopy structure of the lipid droplet-formation protein seipin. J. Cell Biol. 217, 4080–4091 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prasanna, X. et al. Seipin traps triacylglycerols to facilitate their nanoscale clustering in the endoplasmic reticulum membrane. PLoS Biol. 19, e3000998 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zoni, V. et al. Seipin accumulates and traps diacylglycerols and triglycerides in its ring-like structure. Proc. Natl Acad. Sci. USA 118, e2017205118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Renne, M. F., Corey, R. A., Ferreira, J. V., Stansfeld, P. J. & Carvalho, P. Seipin concentrates distinct neutral lipids via interactions with their acyl chain carboxyl esters. J. Cell Biol. 221, e202112068 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wolins, N. E., Brasaemle, D. L. & Bickel, P. E. A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett. 580, 5484–5491 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Wilfling, F. et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev. Cell 24, 384–399 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao, Q. & Goodman, J. M. The lipid droplet — a well-connected organelle. Front. Cell Dev. Biol. 3, 49 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kilwein, M. D. & Welte, M. A. Lipid droplet motility and organelle contacts. Contact https://doi.org/10.1177/2515256419895688 (2019).

    Article  PubMed  Google Scholar 

  31. Schuldiner, M. & Bohnert, M. A different kind of love — lipid droplet contact sites. Biochim. Biophys. Acta 1862, 1188–1196 (2017).

    Article  CAS  Google Scholar 

  32. Herker, E., Vieyres, G., Beller, M., Krahmer, N. & Bohnert, M. Lipid droplet contact sites in health and disease. Trends Cell Biol. 31, 345–358 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Roberts, M. A. & Olzmann, J. A. Protein quality control and lipid droplet metabolism. Annu. Rev. Cell Dev. Biol. 36, 115–139 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zechner, R., Madeo, F. & Kratky, D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat. Rev. Mol. Cell Biol. 18, 671–684 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Schott, M. B., Rozeveld, C. N., Weller, S. G. & McNiven, M. A. Lipophagy at a glance. J. Cell Sci. 135, jcs259402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barbosa, A. D. et al. Lipid partitioning at the nuclear envelope controls membrane biogenesis. Mol. Biol. Cell 26, 3641–3657 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nguyen, T. B. et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev. Cell 42, 9–21.e25 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rambold, A. S., Cohen, S. & Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 32, 678–692 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abela, G. S. Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation. J. Clin. Lipidol. 4, 156–164 (2010).

    Article  PubMed  Google Scholar 

  40. Nguyen, T. B. & Olzmann, J. A. Lipid droplets and lipotoxicity during autophagy. Autophagy 13, 2002–2003 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, H. et al. Cell cycle arrest induces lipid droplet formation and confers ferroptosis resistance. Nat. Commun. 15, 79 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dierge, E. et al. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab. 33, 1701–1715.e1705 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Lange, M. et al. FSP1-mediated lipid droplet quality control prevents neutral lipid peroxidation and ferroptosis. Nat. Cell Biol. 27, 1902–1913 (2025).

    Article  Google Scholar 

  44. Papsdorf, K. et al. Lipid droplets and peroxisomes are co-regulated to drive lifespan extension in response to mono-unsaturated fatty acids. Nat. Cell Biol. 25, 672–684 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, Z. et al. Lipid droplets control the maternal histone supply of Drosophila embryos. Curr. Biol. 22, 2104–2113 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mejhert, N. et al. Partitioning of MLX-family transcription factors to lipid droplets regulates metabolic gene expression. Mol. Cell 77, 1251–1264.e1259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Orban, T., Palczewska, G. & Palczewski, K. Retinyl ester storage particles (retinosomes) from the retinal pigmented epithelium resemble lipid droplets in other tissues. J. Biol. Chem. 286, 17248–17258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pan, H. et al. Centrins control chicken cone cell lipid droplet dynamics through lipid-droplet-localized SPDL1. Dev. Cell 58, 2528–2544.e2528 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Bosch, M. et al. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science 370, eaay8085 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Jarc, E. & Petan, T. A twist of FATe: lipid droplets and inflammatory lipid mediators. Biochimie 169, 69–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Chitraju, C. et al. Lipidomic analysis of lipid droplets from murine hepatocytes reveals distinct signatures for nutritional stress. J. Lipid Res. 53, 2141–2152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, L. et al. Structure and mechanism of human diacylglycerol O-acyltransferase 1. Nature 581, 329–332 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sui, X. et al. Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme. Nature 581, 323–328 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, S., Swanson, J. M. J. & Voth, G. A. Computational studies of lipid droplets. J. Phys. Chem. B 126, 2145–2154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dumesnil, C. et al. Cholesterol esters form supercooled lipid droplets whose nucleation is facilitated by triacylglycerols. Nat. Commun. 14, 915 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rogers, S. et al. Triglyceride lipolysis triggers liquid crystalline phases in lipid droplets and alters the LD proteome. J. Cell Biol. 221, jcb202205053 (2022).

    Article  Google Scholar 

  57. Mahamid, J. et al. Liquid–crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. Proc. Natl Acad. Sci. USA 116, 16866–16871 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Khor, V. K. et al. The proteome of cholesteryl-ester-enriched versus triacylglycerol-enriched lipid droplets. PLoS ONE 9, e105047 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Baumer, Y., Mehta, N. N., Dey, A. K., Powell-Wiley, T. M. & Boisvert, W. A. Cholesterol crystals and atherosclerosis. Eur. Heart J. 41, 2236–2239 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Turcu, A. F. & Auchus, R. J. Adrenal steroidogenesis and congenital adrenal hyperplasia. Endocrinol. Metab. Clin. North. Am. 44, 275–296 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Szkalisity, A. et al. Nuclear envelope-associated lipid droplets are enriched in cholesteryl esters and increase during inflammatory signaling. EMBO J. 44, 2774–2802 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Du, X. et al. ORP5 localizes to ER-lipid droplet contacts and regulates the level of PI(4)P on lipid droplets. J. Cell Biol. 219, jcb201905162 (2020).

    Article  Google Scholar 

  63. Krahmer, N. et al. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab. 14, 504–515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Aitchison, A. J., Arsenault, D. J. & Ridgway, N. D. Nuclear-localized CTP:phosphocholine cytidylyltransferase α regulates phosphatidylcholine synthesis required for lipid droplet biogenesis. Mol. Biol. Cell 26, 2927–2938 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Haider, A. et al. PCYT1A regulates phosphatidylcholine homeostasis from the inner nuclear membrane in response to membrane stored curvature elastic stress. Dev. Cell 45, 481–495.e488 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. M’barek, K. B. et al. ER membrane phospholipids and surface tension control cellular lipid droplet formation. Dev. Cell 41, 591–604.e597 (2017).

    Article  PubMed  Google Scholar 

  67. Gok, M. O., Speer, N. O., Henne, W. M. & Friedman, J. R. ER-localized phosphatidylethanolamine synthase plays a conserved role in lipid droplet formation. Mol. Biol. Cell 33, ar11 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kumar, S., Chitraju, C., Farese, R. V. Jr., Walther, T. C. & Burd, C. G. Conditional targeting of phosphatidylserine decarboxylase to lipid droplets. Biol. Open 10, bio058516 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kurokawa, Y. et al. Microautophagy in the yeast vacuole depends on the activities of phosphatidylinositol 4-kinases, Stt4p and Pik1p. Biochim. Biophys. Acta Biomembr. 1862, 183416 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Bigay, J. & Antonny, B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell 23, 886–895 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Chorlay, A. & Thiam, A. R. Neutral lipids regulate amphipathic helix affinity for model lipid droplets. J. Cell Biol. 219, jcb201907099 (2020).

    Article  Google Scholar 

  72. Ajjaji, D. et al. Dual binding motifs underpin the hierarchical association of perilipins1-3 with lipid droplets. Mol. Biol. Cell 30, 703–716 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Majchrzak, M. et al. Perilipin membrane integration determines lipid droplet heterogeneity in differentiating adipocytes. Cell Rep. 43, 114093 (2024).

    Article  CAS  PubMed  Google Scholar 

  74. Dias Araujo, A. R. et al. Surface tension-driven sorting of human perilipins on lipid droplets. J. Cell Biol. 223, jcb202403064 (2024).

    Article  Google Scholar 

  75. Greenberg, A. S. et al. Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J. Biol. Chem. 266, 11341–11346 (1991).

    Article  CAS  PubMed  Google Scholar 

  76. Bulankina, A. V. et al. TIP47 functions in the biogenesis of lipid droplets. J. Cell Biol. 185, 641–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Khaddaj, R., Stribny, J., Cottier, S. & Schneiter, R. Perilipin 3 promotes the formation of membrane domains enriched in diacylglycerol and lipid droplet biogenesis proteins. Front. Cell Dev. Biol. 11, 1116491 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hsieh, K. et al. Perilipin family members preferentially sequester to either triacylglycerol-specific or cholesteryl-ester-specific intracellular lipid storage droplets. J. Cell Sci. 125, 4067–4076 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, H. & Sztalryd, C. Oxidative tissue: perilipin 5 links storage with the furnace. Trends Endocrinol. Metab. 22, 197–203 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang, H. H. et al. Lipase-selective functional domains of perilipin a differentially regulate constitutive and protein kinase a-stimulated lipolysis. J. Biol. Chem. 278, 51535–51542 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Bi, J. et al. Opposite and redundant roles of the two Drosophila perilipins in lipid mobilization. J. Cell Sci. 125, 3568–3577 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Gao, Q. et al. Pet10p is a yeast perilipin that stabilizes lipid droplets and promotes their assembly. J. Cell Biol. 216, 3199–3217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Olarte, M. J. et al. Determinants of endoplasmic reticulum-to-lipid droplet protein targeting. Dev. Cell 54, 471–487.e477 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Henne, W. M., Reynolds, E. & Prinz, W. A. Lipid droplets: open questions and conceptual advances around a unique organelle. J. Cell Biol. 224, jcb202406019 (2025).

    Article  Google Scholar 

  85. Windham, I. A. et al. APOE traffics to astrocyte lipid droplets and modulates triglyceride saturation and droplet size. J. Cell Biol. 223, jcb202305003 (2024).

    Article  Google Scholar 

  86. Cartwright, B. R. & Goodman, J. M. Seipin: from human disease to molecular mechanism. J. Lipid Res. 53, 1042–1055 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Suzuki, M., Shinohara, Y., Ohsaki, Y. & Fujimoto, T. Lipid droplets: size matters. J. Electron Microsc. 60, S101–S116 (2011).

    CAS  Google Scholar 

  88. Calderon-Dominguez, M. et al. Fatty acid metabolism and the basis of brown adipose tissue function. Adipocyte 5, 98–118 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, H. et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J. Lipid Res. 52, 2159–2168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, Y. et al. Reorganization of mitochondria–organelle interactions during postnatal development in skeletal muscle. J. Physiol. 602, 891–912 (2024).

    Article  CAS  PubMed  Google Scholar 

  91. Kang, S. W. S. et al. A spatial map of hepatic mitochondria uncovers functional heterogeneity shaped by nutrient-sensing signaling. Nat. Commun. 15, 1799 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Eisenberg-Bord, M. et al. Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation. J. Cell Biol. 217, 269–282 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Teixeira, V. et al. Regulation of lipid droplets by metabolically controlled Ldo isoforms. J. Cell Biol. 217, 127–138 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hariri, H. et al. Lipid droplet biogenesis is spatially coordinated at ER–vacuole contacts under nutritional stress. EMBO Rep. 19, 57–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Alvarez-Guerra, I. et al. LDO proteins and Vac8 form a vacuole–lipid droplet contact site to enable starvation-induced lipophagy in yeast. Dev. Cell 59, 759–775.e755 (2024).

    Article  CAS  PubMed  Google Scholar 

  96. Hariri, H. et al. Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis. J. Cell Biol. 218, 1319–1334 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Herms, A. et al. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat. Commun. 6, 7176 (2015).

    Article  PubMed  Google Scholar 

  98. Pfisterer, S. G. et al. Role for formin-like 1-dependent acto-myosin assembly in lipid droplet dynamics and lipid storage. Nat. Commun. 8, 14858 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Stephenson, R. A. et al. Sequestration to lipid droplets promotes histone availability by preventing turnover of excess histones. Development 148, dev199381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shai, N. et al. Systematic mapping of contact sites reveals tethers and a function for the peroxisome–mitochondria contact. Nat. Commun. 9, 1761 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Tashiro, S., Kakimoto, Y., Shinmyo, M., Fujimoto, S. & Tamura, Y. Improved split-GFP systems for visualizing organelle contact sites in yeast and human cells. Front. Cell Dev. Biol. 8, 571388 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Miner, G. E. et al. Contact-FP: a dimerization-dependent fluorescent protein toolkit for visualizing membrane contact site dynamics. Contact 7, 25152564241228911 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Li, X. et al. A fluorogenic complementation tool kit for interrogating lipid droplet–organelle interaction. J. Cell Biol. 223, e202311126 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fung, H. K. H. et al. Genetically encoded multimeric tags for subcellular protein localization in cryo-EM. Nat. Methods 20, 1900–1908 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Binns, D. et al. An intimate collaboration between peroxisomes and lipid bodies. J. Cell Biol. 173, 719–731 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thazar-Poulot, N., Miquel, M., Fobis-Loisy, I. & Gaude, T. Peroxisome extensions deliver the arabidopsis SDP1 lipase to oil bodies. Proc. Natl Acad. Sci. USA 112, 4158–4163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Eisenberg-Bord, M., Shai, N., Schuldiner, M. & Bohnert, M. A tether is a tether is a tether: tethering at membrane contact sites. Dev. Cell 39, 395–409 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Knedlik, T. & Giacomello, M. Temporal dynamics of membrane contact sites. Nat. Cell Biol. 26, 1822–1824 (2024).

    Article  CAS  PubMed  Google Scholar 

  109. Castro, I. G. et al. Systematic analysis of membrane contact sites in Saccharomyces cerevisiae uncovers modulators of cellular lipid distribution. eLife 11, e74602 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Arlt, H. et al. Seipin forms a flexible cage at lipid droplet formation sites. Nat. Struct. Mol. Biol. 29, 194–202 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yan, R. et al. Human SEIPIN binds anionic phospholipids. Dev. Cell 47, 248–256.e244 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Song, J. et al. Identification of two pathways mediating protein targeting from ER to lipid droplets. Nat. Cell Biol. 24, 1364–1377 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Malis, Y. et al. Rab1b facilitates lipid droplet growth by ER-to-lipid droplet targeting of DGAT2. Sci. Adv. 10, eade7753 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xu, D. et al. Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J. Cell Biol. 217, 975–995 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ozeki, S. et al. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J. Cell Sci. 118, 2601–2611 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Li, D. et al. The ER-localized protein DFCP1 modulates ER–lipid droplet contact formation. Cell Rep. 27, 343–358.e345 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Jayson, C. B. K. et al. Rab18 is not necessary for lipid droplet biogenesis or turnover in human mammary carcinoma cells. Mol. Biol. Cell 29, 2045–2054 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Soni, K. G. et al. Coatomer-dependent protein delivery to lipid droplets. J. Cell Sci. 122, 1834–1841 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wilfling, F. et al. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. eLife 3, e01607 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Chen, S. et al. VPS13A and VPS13C influence lipid droplet abundance. Contact 5, 25152564221125613 (2022).

    PubMed  PubMed Central  Google Scholar 

  121. Kumar, N. et al. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J. Cell Biol. 217, 3625–3639 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xu, N. et al. The FATP1–DGAT2 complex facilitates lipid droplet expansion at the ER–lipid droplet interface. J. Cell Biol. 198, 895–911 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. de la Rosa Rodriguez, M. A. et al. Hypoxia-inducible lipid droplet-associated induces DGAT1 and promotes lipid storage in hepatocytes. Mol. Metab. 47, 101168 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Datta, S., Liu, Y., Hariri, H., Bowerman, J. & Henne, W. M. Cerebellar ataxia disease-associated Snx14 promotes lipid droplet growth at ER–droplet contacts. J. Cell Biol. 218, 1335–1351 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zouiouich, M. et al. MOSPD2 is an endoplasmic reticulum–lipid droplet tether functioning in LD homeostasis. J. Cell Biol. 221, e202110044 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Joshi, A. S., Ragusa, J. V., Prinz, W. A. & Cohen, S. Multiple C2 domain-containing transmembrane proteins promote lipid droplet biogenesis and growth at specialized endoplasmic reticulum subdomains. Mol. Biol. Cell 32, 1147–1157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mizrak, A. et al. Single-molecule analysis of protein targeting from the endoplasmic reticulum to lipid droplets. Preprint at bioRxiv https://doi.org/10.1101/2024.08.27.610018 (2024).

  128. Markgraf, D. F. et al. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER. Cell Rep. 6, 44–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Bem, D. et al. Loss-of-function mutations in RAB18 cause warburg micro syndrome. Am. J. Hum. Genet. 88, 499–507 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Carpanini, S. M. et al. A novel mouse model of warburg micro syndrome reveals roles for RAB18 in eye development and organisation of the neuronal cytoskeleton. Dis. Model. Mech. 7, 711–722 (2014).

    PubMed  PubMed Central  Google Scholar 

  131. Martin, S., Driessen, K., Nixon, S. J., Zerial, M. & Parton, R. G. Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J. Biol. Chem. 280, 42325–42335 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Xu, M. et al. Rab2A-mediated Golgi–lipid droplet interactions support very-low-density lipoprotein secretion in hepatocytes. EMBO J. 43, 6383–6409 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tang, S. et al. Association of HSD17B13 rs72613567: TA allelic variant with liver disease: review and meta-analysis. BMC Gastroenterol. 21, 490 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Du, Y. et al. A possible role of VPS13B in the formation of golgi-lipid droplet contacts associating with the ER. Contact 6, 25152564231195718 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Toulmay, A. et al. Vps13-like proteins provide phosphatidylethanolamine for GPI anchor synthesis in the ER. J. Cell Biol. 221, e202111095 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Neuman, S. D., Levine, T. P. & Bashirullah, A. A novel superfamily of bridge-like lipid transfer proteins. Trends Cell Biol. 32, 962–974 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ugrankar, R. et al. Drosophila snazarus regulates a lipid droplet population at plasma membrane-droplet contacts in adipocytes. Dev. Cell 50, 557–572.e555 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Matthaeus, C. et al. EHD2-mediated restriction of caveolar dynamics regulates cellular fatty acid uptake. Proc. Natl Acad. Sci. USA 117, 7471–7481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kimmel, A. R. & Sztalryd, C. The perilipins: major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu. Rev. Nutr. 36, 471–509 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Kuramoto, K. et al. Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation. J. Biol. Chem. 287, 23852–23863 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang, H. et al. Cardiomyocyte-specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction. J. Lipid Res. 54, 953–965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Benador, I. Y. et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab. 27, 869–885 e866 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bosma, M. et al. Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity. Biochim. Biophys. Acta 1831, 844–852 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Keenan, S. N. et al. Perilipin 5 deletion in hepatocytes remodels lipid metabolism and causes hepatic insulin resistance in mice. Diabetes 68, 543–555 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Gallardo-Montejano, V. I. et al. Perilipin 5 links mitochondrial uncoupled respiration in brown fat to healthy white fat remodeling and systemic glucose tolerance. Nat. Commun. 12, 3320 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Benador, I. Y., Veliova, M., Liesa, M. & Shirihai, O. S. Mitochondria bound to lipid droplets: where mitochondrial dynamics regulate lipid storage and utilization. Cell Metab. 29, 827–835 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pollak, N. M. et al. The interplay of protein kinase a and perilipin 5 regulates cardiac lipolysis. J. Biol. Chem. 290, 1295–1306 (2015).

    Article  PubMed  Google Scholar 

  148. Miner, G. E. et al. PLIN5 interacts with FATP4 at membrane contact sites to promote lipid droplet-to-mitochondria fatty acid transport. Dev. Cell 58, 1250–1265.e1256 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ouyang, Q. et al. Rab8a as a mitochondrial receptor for lipid droplets in skeletal muscle. Dev. Cell 58, 289–305.e286 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Kang, S. W. S. et al. Spatially resolved rewiring of mitochondria-lipid droplet interactions in hepatic lipid homeostasis. Preprint at bioRxiv https://doi.org/10.1101/2024.12.10.627730 (2024).

  151. Jagerstrom, S. et al. Lipid droplets interact with mitochondria using SNAP23. Cell Biol. Int. 33, 934–940 (2009).

    Article  PubMed  Google Scholar 

  152. Young, P. A. et al. Long-chain acyl-CoA synthetase 1 interacts with key proteins that activate and direct fatty acids into niche hepatic pathways. J. Biol. Chem. 293, 16724–16740 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang, J. et al. An ESCRT-dependent step in fatty acid transfer from lipid droplets to mitochondria through VPS13D–TSG101 interactions. Nat. Commun. 12, 1252 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Vietri, M., Radulovic, M. & Stenmark, H. The many functions of ESCRTs. Nat. Rev. Mol. Cell Biol. 21, 25–42 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Freyre, C. A. C., Rauher, P. C., Ejsing, C. S. & Klemm, R. W. MIGA2 links mitochondria, the ER, and lipid droplets and promotes de novo lipogenesis in adipocytes. Mol. Cell 76, 811–825.e814 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Hong, Z. et al. Mitoguardin-2-mediated lipid transfer preserves mitochondrial morphology and lipid droplet formation. J. Cell Biol. 221, e202207022 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kim, H., Lee, S., Jun, Y. & Lee, C. Structural basis for mitoguardin-2 mediated lipid transport at ER–mitochondrial membrane contact sites. Nat. Commun. 13, 3702 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wanders, R. J. A., Baes, M., Ribeiro, D., Ferdinandusse, S. & Waterham, H. R. The physiological functions of human peroxisomes. Physiol. Rev. 103, 957–1024 (2023).

    Article  CAS  PubMed  Google Scholar 

  159. Amado, L. et al. Pex3 promotes formation of peroxisome-peroxisome and peroxisome–lipid droplet contact sites. Sci. Rep. 15, 24480 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Traver, M. S. & Bartel, B. The ubiquitin–protein ligase MIEL1 localizes to peroxisomes to promote seedling oleosin degradation and lipid droplet mobilization. Proc. Natl Acad. Sci. USA 120, e2304870120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chang, C. L. et al. Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III. J. Cell Biol. 218, 2583–2599 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zimmermann, J. A. et al. Functional multi-organelle units control inflammatory lipid metabolism of macrophages. Nat. Cell Biol. 26, 1261–1273 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kaushik, S. & Cuervo, A. M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19, 365–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Schott, M. B. et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. J. Cell Biol. 218, 3320–3335 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kaushik, S. & Cuervo, A. M. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17, 759–770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kaushik, S. & Cuervo, A. M. AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy 12, 432–438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kaushik, S. et al. Chaperone-mediated autophagy regulates adipocyte differentiation. Sci. Adv. 8, eabq2733 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Khawaja, R. R. et al. Sex-specific and cell-type-specific changes in chaperone-mediated autophagy across tissues during aging. Nat. Aging 5, 691–708 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Haemmerle, G. et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Paar, M. et al. Remodeling of lipid droplets during lipolysis and growth in adipocytes. J. Biol. Chem. 287, 11164–11173 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Schott, M. B. et al. β-Adrenergic induction of lipolysis in hepatocytes is inhibited by ethanol exposure. J. Biol. Chem. 292, 11815–11828 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Vargas, J. N. S., Hamasaki, M., Kawabata, T., Youle, R. J. & Yoshimori, T. The mechanisms and roles of selective autophagy in mammals. Nat. Rev. Mol. Cell Biol. 24, 167–185 (2023).

    Article  CAS  PubMed  Google Scholar 

  173. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chung, J. et al. The Troyer syndrome protein spartin mediates selective autophagy of lipid droplets. Nat. Cell Biol. 25, 1101–1110 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wan, N. et al. Spartin-mediated lipid transfer facilitates lipid droplet turnover. Proc. Natl Acad. Sci. USA 121, e2314093121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Schroeder, B. et al. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 61, 1896–1907 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Schulze, R. J. et al. Ethanol exposure inhibits hepatocyte lipophagy by inactivating the small guanosine triphosphatase Rab7. Hepatol. Commun. 1, 140–152 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lizaso, A., Tan, K. T. & Lee, Y. H. β-Adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation. Autophagy 9, 1228–1243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Li, Z. et al. A novel Rab10–EHBP1–EHD2 complex essential for the autophagic engulfment of lipid droplets. Sci. Adv. 2, e1601470 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Patel, H. et al. SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia. Nat. Genet. 31, 347–348 (2002).

    Article  CAS  PubMed  Google Scholar 

  181. Ralhan, I., Chang, C. L., Lippincott-Schwartz, J. & Ioannou, M. S. Lipid droplets in the nervous system. J. Cell Biol. 220, e202102136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ouimet, M. et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 13, 655–667 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. van Zutphen, T. et al. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 25, 290–301 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Wang, C. W., Miao, Y. H. & Chang, Y. S. A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast. J. Cell Biol. 206, 357–366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Vevea, J. D. et al. Role for lipid droplet biogenesis and microlipophagy in adaptation to lipid imbalance in yeast. Dev. Cell 35, 584–599 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Toulmay, A. & Prinz, W. A. Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. J. Cell Biol. 202, 35–44 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Seo, A. Y. et al. AMPK and vacuole-associated Atg14p orchestrate mu-lipophagy for energy production and long-term survival under glucose starvation. eLife 6, e21690 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Schulze, R. J. et al. Direct lysosome-based autophagy of lipid droplets in hepatocytes. Proc. Natl Acad. Sci. USA 117, 32443–32452 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Menon, D. et al. ARL8B mediates lipid droplet contact and delivery to lysosomes for lipid remobilization. Cell Rep. 42, 113203 (2023).

    Article  CAS  PubMed  Google Scholar 

  190. Windham, I. A. & Cohen, S. Lipid droplets go through a (liquid crystalline) phase. J. Cell Biol. 221, e202210008 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Soltysik, K. et al. Nuclear lipid droplets form in the inner nuclear membrane in a seipin-independent manner. J. Cell Biol. 220, e202005026 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Romanauska, A. & Kohler, A. The inner nuclear membrane is a metabolically active territory that generates nuclear lipid droplets. Cell 174, 700–715.e718 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wang, C. W., Miao, Y. H. & Chang, Y. S. Control of lipid droplet size in budding yeast requires the collaboration between Fld1 and Ldb16. J. Cell Sci. 127, 1214–1228 (2014).

    PubMed  Google Scholar 

  194. Grippa, A. et al. The seipin complex Fld1/Ldb16 stabilizes ER–lipid droplet contact sites. J. Cell Biol. 211, 829–844 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Castro, I. G. et al. Promethin is a conserved seipin partner protein. Cells 8, 268 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chung, J. et al. LDAF1 and seipin form a lipid droplet assembly complex. Dev. Cell 51, 551–563.e557 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Henne, W. M. et al. Mdm1/Snx13 is a novel ER–endolysosomal interorganelle tethering protein. J. Cell Biol. 210, 541–551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Joshi, A. S. et al. Lipid droplet and peroxisome biogenesis occur at the same ER subdomains. Nat. Commun. 9, 2940 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Guyard, V. et al. ORP5 and ORP8 orchestrate lipid droplet biogenesis and maintenance at ER–mitochondria contact sites. J. Cell Biol. 221, e202112107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Monks, J. et al. Perilipin-2 promotes lipid droplet-plasma membrane interactions that facilitate apocrine lipid secretion in secretory epithelial cells of the mouse mammary gland. Front. Cell Dev. Biol. 10, 958566 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Boutant, M. et al. Mfn2 is critical for brown adipose tissue thermogenic function. EMBO J. 36, 1543–1558 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Brasaemle, D. L. & Wolins, N. E. Isolation of lipid droplets from cells by density gradient centrifugation. Curr. Protoc. Cell Biol. 72, 3.15.11–13.15.13 (2016).

    Article  Google Scholar 

  203. Zhang, S. et al. Morphologically and functionally distinct lipid droplet subpopulations. Sci. Rep. 6, 29539 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wolins, N. E. et al. S3-12, Adipophilin, and TIP47 package lipid in adipocytes. J. Biol. Chem. 280, 19146–19155 (2005).

    Article  CAS  PubMed  Google Scholar 

  205. Speer, N. O. et al. Tld1 is a regulator of triglyceride lipolysis that demarcates a lipid droplet subpopulation. J. Cell Biol. 223, e202303026 (2024).

    Article  CAS  PubMed  Google Scholar 

  206. Shimobayashi, S. F. & Ohsaki, Y. Universal phase behaviors of intracellular lipid droplets. Proc. Natl Acad. Sci. USA 116, 25440–25445 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Zanellati, M. C., Hsu, C. H. & Cohen, S. Imaging interorganelle contacts at a glance. J. Cell Sci. 137, e262020 (2024).

    Article  Google Scholar 

  208. Gamuyao, R. & Chang, C. L. Imaging and proteomics toolkits for studying organelle contact sites. Front. Cell Dev. Biol. 12, 1466915 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Herms, A. et al. Cell-to-cell heterogeneity in lipid droplets suggests a mechanism to reduce lipotoxicity. Curr. Biol. 23, 1489–1496 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Rao, M. J. & Goodman, J. M. Seipin: harvesting fat and keeping adipocytes healthy. Trends Cell Biol. 31, 912–923 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Sheka, A. C. et al. Nonalcoholic steatohepatitis: a review. JAMA 323, 1175–1183 (2020).

    Article  CAS  PubMed  Google Scholar 

  212. Mitrofanova, A., Merscher, S. & Fornoni, A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. Nat. Rev. Nephrol. 19, 629–645 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. Wagner, R. et al. Metabolic implications of pancreatic fat accumulation. Nat. Rev. Endocrinol. 18, 43–54 (2022).

    Article  CAS  PubMed  Google Scholar 

  214. Goldberg, I. J., Trent, C. M. & Schulze, P. C. Lipid metabolism and toxicity in the heart. Cell Metab. 15, 805–812 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Cruz, A. L. S., Barreto, E. A., Fazolini, N. P. B., Viola, J. P. B. & Bozza, P. T. Lipid droplets: platforms with multiple functions in cancer hallmarks. Cell Death Dis. 11, 105 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Alzheimer, A., Stelzmann, R. A., Schnitzlein, H. N. & Murtagh, F. R. An english translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin. Anat. 8, 429–431 (1995).

    Article  CAS  PubMed  Google Scholar 

  217. Haney, M. S. et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia. Nature 628, 154–161 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Prakash, P. et al. Amyloid-β induces lipid droplet-mediated microglial dysfunction via the enzyme DGAT2 in Alzheimer’s disease. Immunity 58, 1536–1552.e8 (2025).

    Article  CAS  PubMed  Google Scholar 

  219. Herker, E. Lipid droplets in virus replication. FEBS Lett. 598, 1299–1300 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Malis for assistance with figures and with research for Table 1. We also thank D. Nicastro and L. Gui for assistance with the cryo-electron tomography images used in Fig. 2. The authors are supported by funding from the National Institutes of Health under awards R35GM119768 and DK126887 (W.M.H.) and R35GM133460 (S.C.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to W. Mike Henne or Sarah Cohen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Birefringence

An optical feature of some materials that allows polarized light to have different refractive indices when it passes through the material, revealing a sometimes rainbow-like diffraction pattern to the polarized light. When used in optical imaging of lipid droplets, smectic liquid–crystalline lipid droplets display a distinctive Maltese cross pattern.

BODIPY

Refers to several fluorescent dyes 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene that partition inside lipid droplets and are used for lipid droplet labelling.

Fluorogen-activated bimolecular complementation

A microscopy technique used in studying organelle contacts where non-fluorescent protein segments are fused to proteins of interest localized on different organelles. When these proteins come together the non-fluorescent segments dimerize, forming a docking site for a fluorescent organic dye molecule that then labels the interaction site.

Glucose exhaustion

A metabolic condition characterized by the depletion of available glucose for cells to utilize in metabolism.

Macrophage foam cells

A pathogenic cell type that accumulates in cardiovascular disease when macrophage cells absorb excess LDL particles and accumulate intracellular lipid droplets rich in cholesteryl esters.

NRZ–SNARE–RAB18

A tethering complex mediated by RAB18 at the lipid droplet interacting with the endoplasmic reticulum-localized NAG–RINT1–ZW10 (NRZ) complex and their associated SNAREs.

Phase separation

The process where a mixture demixes into two distinct liquid phases, driven by interactions between molecules.

Smectic

A phase of a liquid crystal where molecules are arranged in layers.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henne, W.M., Cohen, S. Heterogeneity, dynamics and organelle interactions of lipid droplets. Nat Rev Mol Cell Biol (2026). https://doi.org/10.1038/s41580-025-00945-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41580-025-00945-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing