Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A neuroscientific model of near-death experiences

An Author Correction to this article was published on 12 June 2025

This article has been updated

Abstract

Near-death experiences (NDEs) are episodes of disconnected consciousness that typically occur in situations that involve an actual or potential physical threat or are perceived as such, and the experiences are characterized by a rich content with prototypical mystical features. Several explanatory theories for NDEs have been proposed, ranging from psychological or neurophysiological to evolutionary models. However, these concepts were often formulated independently, and, owing to the fragmented nature of research in this domain, integration of these ideas has been limited. Lines of empirical evidence from different areas of neuroscience, including non-human studies, studies investigating psychedelic-induced mystical experiences in humans, and research on the dying brain, are now converging to provide a comprehensive explanation for NDEs. In this Review, we discuss processes that might underlie the rich conscious experience in NDEs, mostly focusing on prototypical examples and addressing both the potential psychological mechanisms and neurophysiological changes, including cellular and electrophysiological brain network modifications and alterations in neurotransmitter release. On the basis of this discussion, we propose a model for NDEs that encompasses a cascade of concomitant psychological and neurophysiological processes within an evolutionary framework. We also consider how NDE research can inform the debate on the emergence of consciousness in near-death conditions that arise before brain death.

Key points

  • The emergence of a rich phenomenology in near-death experiences (NDEs) during acute physiological crises might be attributed to a cascade of concomitant neurophysiological and psychological processes, including phylogenetically preserved threat responses.

  • From a neurophysiological perspective, NDEs can result from impaired cerebral blood flow causing systemic hypotension, hypoxia and hypercapnia resulting in acidosis, and from increased neuronal excitability causing dysregulation of key neurotransmitter systems.

  • From a psychological perspective, NDEs might be partially shaped by top–down processes and facilitated by non-pathological cognitive traits such as dissociation propensity.

  • The evolutionary roots of NDEs are thought to be linked to survival and coping mechanisms, with serotonin probably mediating calming effects through 5-HT1A receptors and contributing to hallucinogenic aspects through 5-HT2A receptor hyperactivation.

  • Understanding the slow recovery of brain activity after resuscitation might provide a valuable opportunity to explore the neural correlates of NDEs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of key events and theories in the near-death experience research field.
Fig. 2: Neurotransmitter systems involved in the generation of near-death experience features.
Fig. 3: The Neurophysiological Evolutionary Psychological Theory Understanding Near-death Experience (NEPTUNE) model.

Similar content being viewed by others

Change history

References

  1. Heim, A. Jahrbuch des Schweizer Alpenclub / 27 Notizen über den Tod durch Absturz (Verlag der Expedition des Jahrbuchs des S.A.C., 1892).

  2. Moody, R. Life After Life (Bantam, 1975).

  3. Hou, Y., Huang, Q., Prakash, R. & Chaudhury, S. Infrequent near-death experiences in severe brain injury survivors — a quantitative and qualitative study. Ann. Indian Acad. Neurol. 16, 75 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rousseau, A.-F. et al. Incidence of near-death experiences in patients surviving a prolonged critical illness and their long-term impact: a prospective observational study. Crit. Care 27, 76 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Greyson, B. Incidence and correlates of near-death experiences in a cardiac care unit. Gen. Hosp. Psychiatry 25, 269–276 (2003).

    Article  PubMed  Google Scholar 

  6. Klemenc-Ketis, Z., Kersnik, J. & Grmec, S. The effect of carbon dioxide on near-death experiences in out-of-hospital cardiac arrest survivors: a prospective observational study. Crit. Care 14, R56 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Parnia, S. et al. AWARE — AWAreness during resuscitation — a prospective study. Resuscitation 85, 1799–1805 (2014).

    Article  PubMed  Google Scholar 

  8. Schwaninger, J., Eisenberg, P. R., Schechtman, K. B. & Weiss, A. N. A prospective analysis of near-death experiences in cardiac arrest patients. J. Near Death Stud. 20, 215–232 (2002).

    Article  Google Scholar 

  9. van Lommel, P., van Wees, R., Meyers, V. & Elfferich, I. Near-death experience in survivors of cardiac arrest: a prospective study in the Netherlands. Lancet 358, 2039–2045 (2001).

    Article  PubMed  Google Scholar 

  10. Parnia, S. et al. AWAreness during REsuscitation — II: a multi-center study of consciousness and awareness in cardiac arrest. Resuscitation 191, 109903 (2023).

    Article  PubMed  Google Scholar 

  11. Mauduit, M. et al. Does hypothermic circulatory arrest for aortic surgery trigger near-death experience? Incidence of near-death experiences after aortic surgeries performed under hypothermic circulatory arrest. Aorta 9, 76–82 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Charland-Verville, V. et al. Near-death experiences in non-life-threatening events and coma of different etiologies. Front. Hum. Neurosci. 8, 203 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Facco, E. & Agrillo, C. Near-death-like experiences without life-threatening conditions or brain disorders: a hypothesis from a case report. Front. Psychol. 3, 490 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kondziella, D., Dreier, J. P. & Olsen, M. H. Prevalence of near-death experiences in people with and without REM sleep intrusion. PeerJ 7, e7585 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Martial, C., Cassol, H., Laureys, S. & Gosseries, O. Near-death experience as a probe to explore (disconnected) consciousness. Trends Cogn. Sci. 24, 173–183 (2020).

    Article  PubMed  Google Scholar 

  16. Fritz, P., Lejeune, N., Cardone, P., Gosseries, O. & Martial, C. Bridging the gap: (a)typical psychedelic and near-death experience insights. Curr. Opin. Behav. Sci. 55, 101349 (2024).

    Article  Google Scholar 

  17. Martial, C. et al. Neurochemical models of near-death experiences: a large-scale study based on the semantic similarity of written reports. Conscious. Cogn. 69, 52–69 (2019).

    Article  PubMed  Google Scholar 

  18. Timmermann, C. et al. DMT models the near-death experience. Front. Psychol. 9, 1424 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Greyson, B. Dissociation in people who have near-death experiences: out of their bodies or out of their minds? Lancet 355, 460–463 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Martial, C., Cassol, H., Charland-Verville, V., Merckelbach, H. & Laureys, S. Fantasy proneness correlates with the intensity of near-death experience. Front. Psychiatry 9, 190 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Noyes, R. & Slymen, D. J. The subjective response to life-threatening danger. OMEGA J. Death Dying 9, 313–321 (1979).

    Article  Google Scholar 

  22. Owens, J., Cook, E. W. & Stevenson, I. Features of ‘near-death experience’ in relation to whether or not patients were near death. Lancet 336, 1175–1177 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Blackmore, S. J. & Troscianko, T. S. The physiology of the tunnel. J. Near Death Stud. 8, 15–28 (1989).

    Article  Google Scholar 

  24. Blanke, O. & Arzy, S. The out-of-body experience: disturbed self-processing at the temporo-parietal junction. Neuroscientist 11, 16–24 (2005).

    Article  PubMed  Google Scholar 

  25. Nelson, K. R., Mattingly, M., Lee, S. A. & Schmitt, F. A. Does the arousal system contribute to near death experience? Neurology 66, 1003–1009 (2006).

    Article  PubMed  Google Scholar 

  26. Raffaelli, B. et al. Near‐death experiences are associated with rapid eye movement (REM) sleep intrusions in migraine patients, independent of migraine aura. Eur. J. Neurol. 30, 3322–3331 (2023).

    Article  PubMed  Google Scholar 

  27. Peinkhofer, C., Martial, C., Cassol, H., Laureys, S. & Kondziella, D. The evolutionary origin of near-death experiences: a systematic investigation. Brain Commun. 3, fcab132 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Long, J. & Perry, P. Evidence of the Afterlife: the Science of Near-Death Experiences (HarperOne, 2010).

  29. Van Lommel, P. Non-local consciousness a concept based on scientific research on near-death experiences during cardiac arrest. J. Conscious. Stud. 20, 7–48 (2013).

    Google Scholar 

  30. Zeman, A. What in the world is consciousness? Prog. Brain Res. 150, 1–10 (2005).

    Article  PubMed  Google Scholar 

  31. Li, D. et al. Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest. Proc. Natl Acad. Sci. USA 112, E2073–E2082 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kandel, E. R. A new intellectual framework for psychiatry. Am. J. Psychiatry 155, 457–469 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Sergent, C. & Naccache, L. Imaging neural signatures of consciousness: ‘what’, ‘when’, ‘where’ and ‘how’ does it work? Arch. Ital. Biol. 91, 106 (2012).

    Google Scholar 

  34. Tononi, G. Consciousness, information integration, and the brain. Prog. Brain Res. 150, 109–126 (2005).

    Article  PubMed  Google Scholar 

  35. Koch, C., Massimini, M., Boly, M. & Tononi, G. Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307–321 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Martial, C. et al. The Near-Death Experience Content (NDE-C) scale: development and psychometric validation. Conscious. Cogn. 86, 103049 (2020).

    Article  PubMed  Google Scholar 

  37. Whinnery, J. E. & Whinnery, A. M. Acceleration-induced loss of consciousness. A review of 500 episodes. Arch. Neurol. 47, 764–776 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Annen, J. et al. Mapping the functional brain state of a world champion freediver in static dry apnea. Brain Struct. Funct. 226, 2675–2688 (2021).

    Article  PubMed  Google Scholar 

  39. Lempert, T., Bauer, M. & Schmidt, D. Syncope: a videometric analysis of 56 episodes of transient cerebral hypoxia. Ann. Neurol. 36, 233–237 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Lempert, T., Bauer, M. & Schmidt, D. Syncope and near-death experience. Lancet 344, 829–830 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Martial, C. et al. EEG signature of near-death-like experiences during syncope-induced periods of unresponsiveness. Neuroimage 298, 120759 (2024).

    Article  PubMed  Google Scholar 

  42. Pausescu, E., Lugojan, R. & Pausescu, M. Cerebral catecholamine and serotonin metabolism in post-hypothermic brain oedema. Brain 93, 31–36 (1970).

    Article  CAS  PubMed  Google Scholar 

  43. Javaheri, S., De Hemptinne, A., Vanheel, B. & Leusen, I. Changes in brain ECF pH during metabolic acidosis and alkalosis: a microelectrode study. J. Appl. Physiol. 55, 1849–1853 (1983).

    Article  CAS  PubMed  Google Scholar 

  44. Hansen, A. J. Effect of anoxia on ion distribution in the brain. Physiol. Rev. 65, 101–148 (1985).

    Article  CAS  PubMed  Google Scholar 

  45. Charnay, Y. & Léger, L. Brain serotonergic circuitries. Dialogues Clin. Neurosci. 12, 471–487 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mathias, A. P., Ross, D. M. & Schachter, M. Identification and distribution of 5-hydroxytryptamine in a sea anemone. Nature 180, 658–659 (1957).

    Article  CAS  PubMed  Google Scholar 

  47. Ishihara, A. et al. The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J. 54, 481–495 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Araneda, R. & Andrade, R. 5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40, 399–412 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Whitaker-Azmitia, P. M. Serotonin and brain development: role in human developmental diseases. Brain Res. Bull. 56, 479–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Fletcher, P. J., Tampakeras, M., Sinyard, J. & Higgins, G. A. Opposing effects of 5-HT2A and 5-HT2C receptor antagonists in the rat and mouse on premature responding in the five-choice serial reaction time test. Psychopharmacology 195, 223–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Varnäs, K., Halldin, C. & Hall, H. Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum. Brain Mapp. 22, 246–260 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Miyazaki, K., Miyazaki, K. W. & Doya, K. The role of serotonin in the regulation of patience and impulsivity. Mol. Neurobiol. 45, 213–224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miyazaki, K. W. et al. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards. Curr. Biol. 24, 2033–2040 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Carhart-Harris, R. L. & Nutt, D. J. Serotonin and brain function: a tale of two receptors. J. Psychopharmacol. 31, 1091–1120 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gerstl, F. et al. Multimodal imaging of human early visual cortex by combining functional and molecular measurements with fMRI and PET. Neuroimage 41, 204–211 (2008).

    Article  PubMed  Google Scholar 

  56. Kometer, M., Schmidt, A., Jancke, L. & Vollenweider, F. X. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on oscillations, N170 visual-evoked potentials, and visual hallucinations. J. Neurosci. 33, 10544–10551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. William Moreau, A., Amar, M., Le Roux, N., Morel, N. & Fossier, P. Serotoninergic fine-tuning of the excitation–inhibition balance in rat visual cortical networks. Cereb. Cortex 20, 456–467 (2010).

    Article  Google Scholar 

  58. González-Maeso, J. et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452, 93–97 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Huot, P. et al. Increased 5‐HT2A receptors in the temporal cortex of parkinsonian patients with visual hallucinations. Mov. Disord. 25, 1399–1408 (2010).

    Article  PubMed  Google Scholar 

  60. Griffiths, R., Richards, W., Johnson, M., McCann, U. & Jesse, R. Mystical-type experiences occasioned by psilocybin mediate the attribution of personal meaning and spiritual significance 14 months later. J. Psychopharmacol. 22, 621–632 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vollenweider, F. X. & Kometer, M. The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat. Rev. Neurosci. 11, 642–651 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Carhart-Harris, R. L. et al. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc. Natl Acad. Sci. USA 109, 2138–2143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tagliazucchi, E. et al. Increased global functional connectivity correlates with LSD-induced ego dissolution. Curr. Biol. 26, 1043–1050 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. De Ridder, D., Van Laere, K., Dupont, P., Menovsky, T. & Van de Heyning, P. Visualizing out-of-body experience in the brain. N. Engl. J. Med. 357, 1829–1833 (2007).

    Article  PubMed  Google Scholar 

  65. Arzy, S., Thut, G., Mohr, C., Michel, C. M. & Blanke, O. Neural basis of embodiment: distinct contributions of temporoparietal junction and extrastriate body area. J. Neurosci. 26, 8074–8081 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Arzy, S., Seeck, M., Ortigue, S., Spinelli, L. & Blanke, O. Induction of an illusory shadow person. Nature 443, 287 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Strassman, R. DMT: the Spirit Molecule: a Doctors Revolutionary Research into the Biology of Near-Death and Mystical Experiences (Park Street, 2001).

  68. Michael, P., Luke, D. & Robinson, O. This is your brain on death: a comparative analysis of a near-death experience and subsequent 5-methoxy-DMT experience. Front. Psychol. 14, 1083361 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Peroutka, S. J. & Howell, T. A. The molecular evolution of G protein-coupled receptors: focus on 5-hydroxytryptamine receptors. Neuropharmacology 33, 319–324 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Barnes, N. M. & Sharp, T. A review of central 5-HT receptors and their function. Neuropharmacology 38, 1083–1152 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Brouwer, A. & Carhart-Harris, R. L. Pivotal mental states. J. Psychopharmacol. 35, 319–352 (2021).

    Article  PubMed  Google Scholar 

  72. Wutzler, A., Mavrogiorgou, P., Winter, C. & Juckel, G. Elevation of brain serotonin during dying. Neurosci. Lett. 498, 20–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Meldrum, B. S. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. 130, 1007S–1015S (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Edmonds, B., Gibb, A. J. & Colquhoun, D. Mechanisms of activation of glutamate receptors and the time course of excitatory synaptic currents. Annu. Rev. Physiol. 57, 495–519 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Traynelis, S. F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Godaux, E. Les Neurones, Les Synapses et Les Fibres Musculaires (Editions Masson, 1997).

  77. Tabone, C. J. & Ramaswami, M. Is NMDA receptor-coincidence detection required for learning and memory? Neuron 74, 767–769 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Paulsen, O. & Sejnowski, T. J. Natural patterns of activity and long-term synaptic plasticity. Curr. Opin. Neurobiol. 10, 172–179 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dingledine, R. N-Methyl aspartate activates voltage-dependent calcium conductance in rat hippocampal pyramidal cells. J. Physiol. 343, 385–405 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Corazza, O. & Schifano, F. Near-death states reported in a sample of 50 misusers. Subst. Use Misuse 45, 916–924 (2010).

    Article  PubMed  Google Scholar 

  82. Jansen, K. Near death experience and the NMDA receptor. BMJ 298, 1708 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jansen, K. L. R. The ketamine model of the near-death experience: a central role for the N-methyl-D-aspartate receptor. J. Near Death Stud. 16, 5–26 (1997).

    Article  Google Scholar 

  84. Collingridge, G. L., Kehl, S. J. & McLennan, H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. 334, 33–46 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Elston, G. N. Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb. Cortex 13, 1124–1138 (2003).

    Article  PubMed  Google Scholar 

  86. Adell, A. Brain NMDA receptors in schizophrenia and depression. Biomolecules 10, 947 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Haaf, M., Leicht, G., Curic, S. & Mulert, C. Glutamatergic deficits in schizophrenia — biomarkers and pharmacological interventions within the ketamine model. Curr. Pharm. Biotechnol. 19, 293–307 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Halstead, J. M. et al. Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science 347, 1367–1671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Höflich, A. et al. Ketamine-dependent neuronal activation in healthy volunteers. Brain Struct. Funct. 222, 1533–1542 (2017).

    Article  PubMed  Google Scholar 

  90. Hussain, L. S., Reddy, V. & Maani, C. V. Physiology, noradrenergic synapse. StatPearls (StatPearls, 2023).

  91. Borovsky, V., Herman, M., Dunphy, G., Caplea, A. & Ely, D. CO2 asphyxia increases plasma norepinephrine in rats via sympathetic nerves. Am. J. Physiol. 274, R19–R22 (1998).

    CAS  PubMed  Google Scholar 

  92. Reiner, P. B. Correlational analysis of central noradrenergic neuronal activity and sympathetic tone in behaving cats. Brain Res. 378, 86–96 (1986).

    Article  CAS  PubMed  Google Scholar 

  93. Poe, G. R. et al. Locus coeruleus: a new look at the blue spot. Nat. Rev. Neurosci. 21, 644–659 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Aston-Jones, G., Rajkowski, J. & Cohen, J. Locus coeruleus and regulation of behavioral flexibility and attention. Prog. Brain Res. 126, 165–182 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Murchison, C. F. et al. A distinct role for norepinephrine in memory retrieval. Cell 117, 131–143 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Cahill, L. & Alkire, M. T. Epinephrine enhancement of human memory consolidation: interaction with arousal at encoding. Neurobiol. Learn. Mem. 79, 194–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. LaLumiere, R. T., McGaugh, J. L. & McIntyre, C. K. Emotional modulation of learning and memory: pharmacological implications. Pharmacol. Rev. 69, 236–255 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tully, K., Li, Y., Tsvetkov, E. & Bolshakov, V. Y. Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc. Natl Acad. Sci. USA 104, 14146–14150 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Timofeev, I. & Steriade, M. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J. Neurophysiol. 76, 4152–4168 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Ramadan, W., Eschenko, O. & Sara, S. J. Hippocampal sharp wave/ripples during sleep for consolidation of associative memory. PLoS ONE 4, e6697 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. McGaugh, J. L. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu. Rev. Neurosci. 27, 1–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Martial, C. et al. Intensity and memory characteristics of near-death experiences. Conscious. Cogn. 56, 120–127 (2017).

    Article  PubMed  Google Scholar 

  103. Thonnard, M. et al. Characteristics of near-death experiences memories as compared to real and imagined events memories. PLoS ONE 8, e57620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hasselmo, M. E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710–715 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. French, I. T. & Muthusamy, K. A. A review of the pedunculopontine nucleus in Parkinson’s disease. Front. Aging Neurosci. 10, 99 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lew, C. H. & Semendeferi, K. in Evolution of Nervous Systems (ed. Kaas, J. H.) 277–291 (Elsevier, 2017).

  107. Oswald, M. J. et al. Cholinergic basal forebrain nucleus of Meynert regulates chronic pain-like behavior via modulation of the prelimbic cortex. Nat. Commun. 13, 5014 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ziemann, A. E. et al. The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell 139, 1012–1021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sotelo, J., Perez, R., Cuevara, P. & Fernandez, A. Changes in brain, plasma and cerebrospinal fluid contents of β-endorphin in dogs at the moment of death. Neurol. Res. 17, 223–225 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Kanchan, T., Rastogi, P. & Mohanty, M. Profile of near drowning victims in a coastal region of Karnataka. J. Indian Acad. Forensic Sci. 29, 52–54 (2007).

    Article  Google Scholar 

  111. Morse, M. A near-death experience in a 7-year-old child. Arch. Pediatr. Adolesc. Med. 137, 959 (1983).

    Article  CAS  Google Scholar 

  112. Blackmore, S. J. Near-death experiences. J. R. Soc. Med. 89, 73–76 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bartels, A. & Zeki, S. The neural correlates of maternal and romantic love. Neuroimage 21, 1155–1166 (2004).

    Article  PubMed  Google Scholar 

  114. Craig, A. D. (Bud). Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cogn. Sci. 9, 566–571 (2005).

    Article  PubMed  Google Scholar 

  115. Leibenluft, E., Gobbini, M. I., Harrison, T. & Haxby, J. V. Mothers’ neural activation in response to pictures of their children and other children. Biol. Psychiatry 56, 225–232 (2004).

    Article  PubMed  Google Scholar 

  116. Martial, C., Charland-Verville, V., Dehon, H. & Laureys, S. False memory susceptibility in coma survivors with and without a near-death experience. Psychol. Res. 82, 806–818 (2018).

    Article  PubMed  Google Scholar 

  117. Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 160, 13–23 (2003).

    Article  PubMed  Google Scholar 

  118. Preller, K. H. et al. The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation. Curr. Biol. 27, 451–457 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Creese, I., Burt, D. R. & Snyder, S. H. Dopamine receptor binding: differentiation of agonist and antagonist states with 3H-dopamine and 3H-haloperidol. Life Sci. 17, 993–1001 (1975).

    Article  CAS  Google Scholar 

  120. Vollenweider, F. X., Vollenweider-Scherpenhuyzen, M. F. I., Bäbler, A., Vogel, H. & Hell, D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9, 3897–3902 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Lutz, P. L., Nilsson, G. E. & Prentice, H. M. The Brain Without Oxygen: Causes of Failure-Physiological and Molecular Mechanisms for Survival (Kluwer Academic, 2002).

  122. Martial, C., Fritz, P., Lejeune, N. & Gosseries, O. Exploring awareness in cardiac arrest studies: methodological challenges. Resuscitation 194, 109980 (2024).

    Article  PubMed  Google Scholar 

  123. Greyson, B. Implications of near-death experiences for a postmaterialist psychology. Psychol. Relig. Spiritual. 2, 37 (2010).

    Article  Google Scholar 

  124. Bartolomei, F. et al. The role of the dorsal anterior insula in ecstatic sensation revealed by direct electrical brain stimulation. Brain Stimul. 12, 1121–1126 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Picard, F. & Friston, K. Predictions, perception, and a sense of self. Neurology 83, 1112–1118 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Arzy, S., Idel, M., Landis, T. & Blanke, O. Why revelations have occurred on mountains? Linking mystical experiences and cognitive neuroscience. Med. Hypotheses 65, 841–845 (2005).

    Article  PubMed  Google Scholar 

  127. Burtscher, J. & Schwarzer, C. The opioid system in temporal lobe epilepsy: functional role and therapeutic potential. Front. Mol. Neurosci. 10, 245 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Landtblom, A.-M. The “sensed presence”: an epileptic aura with religious overtones. Epilepsy Behav. 9, 186–188 (2006).

    Article  PubMed  Google Scholar 

  129. Sacks, O. Seeing God in the third millennium. How the brain creates out-of-body experiences and religious epiphanies. The Atlantic https://www.theatlantic.com/health/archive/2012/12/seeing-god-in-the-third-millennium/266134/ (2012).

  130. Britton, W. B. & Bootzin, R. R. Near-death experiences and the temporal lobe. Psychol. Sci. 15, 254–258 (2004).

    Article  PubMed  Google Scholar 

  131. Leung, L. C. et al. Neural signatures of sleep in zebrafish. Nature 571, 198–204 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Scammell, T. E., Arrigoni, E. & Lipton, J. O. Neural circuitry of wakefulness and sleep. Neuron 93, 747–765 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yamazaki, R. et al. Evolutionary origin of distinct NREM and REM sleep. Front. Psychol. 11, 567618 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Peever, J. & Fuller, P. M. The biology of REM sleep. Curr. Biol. 27, R1237–R1248 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Ohayon, M. M., Priest, R. G., Zulley, J., Smirne, S. & Paiva, T. Prevalence of narcolepsy symptomatology and diagnosis in the European general population. Neurology 58, 1826–1833 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Kondziella, D., Olsen, M. H., Lemale, C. L. & Dreier, J. P. Migraine aura, a predictor of near-death experiences in a crowdsourced study. PeerJ 7, e8202 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lu, J., Sherman, D., Devor, M. & Saper, C. B. A putative flip-flop switch for control of REM sleep. Nature 441, 589–594 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Nelson, K. R., Mattingly, M. & Schmitt, F. A. Out-of-body experience and arousal. Neurology 68, 794–795 (2007).

    Article  PubMed  Google Scholar 

  139. Mahowald, M. W. & Schenck, C. H. Dissociated states of wakefulness and sleep. Neurology 42, 44–51 (1992).

    CAS  PubMed  Google Scholar 

  140. Maquet, P. et al. Human cognition during REM sleep and the activity profile within frontal and parietal cortices: a reappraisal of functional neuroimaging data. Prog. Brain Res. 150, 219–227 (2005).

    Article  PubMed  Google Scholar 

  141. Blanke, O., Ortigue, S., Landis, T. & Seeck, M. Stimulating illusory own-body perceptions. Nature 419, 269–270 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Vagg, D. J., Bandler, R. & Keay, K. A. Hypovolemic shock: critical involvement of a projection from the ventrolateral periaqueductal gray to the caudal midline medulla. Neuroscience 152, 1099–1109 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Nicol, A. U. & Morton, A. J. Characteristic patterns of EEG oscillations in sheep (Ovis aries) induced by ketamine may explain the psychotropic effects seen in humans. Sci. Rep. 10, 9440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Frohlich, J., Toker, D. & Monti, M. M. Consciousness among delta waves: a paradox? Brain J. Neurol. 144, 2257–2277 (2021).

    Article  Google Scholar 

  145. Vijayan, S., Lepage, K. Q., Kopell, N. J. & Cash, S. S. Frontal beta-theta network during REM sleep. eLife 6, e18894 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Timmermann, C. et al. Neural correlates of the DMT experience assessed with multivariate EEG. Sci. Rep. 9, 16324 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Lee, U. et al. Disruption of frontal–parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology 118, 1264–1275 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Sarasso, S. et al. Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr. Biol. 25, 3099–3105 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Vlisides, P. E. et al. Neurophysiologic correlates of ketamine sedation and anesthesia. Anesthesiology 127, 58–69 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Vlisides, P. E. et al. Subanaesthetic ketamine and altered states of consciousness in humans. Br. J. Anaesth. 121, 249–259 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Carhart-Harris, R. L. The entropic brain — revisited. Neuropharmacology 142, 167–178 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Greyson, B. The near-death experience as a focus of clinical attention. J. Nerv. Ment. Dis. 185, 327–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Noyes, R. & Kletti, R. Depersonalization in the face of life-threatening danger: a description. Psychiatry 39, 19–27 (1976).

    Article  PubMed  Google Scholar 

  154. Noyes, R. Jr & Kletti, R. Depersonalization in response to life-threatening danger. Compr. Psychiatry 18, 375–384 (1977).

    Article  PubMed  Google Scholar 

  155. Chawla, L. S., Akst, S., Junker, C., Jacobs, B. & Seneff, M. G. Surges of electroencephalogram activity at the time of death: a case series. J. Palliat. Med. 12, 1095–1100 (2009).

    Article  PubMed  Google Scholar 

  156. Borjigin, J. et al. Surge of neurophysiological coherence and connectivity in the dying brain. Proc. Natl Acad. Sci. USA 110, 14432–14437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bland, N. S., Mattingley, J. B. & Sale, M. V. Gamma coherence mediates interhemispheric integration during multiple object tracking. J. Neurophysiol. 123, 1630–1644 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Cho, K. K. A. et al. Cross-hemispheric gamma synchrony between prefrontal parvalbumin interneurons supports behavioral adaptation during rule shift learning. Nat. Neurosci. 23, 892–902 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ghosh, M. et al. Running speed and REM sleep control two distinct modes of rapid interhemispheric communication. Cell Rep. 40, 111028 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lee, D. E. et al. Neural correlates of consciousness at near-electrocerebral silence in an asphyxial cardiac arrest model. Brain Connect. 7, 172–181 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Vicente, R. et al. Enhanced interplay of neuronal coherence and coupling in the dying human brain. Front. Aging Neurosci. 14, 813531 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Xu, G. et al. Surge of neurophysiological coupling and connectivity of gamma oscillations in the dying human brain. Proc. Natl Acad. Sci. USA 120, e2216268120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Seth, A. K. & Bayne, T. Theories of consciousness. Nat. Rev. Neurosci. 23, 439–452 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Mena-Segovia, J., Sims, H. M., Magill, P. J. & Bolam, J. P. Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations. J. Physiol. 586, 2947–2960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Urbano, F. J. et al. Pedunculopontine nucleus gamma band activity — preconscious awareness, waking, and REM sleep. Front. Neurol. 5, 210 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Llinás, R. & Ribary, U. Coherent 40-Hz oscillation characterizes dream state in humans. Proc. Natl Acad. Sci. USA 90, 2078–2081 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Boly, M. et al. Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence. J. Neurosci. 37, 9603–9613 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wittling, W., Block, A., Schweiger, E. & Genzel, S. Hemisphere asymmetry in sympathetic control of the human myocardium. Brain Cogn. 38, 17–35 (1998).

    Article  CAS  PubMed  Google Scholar 

  169. Ammermann, H. et al. MRI brain lesion patterns in patients in anoxia-induced vegetative state. J. Neurol. Sci. 260, 65–70 (2007).

    Article  PubMed  Google Scholar 

  170. Els, T., Kassubek, J., Kubalek, R. & Klisch, J. Diffusion-weighted MRI during early global cerebral hypoxia: a predictor for clinical outcome? Acta Neurol. Scand. 110, 361–367 (2004).

    Article  PubMed  Google Scholar 

  171. Holden, J. M. & Loseu, S. Shedding light on the tunnel and light in near-death experiences: a case study. J. Near Death Stud. 34, 27–43 (2015).

    Google Scholar 

  172. Greyson, B. Near-death experience: clinical implications. Arch. Clin. Psychiatry 34, 116–125 (2007).

    Article  Google Scholar 

  173. Chawla, L. S. et al. Characterization of end-of-life electroencephalographic surges in critically ill patients. Death Stud. 41, 385–392 (2017).

    Article  PubMed  Google Scholar 

  174. Schramm, A. E. et al. Identifying neuronal correlates of dying and resuscitation in a model of reversible brain anoxia. Prog. Neurobiol. 185, 101733 (2020).

    Article  PubMed  Google Scholar 

  175. Nahm, M., Greyson, B., Kelly, E. W. & Haraldsson, E. Terminal lucidity: a review and a case collection. Arch. Gerontol. Geriatr. 55, 138–142 (2012).

    Article  PubMed  Google Scholar 

  176. Morse, M. L., Venecia, D. & Milstein, J. Near-death experiences: a neurophysiologic explanatory model. J. Near Death Stud. 8, 45–53 (1989).

    Article  Google Scholar 

  177. Blanke, O., Landis, T., Spinelli, L. & Seeck, M. Out-of-body experience and autoscopy of neurological origin. Brain J. Neurol. 127, 243–258 (2004).

    Article  Google Scholar 

  178. Blanke, O. & Metzinger, T. Full-body illusions and minimal phenomenal selfhood. Trends Cogn. Sci. 13, 7–13 (2009).

    Article  PubMed  Google Scholar 

  179. Potts, M. The evidential value of near-death experiences for belief in life after death. J. Near Death Stud. 20, 233–258 (2002).

    Article  Google Scholar 

  180. Schwartz, J. M., Stapp, H. P. & Beauregard, M. Quantum physics in neuroscience and psychology: a neurophysical model of mind–brain interaction. Philos. Trans. R. Soc. B Biol. Sci. 360, 1309–1327 (2005).

    Article  Google Scholar 

  181. van Lommel, P. About the continuity of our consciousness. Adv. Exp. Med. Biol. 550, 115–132 (2004).

    Article  PubMed  Google Scholar 

  182. Parnia, S. Do reports of consciousness during cardiac arrest hold the key to discovering the nature of consciousness? Med. Hypotheses 69, 933–937 (2007).

    Article  PubMed  Google Scholar 

  183. Martial, C., Gosseries, O., Cassol, H. & Kondziella, D. Studying death and near-death experiences requires neuroscientific expertise. Ann. N. Y. Acad. Sci. 1517, 11–14 (2022).

    Article  PubMed  Google Scholar 

  184. Vanhaudenhuyse, A., Thonnard, M. & Laureys, S. in Yearbook of Intensive Care and Emergency Medicine 2009 (ed. Vincent, J.-L.) 961–968 (2009).

  185. Barker, S. A., McIlhenny, E. H. & Strassman, R. A critical review of reports of endogenous psychedelic N,N‐dimethyltryptamines in humans: 1955–2010. Drug Test. Anal. 4, 617–635 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Barker, S. A., Borjigin, J., Lomnicka, I. & Strassman, R. LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate. Biomed. Chromatogr. 27, 1690–1700 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Beaton, J. M. & Morris, P. E. Ontogeny of N,N-dimethyltryptamine and related indolealkylamine levels in neonatal rats. Mech. Ageing Dev. 25, 343–347 (1984).

    Article  CAS  PubMed  Google Scholar 

  188. Dean, J. G. et al. Biosynthesis and extracellular concentrations of N,N-dimethyltryptamine (DMT) in mammalian brain. Sci. Rep. 9, 9333 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Franzen, F. & Gross, H. Tryptamine, N,N-dimethyltryptamine, N,N-dimethyl-5-hydroxytryptamine and 5-methoxytryptamine in human blood and urine. Nature 206, 1052 (1965).

    Article  CAS  PubMed  Google Scholar 

  190. Kärkkäinen, J. et al. Potentially hallucinogenic 5‐hydroxytryptamine receptor ligands bufotenine and dimethyltryptamine in blood and tissues. Scand. J. Clin. Lab. Invest. 65, 189–199 (2005).

    Article  PubMed  Google Scholar 

  191. Nichols, D. E. N. N-Dimethyltryptamine and the pineal gland: separating fact from myth. J. Psychopharmacol. 32, 30–36 (2018).

    Article  CAS  PubMed  Google Scholar 

  192. Glynos, N. G. et al. Neurochemical and neurophysiological effects of intravenous administration of N,N-dimethyltryptamine in rats. Preprint at bioRxiv https://doi.org/10.1101/2024.04.19.589047 (2024).

  193. Bush, N. E. & Greyson, B. Distressing near-death experiences: the basics. Mol. Med. 111, 486–490 (2014).

    Google Scholar 

  194. Cassol, H. et al. A systematic analysis of distressing near-death experience accounts. Memory 27, 1122–1129 (2019).

    Article  PubMed  Google Scholar 

  195. Greyson, B. & Evans Bush, N. Distressing near-death experiences. Psychiatry 55, 95–110 (1992).

    Article  CAS  PubMed  Google Scholar 

  196. Ring, K. Frightening near-death experiences revisited: a commentary on responses to my paper by Christopher Bache and Nancy Evans Bush. J. Near Death Stud. 13, 55–64 (1994).

    Google Scholar 

  197. Martial, C. et al. Losing the self in near-death experiences: the experience of ego-dissolution. Brain Sci. 11, 929 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Andrijevic, D. et al. Cellular recovery after prolonged warm ischaemia of the whole body. Nature 608, 405–412 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Vrselja, Z. et al. Restoration of brain circulation and cellular functions hours post-mortem. Nature 568, 336–343 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Joffe, A. R. Should the criterion for brain death require irreversible or permanent cessation of function? Irreversible: the UDDA revision series. Neurology 101, 181–183 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Deward (Illumine) for conceptualizing and designing the original Figure 3 and to J. Delroisse (Zoology Laboratory, Université de Mons, Belgium) for his precious phylogenetic insights. This work was supported by the BIAL Foundation. O.G. is a research associate and N.L. is a postdoctoral specialist at Fonds de la Recherche Scientifique, Belgium.

Author information

Authors and Affiliations

Authors

Contributions

N.L., P.F. and C.M. conceptualized the Review, wrote the article and edited the manuscript before submission. All authors contributed substantially to the discussion of the content and reviewed and edited the manuscript before submission. All authors approved the version to be published.

Corresponding author

Correspondence to Charlotte Martial.

Ethics declarations

Competing interests

V.B. has had or continues to have financial relationships with Medtronic, Edwards Medical, Orion Pharma, Grünenthal and Elsevier. He is Deputy Editor-in-Chief of Acta Anaesthesiologica Belgica. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks D. Greer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Agonal

A phenomenon occurring in the final stages of life, typically associated with severe physiological distress or the process of dying.

Atonia

A clinical sign characterized by a reduction in or complete loss of tone and contractility, most often referring to muscle tone.

Aura

The initial symptom of a focal epileptic seizure, reflecting localized abnormal brain activity before it potentially spreads.

Default-mode network

(DMN). A set of brain regions that show correlated functional activity and are typically active during the resting state.

Dissociation

A psychological state in which an individual experiences a disconnection between their thoughts, sensations, memories or sense of identity.

Ego dissolution

A temporary state characterized by the blurring or loss of boundaries between the self and the external world, often accompanied by disruption of self-identity.

Entropic brain hypothesis

A theory suggesting that the subjective quality of a specific experience is reflected in the measurement of brain entropy (greater diversity of brain activity patterns), positing that increased complexity of brain activity correlates with an expansion in some key property of consciousness.

Experiencers

People who have recalled a near-death experience.

Glomus cell

Specialized cells located in the carotid and aortic bodies that act as peripheral chemoreceptors, sensing changes in blood oxygen, CO2 and pH levels and helping to regulate breathing.

Out-of-body experiences

(OBEs). Subjective experiences in which the self is perceived as existing outside the boundaries of a body (disembodiment), sometimes accompanied by the perception of one’s body from an extrapersonal space (autoscopy).

Phenomenology

The lived, first-person experience of reality as it is directly perceived, including sensory, emotional and cognitive elements, shaped by personal context and perspective.

Self-representation

The mental process or cognitive ability by which individuals represent themselves, including their characteristics, values and role within the social and physical environment.

Thanatosis

A behaviour in which an animal ‘plays dead’ by entering a state of immobility or paralysis, typically in an attempt to avoid predators.

Vasovagal syncope

A common type of fainting caused by a sudden drop in heart rate and blood pressure, leading to reduced blood flow to the brain.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martial, C., Fritz, P., Gosseries, O. et al. A neuroscientific model of near-death experiences. Nat Rev Neurol 21, 297–311 (2025). https://doi.org/10.1038/s41582-025-01072-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-025-01072-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing