Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synapse vulnerability and resilience across the clinical spectrum of dementias

Abstract

Preservation of synapses is crucial for healthy cognitive ageing, and synapse loss is one of the closest anatomical correlates of cognitive decline in Alzheimer disease, dementia with Lewy bodies and frontotemporal dementia. In these conditions, some synapses seem particularly vulnerable to degeneration whereas others are resilient and remain preserved. Evidence has highlighted that vulnerability and resilience are intrinsically distinct phenomena linked to specific brain structural and/or functional signatures, yet the key features of vulnerable and resilient synapses in the dementias remain incompletely understood. Defining the characteristics of vulnerable and resilient synapses in each form of dementia could offer novel insight into the mechanisms of synapse preservation and of synapse loss that underlies cognitive decline, thereby facilitating the discovery of targeted biomarkers and disease-modifying therapies. In this Review, we consider the concepts of synapse vulnerability and resilience, and provide an overview of our current understanding of the associations between synaptic protein changes, neuropathology and cognitive decline. We also consider how understanding of the underlying mechanisms could identify novel strategies to mitigate the cognitive dysfunction associated with dementias.

Key points

  • Synaptic pathology is a robust hallmark of dementia, and selective synapse degeneration could be the anatomical basis of varying clinical presentations and disease severities of dementia disorders.

  • Vulnerable synapses are preferentially affected in dementia, whereas resilient synapses are comparatively spared; understanding the mechanisms of selective synapse degeneration could provide clinically more relevant outcomes than current neuropathology-centred approaches.

  • Studies of temporal synapse changes are now possible with biofluid analysis and brain imaging; disease- and stage-specific synaptic signatures could reveal novel biomarkers for dementia, and their study in brain tissue may propose tailored synapse-protective targets for timely interventions.

  • Neuroinflammation, which involves central (glial cells) and peripheral (innate immunity, adaptive immunity) elements, has a key role in synapse pathology across dementias, and its modulation with central and/or peripheral treatment approaches holds promise for mitigating dementia symptoms.

  • Convergence of multiple oligomeric proteins and neuroinflammatory elements at synapses is a shared feature of dementias; dissecting their intricate crosstalk and combined cognitive effects could unravel critical therapeutic targets to block potentially deleterious interactions at synapses.

  • Synapse pathology in rapidly progressive dementias remains under-studied but could reveal novel mechanisms of fulminant synapse degeneration and/or synapse recovery that could be exploited therapeutically in all dementias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cognitive, synaptic and neuropathological vulnerability in dementia.
Fig. 2: Mechanisms and processes associated with synaptic vulnerability and resilience in dementia.

Similar content being viewed by others

References

  1. Abraham, W. C., Jones, O. D. & Glanzman, D. L. Is plasticity of synapses the mechanism of long-term memory storage? NPJ Sci. Learn. 4, 9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. von Bartheld, C. S. Myths and truths about the cellular composition of the human brain: a review of influential concepts. J. Chem. Neuroanat. 93, 2–15 (2018).

    Article  Google Scholar 

  3. Liu, Y. et al. Interactions of glial cells with neuronal synapses, from astrocytes to microglia and oligodendrocyte lineage cells. Glia 71, 1383–1401 (2023).

    Article  PubMed  Google Scholar 

  4. Perrone-Capano, C., Volpicelli, F., Penna, E., Chun, J. T. & Crispino, M. Presynaptic protein synthesis and brain plasticity: from physiology to neuropathology. Prog. Neurobiol. 202, 102051 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Chater, T. E., Eggl, M. F., Goda, Y. & Tchumatchenko, T. Competitive processes shape multi-synapse plasticity along dendritic segments. Nat. Commun. 15, 7572 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Francesco, S. et al. Differential diagnosis of neurodegenerative dementias with the explainable MRI based machine learning algorithm MUQUBIA. Sci. Rep. 13, 17355 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Henstridge, C. M., Pickett, E. & Spires-Jones, T. L. Synaptic pathology: a shared mechanism in neurological disease. Ageing Res. Rev. 28, 72–84 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. DeKosky, S. T. & Scheff, S. W. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann. Neurol. 27, 457–464 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Terry, R. D. et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Griffiths, J. & Grant, S. G. N. Synapse pathology in Alzheimer’s disease. Semin. Cell Dev. Biol. 139, 13–23 (2023).

    Article  PubMed  Google Scholar 

  11. Frigerio, I. et al. Regional differences in synaptic degeneration are linked to alpha-synuclein burden and axonal damage in Parkinson’s disease and dementia with Lewy bodies. Acta Neuropathol. Commun. 12, 4 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Malpetti, M. et al. Synaptic loss in frontotemporal dementia revealed by [11C]UCB-J positron emission tomography. Ann. Neurol. 93, 142–154 (2023).

    Article  PubMed  Google Scholar 

  13. Hermann, P. & Zerr, I. Rapidly progressive dementias — aetiologies, diagnosis and management. Nat. Rev. Neurol. 18, 363–376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Colom-Cadena, M. et al. Synaptic phosphorylated α-synuclein in dementia with Lewy bodies. Brain 140, 3204–3214 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Clayton, E. L., Huggon, L., Cousin, M. A. & Mizielinska, S. Synaptopathy: presynaptic convergence in frontotemporal dementia and amyotrophic lateral sclerosis. Brain 147, 2289–2307 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Anschuetz, A., Schwab, K., Harrington, C. R., Wischik, C. M. & Riedel, G. A meta-analysis on presynaptic changes in Alzheimer’s disease. J. Alzheimers Dis. 97, 145–162 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Graff-Radford, J. et al. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol. 20, 222–234 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oh, H. S.-H. et al. A cerebrospinal fluid synaptic protein biomarker for prediction of cognitive resilience versus decline in Alzheimer’s disease. Nat. Med. https://doi.org/10.1038/s41591-025-03565-2 (2025).

  19. Sogorb-Esteve, A. et al. Differential impairment of cerebrospinal fluid synaptic biomarkers in the genetic forms of frontotemporal dementia. Alzheimers Res. Ther. 14, 118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Borczyk, M., Radwanska, K. & Giese, K. P. The importance of ultrastructural analysis of memory. Brain Res. Bull. 173, 28–36 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Taoufik, E., Kouroupi, G., Zygogianni, O. & Matsas, R. Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. Open. Biol. 8, 180138 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nilsson, J. et al. Cerebrospinal fluid biomarker panel for synaptic dysfunction in a broad spectrum of neurodegenerative diseases. Brain 147, 2414–2427 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Meftah, S. & Gan, J. Alzheimer’s disease as a synaptopathy: evidence for dysfunction of synapses during disease progression. Front. Synaptic Neurosci. 15, 1129036 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Minoshima, S., Cross, D., Thientunyakit, T., Foster, N. L. & Drzezga, A. 18F-FDG PET imaging in neurodegenerative dementing disorders: insights into subtype classification, emerging disease categories, and mixed dementia with copathologies. J. Nucl. Med. 63, 2S–12S (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Martínez-Serra, R., Alonso-Nanclares, L., Cho, K. & Giese, K. P. Emerging insights into synapse dysregulation in Alzheimer’s disease. Brain Commun. 4, fcac083 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Goossens, J. et al. Evaluation of cerebrospinal fluid levels of synaptic vesicle protein, VAMP-2, across the sporadic Alzheimer’s disease continuum. Alzheimers Res. Ther. 15, 186 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martín-de-Saavedra, M. D., Santos, M. D. & Penzes, P. Intercellular signaling by ectodomain shedding at the synapse. Trends Neurosci. 45, 483–498 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cheng, Q. et al. Biomarkers of synaptic degeneration in Alzheimer’s disease. Ageing Res. Rev. https://doi.org/10.1016/j.arr.2024.102642 (2024).

  29. Iascone, D. M. et al. Whole-neuron synaptic mapping reveals spatially precise excitatory/inhibitory balance limiting dendritic and somatic spiking. Neuron 106, 566–578.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lauterborn, J. C. et al. Increased excitatory to inhibitory synaptic ratio in parietal cortex samples from individuals with Alzheimer’s disease. Nat. Commun. 12, 2603 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tok, S., Ahnaou, A. & Drinkenburg, W. Functional neurophysiological biomarkers of early-stage Alzheimer’s disease: a perspective of network hyperexcitability in disease progression. J. Alzheimers Dis. 88, 809–836 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Targa Dias Anastacio, H., Matosin, N. & Ooi, L. Neuronal hyperexcitability in Alzheimer’s disease: what are the drivers behind this aberrant phenotype? Transl. Psychiatry 12, 257 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kurucu, H. et al. Inhibitory synapse loss and accumulation of amyloid beta in inhibitory presynaptic terminals in Alzheimer’s disease. Eur. J. Neurol. 29, 1311–1323 (2022).

    Article  PubMed  Google Scholar 

  34. Lorenc, F., Dupuis, L. & Cassel, R. Impairments of inhibitory neurons in amyotrophic lateral sclerosis and frontotemporal dementia. Neurobiol. Dis. 203, 106748 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Smeralda, C. L. et al. The role of parvalbumin interneuron dysfunction across neurodegenerative dementias. Ageing Res. Rev. 101, 102509 (2024).

    Article  CAS  PubMed  Google Scholar 

  36. Wesenhagen, K. E. J. et al. Synaptic protein CSF levels relate to memory scores in individuals without dementia. Alzheimers Res. Ther. 17, 56 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Scaduto, P. et al. Functional excitatory to inhibitory synaptic imbalance and loss of cognitive performance in people with Alzheimer’s disease neuropathologic change. Acta Neuropathol. 145, 303–324 (2023).

    Article  PubMed  Google Scholar 

  38. Kumar, P. et al. Native-state proteomics of parvalbumin interneurons identifies unique molecular signatures and vulnerabilities to early Alzheimer’s pathology. Nat. Commun. 15, 2823 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pascual-Leone, A. & Bartres-Faz, D. Human brain resilience: a call to action. Ann. Neurol. 90, 336–349 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neuner, S. M. et al. Translational approaches to understanding resilience to Alzheimer’s disease. Trends Neurosci. 45, 369–383 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boyle, R. et al. Identifying longitudinal cognitive resilience from cross-sectional amyloid, tau, and neurodegeneration. Alzheimers Res. Ther. 16, 148 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Latimer, C. S. et al. Resistance and resilience to Alzheimer’s disease pathology are associated with reduced cortical pTau and absence of limbic-predominant age-related TDP-43 encephalopathy in a community-based cohort. Acta Neuropathol. Commun. 7, 91 (2019).

    Article  PubMed  Google Scholar 

  43. Gómez-Isla, T. & Frosch, M. P. Lesions without symptoms: understanding resilience to Alzheimer disease neuropathological changes. Nat. Rev. Neurol. 18, 323–332 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ahangari, N., Fischer, C. E., Schweizer, T. A. & Munoz, D. G. Cognitive resilience and severe Alzheimer’s disease neuropathology. Aging Brain 3, 100065 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Vries, L. E., Huitinga, I., Kessels, H. W., Swaab, D. F. & Verhaagen, J. The concept of resilience to Alzheimer’s disease: current definitions and cellular and molecular mechanisms. Mol. Neurodegener. 19, 33 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nascimento, C. et al. Prevalence of transactive response DNA-binding protein 43 (TDP-43) proteinopathy in cognitively normal older adults: systematic review and meta-analysis. Neuropathol. Appl. Neurobiol. 44, 286–297 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Parkkinen, L., Soininen, H. & Alafuzoff, I. Regional distribution of α-synuclein pathology in unimpaired aging and Alzheimer disease. J. Neuropathol. Exp. Neurol. 62, 363–367 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Melikyan, Z. A. et al. Cognitive resilience to three dementia-related neuropathologies in an oldest-old man: a case report from the 90+ study. Neurobiol. Aging 116, 12–15 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang, J. et al. Uncovering the system vulnerability and criticality of human brain under dynamical neuropathological events in Alzheimer’s disease. J. Alzheimers Dis. 95, 1201–1219 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Siebert, M., Carello-Collar, G., Bastiani, M. A. D. & Zimmer, E. R. Transcriptomic similarities in vulnerable and resilient brain regions of Parkinson’s disease and Alzheimer’s disease. Alzheimers Dement. 19, e080097 (2023).

    Article  Google Scholar 

  51. Anand, C., Torok, J., Abdelnour, F., Maia, P. D. & Raj, A. Selective vulnerability and resilience to Alzheimer’s disease tauopathy as a function of genes and the connectome. Preprint at bioRxiv https://doi.org/10.1101/2024.03.04.583403 (2024).

  52. Serrano, G. E. et al. Correlation of presynaptic and postsynaptic proteins with pathology in Alzheimer’s disease. Int. J. Mol. Sci. 25, 3130 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Askenazi, M. et al. Compilation of reported protein changes in the brain in Alzheimer’s disease. Nat. Commun. 14, 4466 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang, Z. et al. Brain proteomic analysis implicates actin filament processes and injury response in resilience to Alzheimer’s disease. Nat. Commun. 14, 2747 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Camporesi, E. et al. Neuroligin-1 in brain and CSF of neurodegenerative disorders: investigation for synaptic biomarkers. Acta Neuropathol. Commun. 9, 19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mrdjen, D. et al. The basis of cellular and regional vulnerability in Alzheimer’s disease. Acta Neuropathol. 138, 729–749 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gabitto, M. I. et al. Integrated multimodal cell atlas of Alzheimer’s disease. Nat. Neurosci. 27, 2366–2383 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pham, A. Q. & Dore, K. Novel approaches to increase synaptic resilience as potential treatments for Alzheimer’s disease. Semin. Cell Dev. Biol. 139, 84–92 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Castanho, I. et al. Molecular hallmarks of excitatory and inhibitory neuronal resilience and resistance to Alzheimer’s disease. Preprint at bioRxiv https://doi.org/10.1101/2025.01.13.632801 (2025).

  60. Higginbotham, L. et al. Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer’s disease. Sci. Adv. 6, eaaz9360 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. [No authors listed] 2024 Alzheimer’s disease facts and figures. Alzheimers Dement. 20, 3708–3821 (2024).

    Article  Google Scholar 

  62. Tzioras, M., McGeachan, R. I., Durrant, C. S. & Spires-Jones, T. L. Synaptic degeneration in Alzheimer disease. Nat. Rev. Neurol. 19, 19–38 (2023).

    Article  PubMed  Google Scholar 

  63. Kang, X. et al. Convergent neuroimaging and molecular signatures in mild cognitive impairment and Alzheimer’s disease: a data-driven meta-analysis with N = 3,118. Neurosci. Bull. 40, 1274–1286 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lleó, A. et al. Changes in synaptic proteins precede neurodegeneration markers in preclinical Alzheimer’s disease cerebrospinal fluid. Mol. Cell. Proteom. 18, 546–560 (2019).

    Article  Google Scholar 

  65. de Wilde, M. C., Overk, C. R., Sijben, J. W. & Masliah, E. Meta-analysis of synaptic pathology in Alzheimer’s disease reveals selective molecular vesicular machinery vulnerability. Alzheimers Dement. 12, 633–644 (2016).

    Article  PubMed  Google Scholar 

  66. Mathys, H. et al. Single-cell multiregion dissection of Alzheimer’s disease. Nature 632, 858–868 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. John, A. & Reddy, P. H. Synaptic basis of Alzheimer’s disease: focus on synaptic amyloid beta, p-tau and mitochondria. Ageing Res. Rev. 65, 101208 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Blennow, K., Bogdanovic, N., Alafuzoff, I., Ekman, R. & Davidsson, P. Synaptic pathology in Alzheimer’s disease: relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the APOE4 allele. J. Neural Transm. 103, 603–618 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Domínguez-Álvaro, M. et al. Three-dimensional analysis of synapses in the transentorhinal cortex of Alzheimer’s disease patients. Acta Neuropathol. Commun. 6, 20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Scheff, S. W., Price, D. A., Schmitt, F. A. & Mufson, E. J. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 27, 1372–1384 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Mecca, A. P. et al. Synaptic density and cognitive performance in Alzheimer’s disease: A PET imaging study with [11C]UCB-J. Alzheimers Dement. 18, 2527–2536 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Vanderlinden, G. et al. Longitudinal synaptic loss versus tau Braak staging in amnestic mild cognitive impairment. Alzheimers Dement. 21, e14412 (2025).

    Article  CAS  PubMed  Google Scholar 

  73. Kumar, A., Scarpa, M. & Nordberg, A. Tracing synaptic loss in Alzheimer’s brain with SV2A PET-tracer UCB-J. Alzheimers Dement. 20, 2589–2605 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Holland, N. et al. Synaptic loss in primary tauopathies revealed by [11C]UCB-J positron emission tomography. Mov. Disord. 35, 1834–1842 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Papanikolaou, A. et al. Selectively vulnerable deep cortical layer 5/6 fast-spiking interneurons in Alzheimer’s disease models in vivo. Neuron https://doi.org/10.1016/j.neuron.2025.04.010 (2025).

  76. Escamilla, S. et al. Synaptic vs extrasynaptic NMDA receptors distribution in Alzheimer’s human brain. Alzheimers Dement. 19, e076281 (2023).

    Article  Google Scholar 

  77. Higginbotham, L. et al. Unbiased classification of the elderly human brain proteome resolves distinct clinical and pathophysiological subtypes of cognitive impairment. Neurobiol. Dis. 186, 106286 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pelucchi, S., Stringhi, R. & Marcello, E. Dendritic spines in Alzheimer’s disease: how the actin cytoskeleton contributes to synaptic failure. Int. J. Mol. Sci. 21, 908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dorostkar, M. M., Zou, C., Blazquez-Llorca, L. & Herms, J. Analyzing dendritic spine pathology in Alzheimer’s disease: problems and opportunities. Acta Neuropathol. 130, 1–19 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Counts, S. E. et al. Hippocampal drebrin loss in mild cognitive impairment. Neurodegenerative Dis. 10, 216–219 (2012).

    Article  CAS  Google Scholar 

  81. Landry, O. et al. Postsynaptic protein Shank3a deficiency synergizes with Alzheimer’s disease neuropathology to impair cognitive performance in the 3xTg-AD murine model. J. Neurosci. 43, 4941–4954 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pchitskaya, E. & Bezprozvanny, I. Dendritic spines shape analysis – classification or clusterization? Perspective. Front. Synaptic Neurosci. 12, 31 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Boros, B. D. et al. Dendritic spines provide cognitive resilience against Alzheimer’s disease. Ann. Neurol. 82, 602–614 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Walker, C. K. & Herskowitz, J. H. Dendritic spines: mediators of cognitive resilience in aging and Alzheimer’s disease. Neuroscientist 27, 487–505 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Dalal, S., Ramirez-Gomez, J., Sharma, B., Devara, D. & Kumar, S. MicroRNAs and synapse turnover in Alzheimer’s disease. Ageing Res. Rev. 99, 102377 (2024).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, W., Xiao, D., Mao, Q. & Xia, H. Role of neuroinflammation in neurodegeneration development. Signal. Transduct. Target. Ther. 8, 267 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Taddei, R. N. et al. Tau oligomer-containing synapse elimination by microglia and astrocytes in Alzheimer disease. JAMA Neurol. 80, 1209–1221 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tzioras, M. et al. Human astrocytes and microglia show augmented ingestion of synapses in Alzheimer’s disease via MFG-E8. Cell Rep. Med. 4, 101175 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shen, F.-S. et al. Emerging evidence of context-dependent synapse elimination by phagocytes in the CNS. J. Leukoc. Biol. 116, 511–522 (2024).

    Article  PubMed  Google Scholar 

  90. Dejanovic, B. et al. Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models. Nat. Aging 2, 837–850 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. De Schepper, S. et al. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer’s disease. Nat. Neurosci. 26, 406–415 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Guo, Y. et al. Multiplex cerebrospinal fluid proteomics identifies biomarkers for diagnosis and prediction of Alzheimer’s disease. Nat. Hum. Behav. 8, 2047–2066 (2024).

    Article  PubMed  Google Scholar 

  93. Hurst, C. et al. Integrated proteomics to understand the role of neuritin (NRN1) as a mediator of cognitive resilience to Alzheimer’s disease. Mol. Cell. Proteom. 22, 100542 (2023).

    Article  CAS  Google Scholar 

  94. Hesse, R. et al. Comparative profiling of the synaptic proteome from Alzheimer’s disease patients with focus on the APOE genotype. Acta Neuropathol. Commun. 7, 214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Paasila, P. J., Aramideh, J. A., Sutherland, G. T. & Graeber, M. B. Synapses, microglia, and lipids in Alzheimer’s disease. Front. Neurosci. 15, 778822 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fu, W.-Y. & Ip, N. Y. The role of genetic risk factors of Alzheimer’s disease in synaptic dysfunction. Semin. Cell Dev. Biol. 139, 3–12 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Zhao, J. et al. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer’s disease patient iPSC-derived cerebral organoids. Nat. Commun. 11, 5540 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Williams, J. B., Cao, Q. & Yan, Z. Transcriptomic analysis of human brains with Alzheimer’s disease reveals the altered expression of synaptic genes linked to cognitive deficits. Brain Commun. 3, fcab123 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Milà-Alomà, M. et al. CSF synaptic biomarkers in the preclinical stage of Alzheimer disease and their association with MRI and PET. Neurology 97, e2065 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Oeckl, P. et al. Higher plasma β-synuclein indicates early synaptic degeneration in Alzheimer’s disease. Alzheimers Dement. 19, 5095–5102 (2023).

    Article  CAS  PubMed  Google Scholar 

  101. van der Ende, E. L. et al. CSF proteomics in autosomal dominant Alzheimer’s disease highlights parallels with sporadic disease. Brain 146, 4495–4507 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Johnson, E. C. B. et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med. 26, 769–780 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang, H., Lyu, D. & Jia, J. The trajectory of cerebrospinal fluid growth-associated protein 43 in the Alzheimer’s disease continuum: a longitudinal study. J. Alzheimers Dis. 85, 1441–1452 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Utz, J. et al. Cerebrospinal fluid of patients with Alzheimer’s disease contains increased percentages of synaptophysin-bearing microvesicles. Front. Aging Neurosci. 13, 682115 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Haytural, H. et al. Insights into the changes in the proteome of Alzheimer disease elucidated by a meta-analysis. Sci. Data 8, 312 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vrillon, A. et al. Plasma neuregulin 1 as a synaptic biomarker in Alzheimer’s disease: a discovery cohort study. Alzheimers Res. Ther. 14, 71 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Galasko, D. et al. Synaptic biomarkers in CSF aid in diagnosis, correlate with cognition and predict progression in MCI and Alzheimer’s disease. Alzheimers Dement. 5, 871–882 (2019).

    Google Scholar 

  108. Libiger, O. et al. Longitudinal CSF proteomics identifies NPTX2 as a prognostic biomarker of Alzheimer’s disease. Alzheimers Dement. 17, 1976–1987 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Steffen, Halbgebauer. et al. CSF levels of SNAP-25 are increased early in Creutzfeldt-Jakob and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 93, 1059–1065 (2022).

    Article  Google Scholar 

  110. Dulewicz, M., Kulczyńska-Przybik, A. & Mroczko, B. Neurogranin and VILIP-1 as molecular indicators of neurodegeneration in Alzheimer’s disease: a systematic review and meta-analysis. Int. J. Mol. Sci. 21, 8335 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Halbgebauer, S. et al. Visinin-like protein 1 levels in blood and CSF as emerging markers for Alzheimer’s and other neurodegenerative diseases. Alzheimers Res. Ther. 14, 175 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Das, S. et al. The use of synaptic biomarkers in cerebrospinal fluid to differentiate behavioral variant of frontotemporal dementia from primary psychiatric disorders and Alzheimer’s disease. Alzheimers Res. Ther. 16, 34 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Das, S. et al. Synaptic biomarkers in the cerebrospinal fluid associate differentially with classical neuronal biomarkers in patients with Alzheimer’s disease and frontotemporal dementia. Alzheimers Res. Ther. 15, 62 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Saunders, T. S. et al. Associations between cerebrospinal fluid markers and cognition in ageing and dementia: a systematic review. Eur. J. Neurosci. 56, 5650–5713 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kivisäkk, P. et al. Increased levels of the synaptic proteins PSD-95, SNAP-25, and neurogranin in the cerebrospinal fluid of patients with Alzheimer’s disease. Alzheimers Res. Ther. 14, 58 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Lista, S. et al. Monitoring synaptic pathology in Alzheimer’s disease through fluid and PET imaging biomarkers: a comprehensive review and future perspectives. Mol. Psychiatry 29, 847–857 (2024).

    Article  CAS  PubMed  Google Scholar 

  117. Thal, D. R., Rüb, U., Orantes, M. & Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58, 1791–1800 (2002).

    Article  PubMed  Google Scholar 

  118. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Article  CAS  PubMed  Google Scholar 

  119. Willumsen, N. et al. Variability in the type and layer distribution of cortical Aβ pathology in familial Alzheimer’s disease. Brain Pathol. 32, e13009 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Carroll, T., Guha, S., Nehrke, K. & Johnson, G. V. W. Tau post-translational modifications: potentiators of selective vulnerability in sporadic Alzheimer’s disease. Biology 10, 1047 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. DeTure, M. A. & Dickson, D. W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 14, 32 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Spires-Jones, T. L., Kopeikina, K. J., Koffie, R. M., de Calignon, A. & Hyman, B. T. Are tangles as toxic as they look? J. Mol. Neurosci. 45, 438–444 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Goure, W. F., Krafft, G. A., Jerecic, J. & Hefti, F. Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res. Ther. 6, 42 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Robinson, J. L. et al. Pathological combinations in neurodegenerative disease are heterogeneous and disease-associated. Brain 146, 2557–2569 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Nelson, R. S. et al. Neurodegenerative pathologies associated with behavioral and psychological symptoms of dementia in a community-based autopsy cohort. Acta Neuropathol. Commun. 11, 89 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Colom-Cadena, M. et al. Synaptic oligomeric tau in Alzheimer’s disease – a potential culprit in the spread of tau pathology through the brain. Neuron 111, 2170–2183.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Spires-Jones, T. L. & Hyman, B. T. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82, 756–771 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gkanatsiou, E. et al. Amyloid pathology and synaptic loss in pathological aging. J. Neurochem. 159, 258–272 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. O’Dell, R. S. et al. Association of Aβ deposition and regional synaptic density in early Alzheimer’s disease: a PET imaging study with [11C]UCB-J. Alzheimers Res. Ther. 13, 11 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Puliatti, G. et al. Intracellular accumulation of tau oligomers in astrocytes and their synaptotoxic action rely on amyloid precursor protein intracellular domain-dependent expression of glypican-4. Prog. Neurobiol. 227, 102482 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kadamangudi, S. et al. Amyloid-β oligomers increase the binding and internalization of tau oligomers in human synapses. Acta Neuropathol. 149, 2 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Sengupta, U. & Kayed, R. Amyloid β, tau, and α-synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog. Neurobiol. 214, 102270 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. English, L. A., Boeken, D., Cheetham, M. R., Danial, J. S. & Klenerman, D. Brains in focus: uncovering protein aggregate changes across Alzheimer’s disease with single-molecule imaging. Alzheimers Dement. 19, e078222 (2023).

    Article  Google Scholar 

  134. Almeida, Z. L., Vaz, D. C. & Brito, R. M. M. Morphological and molecular profiling of amyloid-β species in Alzheimer’s pathogenesis. Mol. Neurobiol. 62, 4391–4419 (2025).

    Article  CAS  PubMed  Google Scholar 

  135. Pereira, J. B. et al. Untangling the association of amyloid-β and tau with synaptic and axonal loss in Alzheimer’s disease. Brain 144, 310–324 (2021).

    Article  PubMed  Google Scholar 

  136. Walker, J. M. et al. Spatial proteomics of hippocampal subfield-specific pathology in Alzheimer’s disease and primary age-related tauopathy. Alzheimers Dement. 20, 783–797 (2024).

    Article  PubMed  Google Scholar 

  137. Lo Cascio, F. et al. Brain-derived tau oligomer polymorphs: distinct aggregations, stability profiles, and biological activities. Commun. Biol. 8, 53 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dunot, J., Ribera, A., Pousinha, P. A. & Marie, H. Spatiotemporal insights of APP function. Curr. Opin. Neurobiol. 82, 102754 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Bold, C. S. et al. APPsα rescues tau-induced synaptic pathology. J. Neurosci. 42, 5782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hur, J.-Y. γ-Secretase in Alzheimer’s disease. Exp. Mol. Med. 54, 433–446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sirisi, S., Sánchez-Aced, É., Belbin, O. & Lleó, A. APP dyshomeostasis in the pathogenesis of Alzheimer’s disease: implications for current drug targets. Alzheimers Res. Ther. 16, 144 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Musardo, S. et al. The development of ADAM10 endocytosis inhibitors for the treatment of Alzheimer’s disease. Mol. Ther. 30, 2474–2490 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jones, A. A. et al. A multilayer network analysis of Alzheimer’s disease pathogenesis: roles for p-tau, synaptic peptides, and physical activity. Alzheimers Dement. 20, 8012–8027 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Colom-Cadena, M. et al. Transmembrane protein 97 is a potential synaptic amyloid beta receptor in human Alzheimer’s disease. Acta Neuropathol. 147, 32 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Scaduto, P., Marcatti, M., Bhatt, N., Kayed, R. & Taglialatela, G. Calcineurin inhibition prevents synaptic plasticity deficit induced by brain-derived tau oligomers. Brain Commun. 6, fcae277 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Morgan, G. R. & Carlyle, B. C. Interrogation of the human cortical peptidome uncovers cell-type specific signatures of cognitive resilience against Alzheimer’s disease. Sci. Rep. 14, 7161 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Barroeta-Espar, I. et al. Distinct cytokine profiles in human brains resilient to Alzheimer’s pathology. Neurobiol. Dis. 121, 327–337 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Johnson, E. C. B. et al. Large-scale deep multi-layer analysis of Alzheimer’s disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nat. Neurosci. 25, 213–225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yu, L. et al. Cortical proteins associated with cognitive resilience in community-dwelling older persons. JAMA Psychiat. 77, 1172–1180 (2020).

    Article  Google Scholar 

  150. Ramos-Miguel, A. et al. Proteomic identification of select protein variants of the SNARE interactome associated with cognitive reserve in a large community sample. Acta Neuropathol. 141, 755–770 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Mathys, H. et al. Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer’s disease pathology. Cell 186, 4365–4385.e27 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. O’Neill, N. et al. Cognitive resilience to Alzheimer’s disease characterized by cell-type abundance. Alzheimers Dement. 20, 6910–6921 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Guptarak, J. et al. Cognitive integrity in non-demented individuals with Alzheimer’s neuropathology is associated with preservation and remodeling of dendritic spines. Alzheimers Dement. 20, 4677–4691 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Aguado, C. et al. Resilience to structural and molecular changes in excitatory synapses in the hippocampus contributes to cognitive function recovery in Tg2576 mice. Neural Regen. Res. 19, 2068–2074 (2024).

    Article  CAS  PubMed  Google Scholar 

  155. Perez-Nievas, B. G. et al. Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology. Brain 136, 2510–2526 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Taddei, R. N. et al. Changes in glial cell phenotypes precede overt neurofibrillary tangle formation, correlate with markers of cortical cell damage, and predict cognitive status of individuals at Braak III-IV stages. Acta Neuropathol. Commun. 10, 72 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zolochevska, O. & Taglialatela, G. Selected microRNAs increase synaptic resilience to the damaging binding of the Alzheimer’s disease amyloid beta oligomers. Mol. Neurobiol. 57, 2232–2243 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Singh, A. et al. Functional integrity of synapses in the central nervous system of cognitively intact individuals with high Alzheimer’s disease neuropathology is associated with absence of synaptic tau oligomers. J. Alzheimers Dis. 78, 1661–1678 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gutierrez, D. A. et al. c-Abl deficiency provides synaptic resiliency against Aβ-oligomers. Front. Cell. Neurosci. 13, 526 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. King, D. et al. Synaptic resilience is associated with maintained cognition during ageing. Alzheimers Dement. 19, 2560–2574 (2023).

    Article  PubMed  Google Scholar 

  161. Arboleda-Velasquez, J. F. et al. Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. Nat. Med. 25, 1680–1683 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lopera, F. et al. Resilience to autosomal dominant Alzheimer’s disease in a Reelin-COLBOS heterozygous man. Nat. Med. 29, 1243–1252 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Villalba-Moreno, N. D. et al. Differential spatial transcriptome profile of the hippocampal formation of protected PSEN1 E280A familial Alzheimer’s disease cases. Alzheimers Dement. 19, e083204 (2023).

    Article  Google Scholar 

  164. Kauwe, G. et al. KIBRA repairs synaptic plasticity and promotes resilience to tauopathy-related memory loss. J. Clin. Invest. 134, e169064 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bhattarai, P. et al. Rare genetic variation in fibronectin 1 (FN1) protects against APOEε4 in Alzheimer’s disease. Acta Neuropathol. 147, 70 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Seto, M., Weiner, R. L., Dumitrescu, L. & Hohman, T. J. Protective genes and pathways in Alzheimer’s disease: moving towards precision interventions. Mol. Neurodegener. 16, 29 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Camporesi, E. et al. Quantification of the trans-synaptic partners neurexin-neuroligin in CSF of neurodegenerative diseases by parallel reaction monitoring mass spectrometry. eBioMedicine 75, 103793 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Krafft, G. A., Jerecic, J., Siemers, E. & Cline, E. N. ACU193: an Immunotherapeutic poised to test the amyloid β oligomer hypothesis of Alzheimer’s disease. Front. Neurosci. 16, 848215 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  169. van Dyck, C. H. et al. A pilot study to evaluate the effect of CT1812 treatment on synaptic density and other biomarkers in Alzheimer’s disease. Alzheimers Res. Ther. 16, 20 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Kiss, E. et al. Artesunate restores the levels of inhibitory synapse proteins and reduces amyloid-β and C-terminal fragments (CTFs) of the amyloid precursor protein in an AD-mouse model. Mol. Cell. Neurosci. 113, 103624 (2021).

    Article  CAS  PubMed  Google Scholar 

  171. Peng, L., Bestard-Lorigados, I. & Song, W. The synapse as a treatment avenue for Alzheimer’s disease. Mol. Psychiatry 27, 2940–2949 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Piscopo, P. et al. A systematic review on drugs for synaptic plasticity in the treatment of dementia. Ageing Res. Rev. 81, 101726 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Cummings, J. et al. Alzheimer’s disease drug development pipeline: 2024. Alzheimers Dement. 10, e12465 (2024).

    Google Scholar 

  174. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06427668 (2024).

  175. Fei, M. et al. Characteristics of initial symptoms in patients with dementia with Lewy body disease. Front. Neurol. 13, 1024995 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Armstrong, M. J. & Barnes, L. L. Under-diagnosis of dementia with Lewy bodies in individuals racialized as black: hypotheses regarding potential contributors. J. Alzheimers Dis. 97, 1571–1580 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Alzheimer’s Society. Dementia with Lewy bodies (DLB): what is it and what causes it? http://www.alzheimers.org.uk/about-dementia/types-dementia/dementia-with-lewy-bodies (2021).

  178. Orme, T., Guerreiro, R. & Bras, J. The genetics of dementia with Lewy bodies: current understanding and future directions. Curr. Neurol. Neurosci. Rep. 18, 67 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Perovnik, M. et al. Metabolic brain pattern in dementia with Lewy bodies: relationship to Alzheimer’s disease topography. Neuromage Clin. 35, 103080 (2022).

    Article  Google Scholar 

  180. Gomperts, S. N. Lewy body dementias: dementia with Lewy bodies and Parkinson disease dementia. Continuum 22, 435–463 (2016).

    PubMed  PubMed Central  Google Scholar 

  181. Macoir, J. The cognitive and language profile of dementia with Lewy bodies. Am. J. Alzheimers Dis. Other Dement. 37, 15333175221106901 (2022).

    Article  Google Scholar 

  182. Caminiti, S. P. et al. Brain glucose metabolism in Lewy body dementia: implications for diagnostic criteria. Alzheimers Res. Ther. 11, 20 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Nicastro, N. et al. 11C-UCB-J synaptic PET and multimodal imaging in dementia with Lewy bodies. Eur. J. Hybrid. Imaging 4, 25 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Menšíková, K. et al. Lewy body disease or diseases with Lewy bodies? NPJ Parkinsons Dis. 8, 3 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Shantaraman, A. et al. Network proteomics of the Lewy body dementia brain reveals presynaptic signatures distinct from Alzheimer’s disease. Mol. Neurodegener. 19, 60 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Canal-Garcia, A. et al. Proteomic signatures of Alzheimer’s disease and Lewy body dementias: a comparative analysis. Alzheimers Dement. 21, e14375 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Andersen, K. B. et al. Reduced synaptic density in patients with Lewy body dementia: an [11C]UCB-J PET imaging study. Mov. Disord. 36, 2057–2065 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Vanderlinden, G., Carron, C., Vandenberghe, R., Vandenbulcke, M. & Van Laere, K. In vivo PET of synaptic density as potential diagnostic marker for cognitive disorders: prospective comparison with current imaging markers for neuronal dysfunction and relation to symptomatology – study protocol. BMC Med. Imaging 24, 41 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Pérez-Acuña, D., Shin, S. J., Rhee, K. H., Kim, S. J. & Lee, S.-J. α-Synuclein propagation leads to synaptic abnormalities in the cortex through microglial synapse phagocytosis. Mol. Brain 16, 72 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Gao, C., Jiang, J., Tan, Y. & Chen, S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal. Transduct. Target. Ther. 8, 359 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Shen, J., Bian, N., Zhao, L. & Wei, J. The role of T-lymphocytes in central nervous system diseases. Brain Res. Bull. 209, 110904 (2024).

    Article  CAS  PubMed  Google Scholar 

  192. Gate, D. et al. CD4+ T cells contribute to neurodegeneration in Lewy body dementia. Science 374, 868–874 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. van Steenoven, I. et al. Identification of novel cerebrospinal fluid biomarker candidates for dementia with Lewy bodies: a proteomic approach. Mol. Neurodegener. 15, 36 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Xiang, Y., Xin, J., Le, W. & Yang, Y. Neurogranin: a potential biomarker of neurological and mental diseases. Front. Aging Neurosci. 12, 584743 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Willemse, E. A. J. et al. Neurogranin as biomarker in CSF is non-specific to Alzheimer’s disease dementia. Neurobiol. Aging 108, 99–109 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Nilsson, J. et al. Cerebrospinal fluid biomarker panel of synaptic dysfunction in Alzheimer’s disease and other neurodegenerative disorders. Alzheimers Dement. 19, 1775–1784 (2023).

    Article  CAS  PubMed  Google Scholar 

  197. Barba, L. et al. CSF synaptic biomarkers in AT(N)-based subgroups of Lewy body disease. Neurology 101, e50–e62 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Mohaupt, P. et al. β-Synuclein as a candidate blood biomarker for synaptic degeneration in Alzheimer’s disease. Alzheimers Res. Ther. 14, 179 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Bousiges, O. & Blanc, F. Biomarkers of dementia with Lewy bodies: differential diagnostic with Alzheimer’s disease. Int. J. Mol. Sci. 23, 6371 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kannarkat, G. et al. Alpha-synuclein strains in plasma distinguish Parkinson’s disease from dementia with Lewy bodies (S26.006). Neurology 102, 6274 (2024).

    Article  Google Scholar 

  201. Bartl, M. et al. Lysosomal and synaptic dysfunction markers in longitudinal cerebrospinal fluid of de novo Parkinson’s disease. NPJ Parkinsons Dis. 10, 102 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Attems, J. et al. Neuropathological consensus criteria for the evaluation of Lewy pathology in post-mortem brains: a multi-centre study. Acta Neuropathologica 141, 159–172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Markesbery, W. R., Jicha, G. A., Liu, H. & Schmitt, F. A. Lewy body pathology in normal elderly subjects. J. Neuropathol. Exp. Neurol. 68, 816–822 (2009).

    Article  PubMed  Google Scholar 

  204. Borghammer, P. et al. Neuropathological evidence of body-first vs. brain-first Lewy body disease. Neurobiol. Dis. 161, 105557 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Geertsma, H. M. et al. A topographical atlas of α-synuclein dosage and cell type-specific expression in adult mouse brain and peripheral organs. NPJ Parkinsons Dis. 10, 65 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Goralski, T. M. et al. Spatial transcriptomics reveals molecular dysfunction associated with cortical Lewy pathology. Nat. Commun. 15, 2642 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Simon, C., Soga, T., Okano, H. J. & Parhar, I. α-Synuclein-mediated neurodegeneration in dementia with Lewy bodies: the pathobiology of a paradox. Cell Biosci. 11, 196 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. de Boni, L. et al. Brain region-specific susceptibility of Lewy body pathology in synucleinopathies is governed by α-synuclein conformations. Acta Neuropathol. 143, 453–469 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Gao, V., Briano, J. A., Komer, L. E. & Burré, J. Functional and pathological effects of α-synuclein on synaptic SNARE complexes. J. Mol. Biol. 435, 167714 (2023).

    Article  CAS  PubMed  Google Scholar 

  210. Nordengen, K. & Morland, C. From synaptic physiology to synaptic pathology: the enigma of α-synuclein. Int. J. Mol. Sci. 25, 986 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Krawczuk, D., Groblewska, M., Mroczko, J., Winkel, I. & Mroczko, B. The role of α-synuclein in etiology of neurodegenerative diseases. Int. J. Mol. Sci. 25, 9197 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Roodveldt, C. et al. The immune system in Parkinson’s disease: what we know so far. Brain 147, 3306–3324 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Lilamand, M. et al. Cerebrospinal fluid alpha-synuclein improves the differentiation between dementia with Lewy bodies and Alzheimer’s disease in clinical practice. Int. J. Mol. Sci. 23, 13488 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Bousiges, O. et al. Differential diagnostic value of total alpha-synuclein assay in the cerebrospinal fluid between Alzheimer’s disease and dementia with Lewy bodies from the prodromal stage. Alzheimers Res. Ther. 12, 120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Coughlin, D. G. et al. Association of CSF α-synuclein seeding amplification assay results with clinical features of possible and probable dementia with Lewy bodies. Neurology 103, e209656 (2024).

    Article  CAS  PubMed  Google Scholar 

  216. Ardah, M. T. et al. Inhibition of alpha-synuclein seeded fibril formation and toxicity by herbal medicinal extracts. BMC Complement. Med. Ther. 20, 73 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Hyman, B. T. et al. National Institute on Aging – Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 8, 1–13 (2012).

    Article  PubMed  Google Scholar 

  218. Hepp, D. H. et al. Distribution and load of amyloid-β pathology in Parkinson disease and dementia with Lewy bodies. J. Neuropathol. Exp. Neurol. 75, 936–945 (2016).

    Article  CAS  PubMed  Google Scholar 

  219. Toledo, J. B. et al. Dementia with Lewy bodies: impact of co-pathologies and implications for clinical trial design. Alzheimers Dement. 19, 318–332 (2023).

    Article  PubMed  Google Scholar 

  220. Gifford, A., Praschan, N., Newhouse, A. & Chemali, Z. Biomarkers in frontotemporal dementia: current landscape and future directions. Biomark. Neuropsychiatry 8, 100065 (2023).

    Article  Google Scholar 

  221. Mayo Clinic. Frontotemporal dementia. http://www.mayoclinic.org/diseases-conditions/frontotemporal-dementia/symptoms-causes/syc-20354737 (2023).

  222. Chung, D. C., Roemer, S., Petrucelli, L. & Dickson, D. W. Cellular and pathological heterogeneity of primary tauopathies. Mol. Neurodegener. 16, 57 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Mehta, P. R., Brown, A.-L., Ward, M. E. & Fratta, P. The era of cryptic exons: implications for ALS-FTD. Mol. Neurodegener. 18, 16 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Giannini, L. A. A. et al. Isoform-specific patterns of tau burden and neuronal degeneration in MAPT-associated frontotemporal lobar degeneration. Acta Neuropathol. 144, 1065–1084 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Restrepo-Martínez, M. et al. Defining repetitive behaviours in frontotemporal dementia. Brain 147, 1149–1165 (2024).

    Article  PubMed  Google Scholar 

  226. Mirbod, M. et al. FDG-PET in the diagnosis of primary progressive aphasia: a systematic review. Ann. Nucl. Med. 38, 673–687 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Whiteside, D. J. et al. Synaptic density affects clinical severity via network dysfunction in syndromes associated with frontotemporal lobar degeneration. Nat. Commun. 14, 8458 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Dando, O. et al. Synaptic gene expression changes in frontotemporal dementia due to the MAPT 10+16 mutation. Neuropathol. Appl. Neurobiol. 50, e13006 (2024).

    Article  CAS  PubMed  Google Scholar 

  229. Nana, A. L. et al. Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology. Acta Neuropathol. 137, 27–46 (2019).

    Article  PubMed  Google Scholar 

  230. Ayala, I. et al. Loss and microglia phagocytosis of synaptic proteins in frontotemporal lobar degeneration with TDP-43 proteinopathy. Neurochem. Int. 175, 105719 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Italia, M. et al. Anti-GluA3 autoantibodies define a new sub-population of frontotemporal lobar degeneration patients with distinct neuropathological features. Brain, Behav., Immun. 118, 380–397 (2024).

    Article  CAS  PubMed  Google Scholar 

  232. Chu, M. et al. Peripheral inflammation in behavioural variant frontotemporal dementia: associations with central degeneration and clinical measures. J. Neuroinflammation 20, 65 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Spalloni, A. et al. Cerebrospinal fluid from frontotemporal dementia patients is toxic to neurons. Biochim. Biophysica Acta Mol. Basis Dis. 1867, 166122 (2021).

    Article  CAS  Google Scholar 

  234. Laszlo, Z. I. et al. Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex. Acta Neuropathol. Commun. 10, 156 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Bridel, C. et al. Clusters of co-abundant proteins in the brain cortex associated with fronto-temporal lobar degeneration. Alzheimers Res. Ther. 15, 59 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Cervantes González, A. et al. Multimarker synaptic protein cerebrospinal fluid panels reflect TDP-43 pathology and cognitive performance in a pathological cohort of frontotemporal lobar degeneration. Mol. Neurodegener. 17, 29 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Bauer, C. S. et al. An interaction between synapsin and C9orf72 regulates excitatory synapses and is impaired in ALS/FTD. Acta Neuropathol. 144, 437–464 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Camporesi, E. et al. Fluid biomarkers for synaptic dysfunction and loss. Biomark. Insights 15, 1177271920950319 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Lin, P.-Y. et al. Neurexin-2: an inhibitory neurexin that restricts excitatory synapse formation in the hippocampus. Sci. Adv. 9, eadd8856 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Clarke, M. T. M. et al. CSF synaptic protein concentrations are raised in those with atypical Alzheimer’s disease but not frontotemporal dementia. Alzheimers Res. Ther. 11, 105 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Bavato, F. et al. Introducing neurofilament light chain measure in psychiatry: current evidence, opportunities, and pitfalls. Mol. Psychiatry 29, 2543–2559 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Meneses, A. et al. TDP-43 pathology in Alzheimer’s disease. Mol. Neurodegener. 16, 84 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Keating, S. S., San Gil, R., Swanson, M. E. V., Scotter, E. L. & Walker, A. K. TDP-43 pathology: from noxious assembly to therapeutic removal. Prog. Neurobiol. 211, 102229 (2022).

    Article  CAS  PubMed  Google Scholar 

  244. Young, A. L. et al. Data-driven neuropathological staging and subtyping of TDP-43 proteinopathies. Brain 146, 2975–2988 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Kawakami, I., Arai, T. & Hasegawa, M. The basis of clinicopathological heterogeneity in TDP-43 proteinopathy. Acta Neuropathol. 138, 751–770 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Brettschneider, J. et al. Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathol. 127, 423–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Brettschneider, J. et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann. Neurol. 74, 20–38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Keszycki, R. et al. Propagation of TDP-43 proteinopathy in neurodegenerative disorders. Neural Regen. Res. 17, 1498–1500 (2022).

    Article  CAS  PubMed  Google Scholar 

  249. Versluys, L. et al. Expanding the TDP-43 proteinopathy pathway from neurons to muscle: physiological and pathophysiological functions. Front. Neurosci. 16, 815765 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Jo, M. et al. The role of TDP-43 propagation in neurodegenerative diseases: integrating insights from clinical and experimental studies. Exp. Mol. Med. 52, 1652–1662 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Yang, L., Jasiqi, Y. & Lashuel, H. Recombinant full-length TDP-43 oligomers retain their ability to bind RNAs, are not toxic, and do not seed TDP-43 aggregation in vitro. ACS Chem. Neurosci. 15, 193–204 (2024).

    Article  CAS  PubMed  Google Scholar 

  252. Forrest, S. L. et al. Coexisting Lewy body disease and clinical parkinsonism in frontotemporal lobar degeneration. Neurology 92, e2472–e2482 (2019).

    Article  CAS  PubMed  Google Scholar 

  253. Woodworth, D. C. et al. Comprehensive assessment of TDP-43 neuropathology data in the National Alzheimer’s Coordinating Center database. Acta Neuropathol. 147, 103 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Yuan, L. et al. Typical metabolic pattern of 18F-FDG PET in Anti-NMDAR encephalitis in the acute and subacute phases and its correlation with T2 FLAIR-MRI features. BMC Neurosci. 24, 51 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Kvam, K. A. et al. Outcome and sequelae of aueoimmune encephalitis. J. Clin. Neurol. 20, 3–22 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Gong, X. et al. Long-term functional outcomes and relapse of anti-NMDA receptor encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 8, e958 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Zhong, R., Chen, Q., Zhang, X., Zhang, H. & Lin, W. Risk factors for mortality in anti-NMDAR, anti-LGI1, and anti-GABABR encephalitis. Front. Immunol. 13, 845365 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Qiao, S. et al. Characteristics and prognosis of autoimmune encephalitis in the east of China: a multi-center study. Front. Neurol. 12, 642078 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Gibson, L. L., McKeever, A., Coutinho, E., Finke, C. & Pollak, T. A. Cognitive impact of neuronal antibodies: encephalitis and beyond. Transl. Psychiatry 10, 304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Tirado-García, L.-A., Piña-Ballantyne, S.-A., Cienfuegos-Meza, J. & Tena-Suck, M.-L. Anti-N-methyl-D-aspartate receptor encephalitis with diffuse demyelinating plaques: a case report of an atypical presentation. Cureus 15, e41595 (2023).

    PubMed  PubMed Central  Google Scholar 

  261. Huang, Y. Q. & Xiong, H. Anti-NMDA receptor encephalitis: a review of mechanistic studies. Int. J. Physiol. Pathophysiol. Pharmacol. 13, 1–11 (2021).

    PubMed  PubMed Central  Google Scholar 

  262. Dalmau, J. et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol. 18, 1045–1057 (2019).

    Article  CAS  PubMed  Google Scholar 

  263. Shim, Y.-M. et al. An autopsy-proven case-based review of autoimmune encephalitis. Exp. Neurobiol. 33, 1–17 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Zhang, C. et al. Hypometabolism of the left middle/medial frontal lobe on FDG-PET in anti-NMDA receptor encephalitis: comparison with MRI and EEG findings. CNS Neurosci. Therapeutics 29, 1624–1635 (2023).

    Article  CAS  Google Scholar 

  265. Wei, Y.-C. et al. Different FDG-PET metabolic patterns of anti-AMPAR and anti-NMDAR encephalitis: case report and literature review. Brain Behav. 10, e01540 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Ahmed, H. et al. Evaluation of (rac)-, (R)-, and (S)-18F-OF-NB1 for imaging GluN2B subunit-containing N-methyl-d-aspartate receptors in nonhuman primates. J. Nucl. Med. 63, 1912 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Ramirez-Bermudez, J., Restrepo-Martinez, M., Diaz-Victoria, A. R. & Espinola-Nadurille, M. Memantine as adjuntive therapy in a patient with anti-N-methyl-d-aspartate receptor encephalitis. J. Clin. Psychopharmacol. 40, 92–93 (2020).

    Article  PubMed  Google Scholar 

  268. Kortazar-Zubizarreta, I. et al. Sporadic Creutzfeldt–Jakob disease with extremely long 14-year survival period. Eur. J. Neurol. 28, 2901–2906 (2021).

    Article  PubMed  Google Scholar 

  269. Jurcau, M. C., Jurcau, A., Diaconu, R. G., Hogea, V. O. & Nunkoo, V. S. A systematic review of sporadic Creutzfeldt–Jakob disease: pathogenesis, diagnosis, and therapeutic attempts. Neurol. Int. 16, 1039–1065 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Sigurdson, C. J., Bartz, J. C. & Glatzel, M. Cellular and molecular mechanisms of prion disease. Annu. Rev. Pathol.: Mechanisms Dis. 14, 497–516 (2019).

    Article  CAS  Google Scholar 

  271. Chu, M. et al. A longitudinal 18F-FDG PET/MRI study in asymptomatic stage of genetic Creutzfeldt–Jakob disease linked to G114V mutation. J. Neurol. 269, 6094–6103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Foliaki, S. T. et al. Limbic system synaptic dysfunctions associated with prion disease onset. Acta Neuropathol. Commun. 12, 192 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Matsuo, K. et al. An autopsy case of MV2K-type sporadic Creutzfeldt–Jakob disease presenting with characteristic clinical, radiological, and neuropathological findings. Neuropathology 42, 245–253 (2022).

    Article  CAS  PubMed  Google Scholar 

  274. Jankovska, N. et al. Biomarkers analysis and clinical manifestations in comorbid Creutzfeldt–Jakob disease: a retrospective study in 215 autopsy cases. Biomedicines 10, 680 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Ferrer, I., Puig, B., Blanco, R. & Martí, E. Prion protein deposition and abnormal synaptic protein expression in the cerebellum in Creutzfeldt–Jakob disease. Neuroscience 97, 715–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  276. Fyfe, I. Neurogranin in CSF identifies Creutzfeldt–Jakob disease. Nat. Rev. Neurol. 15, 434–435 (2019).

    Article  PubMed  Google Scholar 

  277. Antonell, A. et al. Synaptic, axonal damage and inflammatory cerebrospinal fluid biomarkers in neurodegenerative dementias. Alzheimers Dement. 16, 262–272 (2020).

    Article  PubMed  Google Scholar 

  278. Bentivenga, G. M. et al. Diagnostic and prognostic value of cerebrospinal fluid SNAP-25 and neurogranin in Creutzfeldt–Jakob disease in a clinical setting cohort of rapidly progressive dementias. Alzheimers Res. Ther. 15, 150 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Hermann, P. et al. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol. 20, 235–246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Le, N. T. T., Wu, B. & Harris, D. A. Prion neurotoxicity. Brain Pathol. 29, 263–277 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Wang, Y. et al. Loss of homeostatic microglia signature in prion diseases. Cells 11, 2948 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. de Vries, L. E., Bahnerth, A., Swaab, D. F., Verhaagen, J. & Carulli, D. Resilience to Alzheimer’s disease associates with alterations in perineuronal nets. Alzheimers Dement. 21, e14504 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Herden, J. M. et al. Comparative evaluation of clinical and cerebrospinal fluid biomarker characteristics in rapidly and non-rapidly progressive Alzheimer’s disease. Alzheimers Res. Ther. 15, 106 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Remnestål, J. et al. Altered levels of CSF proteins in patients with FTD, presymptomatic mutation carriers and non-carriers. Transl. Neurodegener. 9, 27 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Huber, N. et al. Deficient neurotransmitter systems and synaptic function in frontotemporal lobar degeneration – insights into disease mechanisms and current therapeutic approaches. Mol. Psychiatry 27, 1300–1309 (2022).

    Article  CAS  PubMed  Google Scholar 

  286. Fratiglioni, L., Marseglia, A. & Dekhtyar, S. Ageing without dementia: can stimulating psychosocial and lifestyle experiences make a difference? Lancet Neurol. 19, 533–543 (2020).

    Article  PubMed  Google Scholar 

  287. Kramer, M., Cutty, M., Knox, S., Alekseyenko, A. V. & Mollalo, A. Rural–urban disparities of Alzheimer’s disease and related dementias: a scoping review. Alzheimers Dement (N Y) 11, e70047 (2025).

    Article  PubMed  Google Scholar 

  288. Bocancea, D. I. et al. Measuring resilience and resistance in aging and Alzheimer disease using residual methods. Neurology 97, 474–488 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Sepulveda-Falla, D. Resistant and resilient mutations in protection against familial Alzheimer’s disease: learning from nature. Mol. Neurodegen. 18, 36 (2023).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.N.T. researched data for the article and wrote the article. Both authors made substantial contributions to discussion of the content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Raquel N. Taddei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks M. di Luca, T. Spires-Jones and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

We searched PubMed and the Cochrane Library for studies published in English up to August 2024, using the search terms “Alzheimer disease”, “AD”, “dementia with Lewy bodies”, ”DLB”, ”frontotemporal dementia”, “FTD”, “cognitive decline”, “mild cognitive impairment”, “dementia severity”, “autoimmune encephalitis”, “prion disease”, “NMDA-R”, “CJD”, “synapse dysfunction”, “synapse loss”, “synapse biomarkers”, “plasma biomarkers”, “proteomic studies”, “resilience”, “resistance”, “vulnerability” and “locoregional”. Meta-analyses, systematic reviews and observational studies were selected from the results. In addition, we manually searched the references of selected meta-analyses, systematic reviews, observational studies, internet articles from international institutions and hospitals, and practice guidelines. Emphasis was given to meta-analyses and observational studies published in the past 5 years. The studies included focused on human-derived data obtained from biofluids and/or brain tissue samples unless otherwise indicated. The articles selected were agreed upon by the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taddei, R.N., Duff, K.E. Synapse vulnerability and resilience across the clinical spectrum of dementias. Nat Rev Neurol 21, 353–369 (2025). https://doi.org/10.1038/s41582-025-01094-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-025-01094-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing