Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic clocks and DNA methylation biomarkers of brain health and disease

Abstract

Ageing has profound effects on the human brain across the lifespan. Cognitive testing and brain imaging are currently used to monitor healthy and pathological brain ageing. However, peripheral markers of cognitive function, cognitive ageing and neurological disease could provide a valuable, minimally invasive approach to tracking these processes longitudinally. In this Review, we introduce the concept of DNA methylation-based biomarkers and present current evidence of their potential to address the challenge of monitoring brain ageing and stratifying the risk of neurological disease. We focus on epigenetic clocks, which can be applied across multiple tissues and organs to estimate biological ageing, as well as on blood-based epigenetic scores (EpiScores) that can directly track brain-based phenotypes, such as cognitive function, and risk factors for neurological diseases, such as lifestyle behaviours and proteomic markers of inflammation. We discuss the associations between these epigenetic biomarkers and multiple measures of cognitive health, including cognitive test data, brain MRI measures and dementia.

Key points

  • Peripheral markers of neurological function and disease could provide a valuable, minimally invasive approach to aid risk prediction.

  • DNA methylation, an epigenetic modification that varies by tissue or cell type of origin, is an increasingly popular candidate for biomarker development.

  • Methylation patterns from blood, brain and other tissues can be used to build biomarkers for chronological ageing (termed first-generation epigenetic clocks) and other complex traits (for example, cognitive function, mortality or protein levels).

  • Second-generation and third-generation epigenetic clocks, which were built to predict the healthspan, lifespan and rate of biological ageing, associate more strongly with health outcomes than do first-generation clocks but currently neither show robust associations with dementia.

  • Methylation biomarkers for other complex traits, including inflammatory protein levels and cognitive function, show promise for tracking risk factors for neurodegeneration.

  • Methylation biomarkers might offer an effective way to track brain health across the life course.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relationship between CpG methylation proportions and chronological age.
Fig. 2: Training and testing a first-generation epigenetic clock.
Fig. 3: First-generation versus second-generation and third-generation epigenetic clocks.
Fig. 4: Timeline of cortical clock development.

Similar content being viewed by others

References

  1. Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Nat. Aging 3, 1144–1166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, C. Z. et al. Epigenetic predictors of species maximum life span and other life-history traits in mammals. Sci. Adv. 10, eadm7273 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McCartney, D. L. et al. Blood-based epigenome-wide analyses of cognitive abilities. Genome Biol. 23, 26 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koetsier, J. et al. Blood-based multivariate methylation risk score for cognitive impairment and dementia. Alzheimers Dement. 20, 6682–6698 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Garagnani, P. et al. Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell 11, 1132–1134 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Bernabeu, E. et al. Refining epigenetic prediction of chronological and biological age. Genome Med. 15, 12 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bibikova, M. et al. Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics 1, 177–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Pidsley, R. et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 17, 208 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Illumina. Infinium HumanMethylation450 BeadChip Product Files. Data Sheet https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_humanmethylation450.pdf (2012).

  12. Illumina. Infinium MethylationEPIC v2.0 Kit BeadChip. Data Sheet https://emea.illumina.com/content/dam/illumina/gcs/assembled-assets/marketing-literature/infinium-methylation-epic-data-sheet-m-gl-01156/infinium-methylation-epic-data-sheet-m-gl-01156.pdf (2022).

  13. Goldberg, D. C. et al. Scalable screening of ternary-code DNA methylation dynamics associated with human traits. Preprint at bioRxiv https://doi.org/10.1101/2024.05.17.594606 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bocklandt, S. et al. Epigenetic predictor of age. PLoS ONE 6, e14821 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koch, C. M. & Wagner, W. Epigenetic-aging-signature to determine age in different tissues. Aging 3, 1018–1027 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marioni, R. E. et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8, 1844–1865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shireby, G. L. et al. Recalibrating the epigenetic clock: implications for assessing biological age in the human cortex. Brain 143, 3763–3775 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Murthy, M. et al. Epigenetic age acceleration is associated with oligodendrocyte proportions in MSA and control brain tissue. Neuropathol. Appl. Neurobiol. 49, e12872 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, Y., Grant, O. A., Zhai, X., Mcdonald-Maier, K. D. & Schalkwyk, L. C. Insights into ageing rates comparison across tissues from recalibrating cerebellum DNA methylation clock. GeroScience 46, 39–56 (2024).

    Article  PubMed  Google Scholar 

  23. Thrush, K. L. et al. Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease. Aging 14, 5641 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grodstein, F. et al. Characteristics of epigenetic clocks across blood and brain tissue in older women and men. Front. Neurosci. 14, 555307 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Grodstein, F. et al. The association of epigenetic clocks in brain tissue with brain pathologies and common aging phenotypes. Neurobiol. Dis. 157, 105428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mendizabal, I. et al. Cell type-specific epigenetic links to schizophrenia risk in the brain. Genome Biol. 20, 135 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hansen, D. V., Hanson, J. E. & Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 217, 459–472 (2017).

    Article  PubMed  Google Scholar 

  28. Shireby, G. et al. DNA methylation signatures of Alzheimer’s disease neuropathology in the cortex are primarily driven by variation in non-neuronal cell-types. Nat. Commun. 13, 5620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Francis, P. T., Costello, H. & Hayes, G. M. Brains for Dementia Research: evolution in a longitudinal brain donation cohort to maximize current and future value. J. Alzheimers Dis. 66, 1635–1644 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Coninx, E. et al. Hippocampal and cortical tissue-specific epigenetic clocks indicate an increased epigenetic age in a mouse model for Alzheimer’s disease. Aging 12, 20817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heinsberg, L. W., Liu, D., Shaffer, J. R., Weeks, D. E. & Conley, Y. P. Characterization of cerebrospinal fluid DNA methylation age during the acute recovery period following aneurysmal subarachnoid hemorrhage. Epigenetics Commun. 1, 2 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Levine, M. E., Lu, A. T., Bennett, D. A. & Horvath, S. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging 7, 1198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu, A. T. et al. Genetic architecture of epigenetic and neuronal ageing rates in human brain regions. Nat. Commun. 8, 15353 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Horvath, S. et al. The cerebellum ages slowly according to the epigenetic clock. Aging 7, 294 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Knight, A. K. et al. An epigenetic clock for gestational age at birth based on blood methylation data. Genome Biol. 17, 206 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Johnson, S. & Marlow, N. Early and long-term outcome of infants born extremely preterm. Arch. Dis. Child. 102, 97–102 (2017).

    Article  PubMed  Google Scholar 

  37. Sullivan, G. et al. Preterm birth is associated with immune dysregulation which persists in infants exposed to histologic chorioamnionitis. Front. Immunol. 12, 722489 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bach, A. M. et al. Systemic inflammation during the first year of life is associated with brain functional connectivity and future cognitive outcomes. Dev. Cogn. Neurosci. 53, 101041 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Colwell, M. L., Townsel, C., Petroff, R. L., Goodrich, J. M. & Dolinoy, D. C. Epigenetics and the exposome: DNA methylation as a proxy for health impacts of prenatal environmental exposures. Exposome 3, osad001 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bohlin, J. et al. Prediction of gestational age based on genome-wide differentially methylated regions. Genome Biol. 17, 207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haftorn, K. L. et al. An EPIC predictor of gestational age and its application to newborns conceived by assisted reproductive technologies. Clin. Epigenetics 13, 82 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Polinski, K. J. et al. Epigenetic gestational age and the relationship with developmental milestones in early childhood. Hum. Mol. Genet. 32, 1565–1574 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, Y. et al. Placental epigenetic clocks: estimating gestational age using placental DNA methylation levels. Aging 11, 4238 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mayne, B. T. et al. Accelerated placental aging in early onset preeclampsia pregnancies identified by DNA methylation. Epigenomics 9, 279–289 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. McEwen, L. M. et al. The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells. Proc. Natl Acad. Sci. 117, 23329–23335 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Gomaa, N. et al. Association of pediatric buccal epigenetic age acceleration with adverse neonatal brain growth and neurodevelopmental outcomes among children born very preterm with a neonatal infection. JAMA Netw. Open 5, e2239796 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Graw, S. et al. NEOage clocks-epigenetic clocks to estimate post-menstrual and postnatal age in preterm infants. Aging 13, 23527 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lapehn, S. & Paquette, A. G. The placental epigenome as a molecular link between prenatal exposures and fetal health outcomes through the DOHaD hypothesis. Curr. Environ. Health Rep. 9, 490–501 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mill, J. & Heijmans, B. T. From promises to practical strategies in epigenetic epidemiology. Nat. Rev. Genet. 14, 585–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Smith, A. K. et al. DNA extracted from saliva for methylation studies of psychiatric traits: evidence tissue specificity and relatedness to brain. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168, 36–44 (2015).

    Article  CAS  Google Scholar 

  51. Theda, C. et al. Quantitation of the cellular content of saliva and buccal swab samples. Sci. Rep. 8, 6944 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang, Q. et al. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 11, 54 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 11, 303–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10, 573–591 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Belsky, D. W. et al. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. eLife 9, e54870 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Belsky, D. W. et al. DunedinPACE, a DNA methylation biomarker of the pace of aging. eLife 11, e73420 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu, A. T. et al. DNA methylation GrimAge version 2. Aging 14, 9484–9549 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. McGreevy, K. M. et al. DNAmFitAge: biological age indicator incorporating physical fitness. Aging 15, 3904–3938 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shokhirev, M. N., Torosin, N. S., Kramer, D. J., Johnson, A. A. & Cuellar, T. L. CheekAge: a next-generation buccal epigenetic aging clock associated with lifestyle and health. GeroScience 46, 3429–3443 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shokhirev, M. N. et al. CheekAge, a next-generation epigenetic buccal clock, is predictive of mortality in human blood. Front. Aging 5, 1460360 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ying, K. et al. Causality-enriched epigenetic age uncouples damage and adaptation. Nat. Aging 4, 231–246 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stokes, A. C. et al. Estimates of the association of dementia with US mortality levels using linked survey and mortality records. JAMA Neurol. 77, 1543–1550 (2020).

    Article  PubMed  Google Scholar 

  63. Gao, L. et al. Accuracy of death certification of dementia in population-based samples of older people: analysis over time. Age Ageing 47, 589–594 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Teschendorff, A. E. & Horvath, S. Epigenetic ageing clocks: statistical methods and emerging computational challenges. Nat. Rev. Genet. 26, 350–368 (2025).

    Article  CAS  PubMed  Google Scholar 

  65. Zhou, A. et al. Epigenetic aging as a biomarker of dementia and related outcomes: a systematic review. Epigenomics 14, 1125–1138 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Bressler, J. et al. Epigenetic age acceleration and cognitive function in African American adults in midlife: the Atherosclerosis risk in communities study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 75, 473–480 (2020).

    Article  Google Scholar 

  67. McCrory, C. et al. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J. Gerontol. A Biol. Sci. Med. Sci. 76, 741–749 (2021).

    Article  PubMed  Google Scholar 

  68. Crimmins, E. M. et al. Epigenetic clocks relate to four age-related health outcomes similarly across three countries. J. Gerontol. A Biol. Sci. Med. Sci. https://doi.org/10.1093/gerona/glaf036 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chervova, O. et al. Breaking new ground on human health and well-being with epigenetic clocks: a systematic review and meta-analysis of epigenetic age acceleration associations. Ageing Res. Rev. 102, 102552 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. Whitman, E. T. et al. A blood biomarker of the pace of aging is associated with brain structure: replication across three cohorts. Neurobiol. Aging 136, 23–33 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Oblak, L., van der Zaag, J., Higgins-Chen, A. T., Levine, M. E. & Boks, M. P. A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Res. Rev. 69, 101348 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Marioni, R. E. et al. The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int. J. Epidemiol. 44, 1388–1396 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vaccarino, V. et al. Epigenetic age acceleration and cognitive decline: a twin study. J. Gerontol. Ser. A 76, 1854–1863 (2021).

    Article  CAS  Google Scholar 

  74. Phyo, A. Z. Z. et al. Epigenetic age acceleration and cognitive performance over time in older adults. Alzheimers Dement. 16, e70010 (2024).

    Google Scholar 

  75. Ware, E. B. et al. Interplay of education and DNA methylation age on cognitive impairment: insights from the Health and Retirement Study. Geroscience https://doi.org/10.1007/s11357-024-01356-0 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Blostein, F. et al. DNA methylation age acceleration is associated with incident cognitive impairment in the health and retirement study. J. Alzheimers Dis. 105, 966–976 (2025).

    Article  PubMed  Google Scholar 

  77. Gampawar, P., Veeranki, S. P. K., Petrovic, K.-E., Schmidt, R. & Schmidt, H. Epigenetic age acceleration is related to cognitive decline in the elderly: results of the Austrian stroke prevention study. Psychiatry Clin. Neurosci. 79, 229–238 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Livingston, G. et al. Dementia prevention, intervention, and care: 2024 report of the Lancet Standing Commission. Lancet 404, 572–628 (2024).

    Article  PubMed  Google Scholar 

  79. McCartney, D. L. et al. Epigenetic prediction of complex traits and death. Genome Biol. 19, 136 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nabais, M. F. et al. An overview of DNA methylation-derived trait score methods and applications. Genome Biol. 24, 28 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yousefi, P. D. et al. DNA methylation-based predictors of health: applications and statistical considerations. Nat. Rev. Genet. 23, 369–383 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Liu, C. et al. A DNA methylation biomarker of alcohol consumption. Mol. Psychiatry 23, 422–433 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Joehanes, R. et al. Epigenetic signatures of cigarette smoking. Circulation Cardiovasc. Genet. 9, 436–447 (2016).

    Article  CAS  Google Scholar 

  84. Wahl, S. et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541, 81–86 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Richard, M. A. et al. DNA methylation analysis identifies loci for blood pressure regulation. Am. J. Hum. Genet. 101, 888–902 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chybowska, A. D. et al. A blood- and brain-based EWAS of smoking. Nat. Commun. 16, 3210 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Smith, H. M. et al. DNA methylation-based predictors of metabolic traits in Scottish and Singaporean cohorts. Am. J. Hum. Genet. 112, 106–115 (2025).

    Article  CAS  PubMed  Google Scholar 

  88. Bernabeu, E. et al. Blood-based epigenome-wide association study and prediction of alcohol consumption. Clin. Epigenetics 17, 14 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Corley, J. et al. Epigenetic signatures of smoking associate with cognitive function, brain structure, and mental and physical health outcomes in the Lothian Birth Cohort 1936. Transl. Psychiatry 9, 248 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hamilton, O. K. L. et al. An epigenetic score for BMI based on DNA methylation correlates with poor physical health and major disease in the Lothian Birth Cohort. Int. J. Obes. 43, 1795–1802 (2019).

    Article  Google Scholar 

  91. Guo, Y. et al. Plasma proteomic profiles predict future dementia in healthy adults. Nat. Aging 4, 247–260 (2024).

    Article  CAS  PubMed  Google Scholar 

  92. Argentieri, M. A. et al. Proteomic aging clock predicts mortality and risk of common age-related diseases in diverse populations. Nat. Med. 30, 2450–2460 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gadd, D. A. et al. Blood protein assessment of leading incident diseases and mortality in the UK Biobank. Nat. Aging 4, 939–948 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, X., Shi, Z., Qiu, Y., Sun, D. & Zhou, H. Peripheral GFAP and NfL as early biomarkers for dementia: longitudinal insights from the UK Biobank. BMC Med. 22, 192 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gadd, D. A. et al. Epigenetic scores for the circulating proteome as tools for disease prediction. eLife 11, e71802 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gadd, D. A. et al. DNAm scores for serum GDF15 and NT-proBNP levels associate with a range of traits affecting the body and brain. Clin. Epigenetics 16, 124 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Carreras-Gallo, N. et al. Leveraging DNA methylation to create epigenetic biomarker proxies that inform clinical care: a new framework for precision medicine. Preprint at medRxiv https://doi.org/10.1101/2024.12.06.24318612 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Rooney, M. R. et al. Plasma proteomic comparisons change as coverage expands for SomaLogic and Olink. Preprint at medRxiv https://doi.org/10.1101/2024.07.11.24310161 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Liu, C. H. et al. Biomarkers of chronic inflammation in disease development and prevention: challenges and opportunities. Nat. Immunol. 18, 1175–1180 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Ligthart, S. et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 17, 255 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Conole, E. L. S. et al. DNA methylation and protein markers of chronic inflammation and their associations with brain and cognitive aging. Neurology 97, e2340–e2352 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wielscher, M. et al. DNA methylation signature of chronic low-grade inflammation and its role in cardio-respiratory diseases. Nat. Commun. 13, 2408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hillary, R. F. et al. Blood-based epigenome-wide analyses of chronic low-grade inflammation across diverse population cohorts. Cell Genomics 4, 100544 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Stevenson, A. J. et al. Characterisation of an inflammation-related epigenetic score and its association with cognitive ability. Clin. Epigenetics 12, 113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Verschoor, C. P., Vlasschaert, C., Rauh, M. J. & Paré, G. A DNA methylation based measure outperforms circulating CRP as a marker of chronic inflammation and partly reflects the monocytic response to long-term inflammatory exposure: a Canadian longitudinal study on aging analysis. Aging Cell 22, e13863 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Barker, E. D. et al. Inflammation-related epigenetic risk and child and adolescent mental health: a prospective study from pregnancy to middle adolescence. Dev. Psychopathol. 30, 1145–1156 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Conole, E. L. S. et al. Immuno-epigenetic signature derived in saliva associates with the encephalopathy of prematurity and perinatal inflammatory disorders. Brain Behav. Immun. 110, 322–338 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Raffington, L. et al. Socially stratified epigenetic profiles are associated with cognitive functioning in children and adolescents. Psychol. Sci. 34, 170–185 (2023).

    Article  PubMed  Google Scholar 

  110. Smith, H. M. et al. Epigenetic scores of blood-based proteins as biomarkers of general cognitive function and brain health. Clin. Epigenetics 16, 46 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Krätschmer, I. et al. Discovery of shared epigenetic pathways across human phenotypes. Preprint at bioRxiv https://doi.org/10.1101/2024.04.15.589547 (2024).

    Article  Google Scholar 

  112. Marioni, R. E. et al. Meta-analysis of epigenome-wide association studies of cognitive abilities. Mol. Psychiatry 23, 2133–2144 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Caramaschi, D. et al. Meta-analysis of epigenome-wide associations between DNA methylation at birth and childhood cognitive skills. Mol. Psychiatry 27, 2126–2135 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Felix, J. F. et al. Cohort profile: pregnancy and childhood epigenetics (PACE) consortium. Int. J. Epidemiol. 47, 22–23u (2018).

    Article  PubMed  Google Scholar 

  115. Cecil, C. A., Neumann, A. & Walton, E. Epigenetics applied to child and adolescent mental health: progress, challenges and opportunities. JCPP Adv. 3, e12133 (2023).

    Article  PubMed  Google Scholar 

  116. Jia, T. et al. Epigenome-wide meta-analysis of blood DNA methylation and its association with subcortical volumes: findings from the ENIGMA epigenetics working group. Mol. Psychiatry 26, 3884–3895 (2021).

    Article  PubMed  Google Scholar 

  117. Yang, Y. et al. Epigenetic and integrative cross-omics analyses of cerebral white matter hyperintensities on MRI. Brain 146, 492–506 (2023).

    Article  PubMed  Google Scholar 

  118. UK Biobank. Landmark Genetics Partnership to Probe the Causes of Cancer and Dementia https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/news/landmark-genetics-partnership-to-probe-the-causes-of-cancer-and-dementia (2024).

  119. Lussier, A. A. et al. Technical variability across the 450K, EPICv1, and EPICv2 DNA methylation arrays: lessons learned for clinical and longitudinal studies. Clin. Epigenetics 16, 166 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhuang, B. C. et al. Discrepancies in readouts between Infinium MethylationEPIC v2.0 and v1.0 reflected in DNA methylation-based tools: implications and considerations for human population epigenetic studies. Preprint at bioRxiv https://doi.org/10.1101/2024.07.02.600461 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Koncevičius, K. et al. Epigenetic age oscillates during the day. Aging Cell 23, e14170 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sugden, K. et al. Patterns of reliability: assessing the reproducibility and integrity of DNA methylation measurement. Patterns 1, 100014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gentilini, D. et al. Stochastic epigenetic mutations (DNA methylation) increase exponentially in human aging and correlate with X chromosome inactivation skewing in females. Aging 7, 568–578 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, Y. et al. Comprehensive longitudinal study of epigenetic mutations in aging. Clin. Epigenetics 11, 187 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Markov, Y., Levine, M. & Higgins-Chen, A. T. Reliable detection of stochastic epigenetic mutations and associations with cardiovascular aging. GeroScience 46, 5745–5765 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Watkins, S. H. et al. Epigenetic clocks and research implications of the lack of data on whom they have been developed: a review of reported and missing sociodemographic characteristics. Environ. Epigenetics 9, dvad005 (2023).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Riccardo E. Marioni.

Ethics declarations

Competing interests

R.E.M. is a scientific advisor to the Epigenetic Clock Development Foundation. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks G. Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Elastic net penalized regression

In regression scenarios with many predictor variables, one can derive a sparse or parsimonious solution whereby non-important predictors are assigned a regression weight of zero. Elastic net penalized regression is one of the most commonly applied approaches to do this in the context of generating epigenetic clocks.

Multivariate regression

In multivariable linear regression, we consider one outcome and multiple predictor variables, whereas in multivariate regression, we simultaneously model multiple outcome variables. This approach helps us to determine whether a predictor variable has common or unique associations with different outcomes within a single regression model.

Principal components analysis

A data reduction approach whereby one can consider correlated variables by their most common shared features. For example, instead of focusing on scores from ten different cognitive tests, the data could be realigned into a smaller number of variables that capture most of the variance across all ten tests. This might include a general ability component, which captures information for individuals who perform similarly well across all tests, followed by components that capture information across certain domains, for example, tests that assess memory performance.

Variance components analyses

Instead of considering predictors as separate variables, we can ask whether the similarity in these predictors across individuals correlates with the outcome of interest. For example, do people with broadly similar DNA methylation patterns also show similarity in the outcome variable of interest?

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conole, E.L.S., Robertson, J.A., Smith, H.M. et al. Epigenetic clocks and DNA methylation biomarkers of brain health and disease. Nat Rev Neurol 21, 411–421 (2025). https://doi.org/10.1038/s41582-025-01105-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-025-01105-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research