Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

From adaptive deep brain stimulation to adaptive circuit targeting

Abstract

Deep brain stimulation (DBS) substantially improves motor symptoms and quality of life in people with movement disorders such as Parkinson disease and dystonia, and it is also being explored as a treatment option for other brain disorders, including treatment-resistant obsessive–compulsive disorder, Alzheimer disease and depression. Two major developments are currently driving progress in DBS research: first, the framework of adaptive DBS, which senses brain activity to infer the momentary state of the symptoms of a patient and reacts by adapting stimulation settings, and second, the concept of connectomic DBS, which identifies brain circuits that should optimally be stimulated to reduce specific symptoms. In this Perspective, we propose a unified framework that combines these two concepts. Our approach, termed adaptive circuit targeting, decodes symptom severity from brain signals and adaptively activates the most relevant symptom-response circuits. We discuss the state of the art in the adaptive and connectomic DBS fields and the research gaps that need to be addressed to unify these concepts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fusing adaptive and connectomic DBS.
Fig. 2: Adaptive circuit targeting deep brain stimulation.

Similar content being viewed by others

References

  1. Deuschl, G. et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 355, 896–908 (2006).

    PubMed  CAS  Google Scholar 

  2. Kupsch, A. et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N. Engl. J. Med. 355, 1978–1990 (2006).

    PubMed  CAS  Google Scholar 

  3. Nuttin, B., Cosyns, P., Demeulemeester, H., Gybels, J. & Meyerson, B. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 354, 1526 (1999).

    PubMed  CAS  Google Scholar 

  4. Lozano, A. M. et al. A phase II study of fornix deep brain stimulation in mild Alzheimer’s disease. J. Alzheimers Dis. 54, 777–787 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    PubMed  CAS  Google Scholar 

  6. Krauss, J. K. et al. Technology of deep brain stimulation: current status and future directions. Nat. Rev. Neurol. 17, 75–87 (2021).

    PubMed  Google Scholar 

  7. Harmsen, I. E., Wolff Fernandes, F., Krauss, J. K. & Lozano, A. M. Where are we with deep brain stimulation? A review of scientific publications and ongoing research. Stereotact. Funct. Neurosurg. 100, 184–197 (2022).

    PubMed  Google Scholar 

  8. Lozano, A. M. & Lipsman, N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron 77, 406–424 (2013).

    PubMed  CAS  Google Scholar 

  9. Neumann, W.-J., Horn, A. & Kühn, A. A. Insights and opportunities for deep brain stimulation as a brain circuit intervention. Trends Neurosci. 46, 472–487 (2023).

    PubMed  CAS  Google Scholar 

  10. Vedam-Mai, V. et al. Proceedings of the Eighth Annual Deep Brain Stimulation Think Tank: advances in optogenetics, ethical issues affecting DBS research, neuromodulatory approaches for depression, adaptive neurostimulation, and emerging DBS technologies. Front. Hum. Neurosci. 15, 644593 (2021).

    PubMed  PubMed Central  Google Scholar 

  11. Little, S. et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 74, 449–457 (2013).

    PubMed  PubMed Central  Google Scholar 

  12. Arlotti, M. et al. Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology 90, e971–e976 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Oehrn, C. R. et al. Chronic adaptive deep brain stimulation versus conventional stimulation in Parkinson’s disease: a blinded randomized feasibility trial. Nat. Med. 30, 3345–3356 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Neumann, W.-J., Gilron, R., Little, S. & Tinkhauser, G. Adaptive deep brain stimulation: from experimental evidence toward practical implementation. Mov. Disord. 38, 937–948 (2023).

    PubMed  Google Scholar 

  15. Krook-Magnuson, E., Gelinas, J. N., Soltesz, I. & Buzsáki, G. Neuroelectronics and biooptics: closed-loop technologies in neurological disorders. JAMA Neurol. 72, 823–829 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Delgado, J. M., Johnston, V. S., Wallace, J. D. & Bradley, R. J. Operant conditioning of EEG in the unrestrained chimpanzee. Electroencephalogr. Clin. Neurophysiol. 27, 701–702 (1969).

    PubMed  CAS  Google Scholar 

  17. Bechtereva, N. P., Bondartchuk, A. N., Smirnov, V. M., Meliutcheva, L. A. & Shandurina, A. N. Method of electrostimulation of the deep brain structures in treatment of some chronic diseases. Stereotact. Funct. Neurosurg. 37, 136–140 (1975).

    CAS  Google Scholar 

  18. Sem-Jacobsen, C. W. Depth-Electrographic Stimulation of the Human Brain and Behavior: From Fourteen Years of Studies and Treatment of Parkinsons Disease and Mental Disorders with Implanted Electrodes (Thomas, 1968).

  19. Heath, R. G. Physiological and biochemical studies in schizophrenia with particular emphasis on mind-brain relationships. Int. Rev. Neurobiol. 1, 299–331 (1959).

    PubMed  CAS  Google Scholar 

  20. Blomstedt, P. & Hariz, M. I. Are complications less common in deep brain stimulation than in ablative procedures for movement disorders? Stereotact. Funct. Neurosurg. 84, 72–81 (2006).

    PubMed  Google Scholar 

  21. Brice, J. & McLellan, L. Suppression of intention tremor by contingent deep-brain stimulation. Lancet 1, 1221–1222 (1980).

    PubMed  CAS  Google Scholar 

  22. Rosin, B. et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72, 370–384 (2011).

    PubMed  CAS  Google Scholar 

  23. He, S. et al. Beta-triggered adaptive deep brain stimulation during reaching movement in Parkinson’s disease. Brain 146, 5015–5030 (2023).

    PubMed  PubMed Central  Google Scholar 

  24. Piña-Fuentes, D. et al. Adaptive DBS in a Parkinson’s patient with chronically implanted DBS: a proof of principle. Mov. Disord. 32, 1253–1254 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Schmidt, S. L. et al. At home adaptive dual target deep brain stimulation in Parkinson’s disease with proportional control. Brain 147, 911–922 (2024).

    PubMed  Google Scholar 

  26. Caffi, L. et al. Adaptive vs. conventional deep brain stimulation: one-year subthalamic recordings and clinical monitoring in a patient with Parkinson’s disease. Bioengineering 11, 990 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Busch, J. L. et al. Single threshold adaptive deep brain stimulation in Parkinson’s disease depends on parameter selection, movement state and controllability of subthalamic beta activity. Brain Stimul. 17, 125–133 (2024).

    PubMed  Google Scholar 

  28. Neumann, W.-J. et al. Deep brain recordings using an implanted pulse generator in Parkinson’s disease. Neuromodulation 19, 20–24 (2016).

    PubMed  Google Scholar 

  29. Bronte-Stewart, H. et al. Adaptive DBS algorithm for personalized therapy in Parkinson’s disease: ADAPT-PD clinical trial methodology and early data (P1-11.002). Neurology 100, 3204 (2023).

    Google Scholar 

  30. Johnson, V. et al. Embedded adaptive deep brain stimulation for cervical dystonia controlled by motor cortex theta oscillations. Exp. Neurol. 345, 113825 (2021).

    PubMed  Google Scholar 

  31. Okun, M. S. et al. Responsive deep brain stimulation for the treatment of Tourette syndrome. Sci. Rep. 14, 6467 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Provenza, N. R. et al. Disruption of neural periodicity predicts clinical response after deep brain stimulation for obsessive-compulsive disorder. Nat. Med. 30, 3004–3014 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Lofredi, R. et al. Subthalamic beta bursts correlate with dopamine-dependent motor symptoms in 106 Parkinson’s patients. NPJ Parkinsons Dis. 9, 2 (2023).

    PubMed  PubMed Central  Google Scholar 

  34. Yin, Z. et al. Local field potentials in Parkinson’s disease: a frequency-based review. Neurobiol. Dis. 155, 105372 (2021).

    PubMed  Google Scholar 

  35. Thenaisie, Y. et al. Principles of gait encoding in the subthalamic nucleus of people with Parkinson’s disease. Sci. Transl. Med. 14, eabo1800 (2022).

    PubMed  Google Scholar 

  36. Yin, Z. et al. Cortical phase-amplitude coupling is key to the occurrence and treatment of freezing of gait. Brain 145, 2407–2421 (2022).

    PubMed  PubMed Central  Google Scholar 

  37. Yin, Z. et al. Pathological pallidal beta activity in Parkinson’s disease is sustained during sleep and associated with sleep disturbance. Nat. Commun. 14, 5434 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Gilron, R. et al. Sleep-aware adaptive deep brain stimulation control: chronic use at home with dual independent linear discriminate detectors. Front. Neurosci. 15, 732499 (2021).

    PubMed  PubMed Central  Google Scholar 

  39. Mizrahi-Kliger, A. D., Kaplan, A., Israel, Z., Deffains, M. & Bergman, H. Basal ganglia beta oscillations during sleep underlie Parkinsonian insomnia. Proc. Natl Acad. Sci. USA 117, 17359–17368 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Cole, S. R. et al. Nonsinusoidal beta oscillations reflect cortical pathophysiology in Parkinson’s disease. J. Neurosci. 37, 4830–4840 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Donoghue, T. et al. Evaluating and comparing measures of aperiodic neural activity. Preprint at bioRxiv https://doi.org/10.1101/2024.09.15.613114 (2024).

  42. Gerster, M. et al. Beyond beta rhythms: aperiodic broadband power reflects Parkinson’s disease severity — a multicenter study. Preprint at bioRxiv https://doi.org/10.1101/2025.03.11.642600 (2025).

  43. Neumann, W.-J. et al. Toward electrophysiology-based intelligent adaptive deep brain stimulation for movement disorders. Neurotherapeutics 16, 105–118 (2019).

    PubMed  PubMed Central  Google Scholar 

  44. Wolpaw, J. R. in Handbook of Clinical Neurology Vol. 110 (eds Barnes, M. P. & Good, D. C.) Ch. 6, 67–74 (Elsevier, 2013).

  45. Miller, K. J., Hermes, D. & Staff, N. P. The current state of electrocorticography-based brain–computer interfaces. Neurosurg. Focus. 49, E2 (2020).

    PubMed  Google Scholar 

  46. Herron, J. et al. The convergence of neuromodulation and brain–computer interfaces. Nat. Rev. Bioeng. 2, 628–630 (2024).

    CAS  Google Scholar 

  47. Köhler, R. M. et al. Dopamine and deep brain stimulation accelerate the neural dynamics of volitional action in Parkinson’s disease. Brain 147, 3358–3369 (2024).

    PubMed  PubMed Central  Google Scholar 

  48. Merk, T. et al. Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson’s disease. eLife 11, e75126 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Lauro, P. M. et al. Concurrent decoding of distinct neurophysiological fingerprints of tremor and bradykinesia in Parkinson’s disease. eLife 12, e84135 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Hirschmann, J., Schoffelen, J. M., Schnitzler, A. & Van Gerven, M. A. J. Parkinsonian rest tremor can be detected accurately based on neuronal oscillations recorded from the subthalamic nucleus. Clin. Neurophysiol. 128, 2029–2036 (2017).

    PubMed  CAS  Google Scholar 

  51. Cagnan, H. et al. Stimulating at the right time: phase-specific deep brain stimulation. Brain 140, 132–145 (2017).

    PubMed  Google Scholar 

  52. Cernera, S. et al. Wearable sensor-driven responsive deep brain stimulation for essential tremor. Brain Stimul. 14, 1434–1443 (2021).

    PubMed  Google Scholar 

  53. Dixon, T. C. et al. Movement-responsive deep brain stimulation for Parkinson’s disease using a remotely optimized neural decoder. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-025-01438-0 (2025).

  54. He, S. et al. Closed-loop deep brain stimulation for essential tremor based on thalamic local field potentials. Mov. Disord. 36, 863–873 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Merk, T. et al. Invasive neurophysiology and whole brain connectomics for neural decoding in patients with brain implants. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-025-01467-9 (in the press).

  56. Opri, E. et al. Chronic embedded cortico-thalamic closed-loop deep brain stimulation for the treatment of essential tremor. Sci. Transl. Med. 12, eaay7680 (2020).

    PubMed  PubMed Central  Google Scholar 

  57. Rj, P. et al. Towards network-guided neuromodulation for epilepsy. Brain 145, 3347–3362 (2022).

    Google Scholar 

  58. Henderson, J. M. “Connectomic surgery”: diffusion tensor imaging (DTI) tractography as a targeting modality for surgical modulation of neural networks. Front. Integr. Neurosci. 6, 15 (2012).

    PubMed  PubMed Central  Google Scholar 

  59. Horn, A., Al-Fatly, B., Neumann, W.-J. & Neudorfer, C. in Connectomic Deep Brain Stimulation (ed. Horn, A.) Ch. 1, 3–23 (Academic, 2022).

  60. Horn, A. & Fox, M. D. Opportunities of connectomic neuromodulation. Neuroimage 221, 117180 (2020).

    PubMed  Google Scholar 

  61. Sporns, O., Tononi, G. & Kötter, R. The human connectome: a structural description of the human brain. PLoS Comp. Biol. 1, e42 (2005).

    Google Scholar 

  62. Cobb, M. The Idea of the Brain (Hachette UK, 2020).

  63. Michaleas, S. N., Tsoucalas, G., Tzavellas, E., Stranjalis, G. & Karamanou, M. Gottlieb Burckhardt (1836-1907): 19th-century pioneer of psychosurgery. Surg. Innov. 28, 381–387 (2021).

    PubMed  Google Scholar 

  64. Foerster, O. Zur analyse und pathophysiologie der striären bewegungsstörungen. Z. Gesamte Neurol. Psychiatr. 73, 1–169 (1921).

    Google Scholar 

  65. Vogt, C. & Vogt, O. Zur Lehre Der Erkrankungen Des Striären Systems (Barth, 1920).

  66. Spiegel, E. A., Wycis, H. T., Marks, M. & Lee, A. J. Stereotaxic apparatus for operations on the human brain. Science 106, 349–350 (1947).

    PubMed  CAS  Google Scholar 

  67. Spiegel, E. A. & Wycis, H. T. Ansotomy in paralysis agitans. AMA Arch. Neurol. Psychiatry 71, 598–614 (1954).

    PubMed  CAS  Google Scholar 

  68. Hassler, R., Mundinger, F. & Riechert, T. Stereotaxis in Parkinson Syndrome (Springer, 1979).

  69. Hassler, R., Riechert, T., Mundinger, F., Umbach, W. & Ganglberger, J. A. Physiological observations in stereotaxic operations in extrapyramidal motor disturbances. Brain 83, 337–350 (1960).

    PubMed  CAS  Google Scholar 

  70. Hagmann, P. From Diffusion MRI to Brain Connectomics. PhD dissertation, Univ. Lausanne (2005).

  71. Basser, P. J., Mattiello, J. & LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994).

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Mori, S., Crain, B. J., Chacko, V. P. & Van Zijl, P. C. M. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999).

    PubMed  CAS  Google Scholar 

  73. Fox, M. D. M. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Biswal, B. B. et al. Toward discovery science of human brain function. Proc. Natl Acad. Sci. USA 107, 4734–4739 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Biswal, B., Zerrin Yetkin, F., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    PubMed  CAS  Google Scholar 

  76. Butson, C. R., Cooper, S. E., Henderson, J. M. & McIntyre, C. C. Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34, 661–670 (2007).

    PubMed  Google Scholar 

  77. McIntyre, C. C. & Hahn, P. J. Network perspectives on the mechanisms of deep brain stimulation. Neurobiol. Dis. 38, 329–337 (2010).

    PubMed  Google Scholar 

  78. Bello, L., et al. Intraoperative use of diffusion tensor imaging fiber tractography and subcortical mapping for resection of gliomas: technical considerations. Neurosurg. Focus. 28, E6 (2010).

    PubMed  Google Scholar 

  79. Leclercq, D. et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J. Neurosurg. 112, 503–511 (2010).

    PubMed  Google Scholar 

  80. Coenen, V. A., Mädler, B., Schiffbauer, H., Urbach, H. & Allert, N. Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression. Neurosurgery 68, 1069–1075 (2011).

    PubMed  Google Scholar 

  81. Coenen, V. A. et al. Medial forebrain bundle stimulation as a pathophysiological mechanism for hypomania in subthalamic nucleus deep brain stimulation for Parkinson’s disease. Neurosurgery 64, 1106–1114 (2009).

    PubMed  Google Scholar 

  82. Choi, K. S., Riva-Posse, P., Gross, R. E. & Mayberg, H. S. Mapping the “depression switch” during intraoperative testing of subcallosal cingulate deep brain stimulation. JAMA Neurol. 72, 1252–1260 (2015).

    PubMed  PubMed Central  Google Scholar 

  83. Riva-Posse, P. et al. Rapid antidepressant effects of deep brain stimulation and their relation to surgical protocol. Biol. Psychiatry 88, e37–e39 (2020).

    PubMed  PubMed Central  Google Scholar 

  84. Riva-Posse, P. et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol. Psychiatry 23, 843–849 (2018).

    PubMed  CAS  Google Scholar 

  85. Horn, A. et al. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol. 82, 67–78 (2017).

    PubMed  PubMed Central  Google Scholar 

  86. Sobesky, L. et al. Subthalamic and pallidal deep brain stimulation: are we modulating the same network? Brain 145, 251–262 (2022).

    PubMed  Google Scholar 

  87. Li, N. et al. A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nat. Commun. 11, 3364 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Baldermann, J. C. et al. Connectivity profile predictive of effective deep brain stimulation in obsessive-compulsive disorder. Biol. Psychiatry 85, 735–743 (2019).

    PubMed  Google Scholar 

  89. Hollunder, B. et al. Mapping dysfunctional circuits in the frontal cortex using deep brain stimulation. Nat. Neurosci. 27, 573–586 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Smith, A. H. et al. Replicable effects of deep brain stimulation for obsessive-compulsive disorder. Brain Stimul. 14, 1–3 (2020).

    PubMed  Google Scholar 

  91. Bouwens van der Vlis, T. A. M. et al. Ventral capsule/ventral striatum stimulation in obsessive-compulsive disorder: toward a unified connectomic target for deep brain stimulation? Neuromodulation 24, 316–323 (2020).

    Google Scholar 

  92. Mosley, P. E. et al. A randomised, double-blind, sham-controlled trial of deep brain stimulation of the bed nucleus of the stria terminalis for treatment-resistant obsessive-compulsive disorder. Transl. Psychiatry 11, 190 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Johnson, K. A. et al. Basal ganglia pathways associated with therapeutic pallidal deep brain stimulation for Tourette syndrome. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 961–972 (2021).

    PubMed  Google Scholar 

  94. Gadot, R. et al. Tractography-based modeling explains treatment outcomes in patients undergoing deep brain stimulation for obsessive–compulsive disorder. Biol. Psychiatry 96, 95–100 (2024).

    PubMed  Google Scholar 

  95. Li, N. et al. A unified functional network target for deep brain stimulation in obsessive-compulsive disorder. Biol. Psychiatry 90, 701–713 (2021).

    PubMed  Google Scholar 

  96. Al-Fatly, B. et al. Connectivity profile of thalamic deep brain stimulation to effectively treat essential tremor. Brain 142, 3086–3098 (2019).

    PubMed  Google Scholar 

  97. Neudorfer, C. et al. Personalizing deep brain stimulation using advanced imaging sequences. Ann. Neurol. 91, 613–628 (2022).

    PubMed  CAS  Google Scholar 

  98. Horn, A. et al. Optimal deep brain stimulation sites and networks for cervical vs. generalized dystonia. Proc. Natl Acad. Sci. USA 119, e2114985119 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Schaper, F. L. W. V. J. et al. Mapping lesion-related epilepsy to a human brain network. JAMA Neurol. 80, 891–902 (2023).

    PubMed  PubMed Central  Google Scholar 

  100. Ganos, C. et al. A neural network for tics: insights from causal brain lesions and deep brain stimulation. Brain 145, 4385–4397 (2022).

    PubMed  PubMed Central  Google Scholar 

  101. Elias, G. J. B. et al. Local neuroanatomical and tract-based proxies of optimal subcallosal cingulate deep brain stimulation. Brain Stimul. 16, 1259–1272 (2023).

    PubMed  Google Scholar 

  102. Elias, G. J. B. et al. Structuro-functional surrogates of response to subcallosal cingulate deep brain stimulation for depression. Brain 145, 362–377 (2022).

    PubMed  Google Scholar 

  103. Ríos, A. S. et al. Optimal deep brain stimulation sites and networks for stimulation of the fornix in Alzheimer’s disease. Nat. Commun. 13, 7707 (2022).

    PubMed  PubMed Central  Google Scholar 

  104. Akram, H. et al. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease. Neuroimage 158, 332–345 (2017).

    PubMed  Google Scholar 

  105. Rajamani, N. et al. Deep brain stimulation of symptom-specific networks in Parkinson’s disease. Nat. Commun. 15, 4662 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  106. Neudorfer, C. et al. The role of the motor thalamus in deep brain stimulation for essential tremor. Neurotherapeutics 21, e00313 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Hollunder, B. et al. Toward personalized medicine in connectomic deep brain stimulation. Prog. Neurobiol. 210, 102211 (2022).

    PubMed  Google Scholar 

  108. Yin, Z. et al. Generalized sleep decoding with basal ganglia signals in multiple movement disorders. npj Digit. Med. 7, 122 (2024).

    PubMed  PubMed Central  Google Scholar 

  109. Shute, J. B. et al. Thalamocortical network activity enables chronic tic detection in humans with Tourette syndrome. Neuroimage Clin. 12, 165–172 (2016).

    PubMed  PubMed Central  Google Scholar 

  110. Mathis, M. W., Rotondo, A. P., Chang, E. F., Tolias, A. S. & Mathis, A. Decoding the brain: from neural representations to mechanistic models. Cell 187, 5814–5832 (2024).

    PubMed  CAS  Google Scholar 

  111. Schneider, S., Lee, J. H. & Mathis, M. W. Learnable latent embeddings for joint behavioural and neural analysis. Nature 617, 360–368 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Lofredi, R. et al. Subthalamic stimulation impairs stopping of ongoing movements. Brain 144, 44–52 (2021).

    PubMed  Google Scholar 

  113. Goede, L. L. et al. Convergent mapping of a tremor treatment network. Nat. Commun. 16, 4772 (2025).

    PubMed  PubMed Central  CAS  Google Scholar 

  114. Irmen, F. et al. Left prefrontal connectivity links subthalamic stimulation with depressive symptoms. Ann. Neurol. 87, 962–975 (2020).

    PubMed  Google Scholar 

  115. Meyer, G. M. et al. Subthalamic deep brain stimulation: mapping non-motor outcomes to structural connections. Hum. Brain Mapp. 46, e70207 (2025).

    PubMed  PubMed Central  Google Scholar 

  116. Irmen, F. et al. Sensorimotor subthalamic stimulation restores risk-reward trade-off in Parkinson’s disease. Mov. Disord. 34, 366–376 (2018).

    PubMed  Google Scholar 

  117. Chua, M. M. J. et al. Optimal focused ultrasound lesion location in essential tremor. Sci. Adv. 11, eadp0532 (2025).

    PubMed  PubMed Central  Google Scholar 

  118. Hollunder, B. & Horn, A. Mapping the dysfunctome provides an avenue for targeted brain circuit therapy. Nat. Neurosci. 27, 401–402 (2024).

    Google Scholar 

  119. Petersen, M. V. et al. Holographic reconstruction of axonal pathways in the human brain. Neuron 104, 1056–1064.e3 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  120. Alho, E. J. L. et al. The ansa subthalamica: a neglected fiber tract. Mov. Disord. 35, 75–80 (2020).

    PubMed  Google Scholar 

  121. Alho, E. J. L., Fonoff, E. T., Di Lorenzo Alho, A. T., Nagy, J. & Heinsen, H. Use of computational fluid dynamics for 3D fiber tract visualization on human high-thickness histological slices: histological mesh tractography. Brain Struct. Funct. 226, 323–333 (2021).

    PubMed  Google Scholar 

  122. Castaño-Candamil, S. et al. A pilot study on data-driven adaptive deep brain stimulation in chronically implanted essential tremor patients. Front. Hum. Neurosci. 14, 541625 (2020).

    PubMed  PubMed Central  Google Scholar 

  123. Ferleger, B. I. et al. Fully implanted adaptive deep brain stimulation in freely moving essential tremor patients. J. Neural Eng. 17, 056026 (2020).

    PubMed  CAS  Google Scholar 

  124. Benabid, A. L. et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337, 403–406 (1991).

    PubMed  CAS  Google Scholar 

  125. Soh, D., Lozano, A. M. & Fasano, A. Hybrid deep brain stimulation system to manage stimulation-induced side effects in essential tremor patients. Parkinsonism Relat. Disord. 58, 85–86 (2019).

    PubMed  Google Scholar 

  126. Alagapan, S. et al. Cingulate dynamics track depression recovery with deep brain stimulation. Nature 622, 130–138 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  127. Gilron, R. et al. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease. Nat. Biotechnol. 39, 1078–1085 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  128. Vissani, M. et al. Toward closed-loop intracranial neurostimulation in obsessive-compulsive disorder. Biol. Psychiatry 93, e43–e46 (2023).

    PubMed  Google Scholar 

  129. Neudorfer, C. et al. Lead-DBS v3.0: mapping deep brain stimulation effects to local anatomy and global networks. Neuroimage 268, 119862 (2023).

    PubMed  CAS  Google Scholar 

  130. Butenko, K. et al. Engaging dystonia networks with subthalamic stimulation. Proc. Natl Acad. Sci. USA 122, e2417617122 (2025).

    PubMed  PubMed Central  CAS  Google Scholar 

  131. Metzger, S. L. et al. A high-performance neuroprosthesis for speech decoding and avatar control. Nature 620, 1037–1046 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  132. Rodriguez-Rojas, R. et al. Functional anatomy of the subthalamic nucleus and the pathophysiology of cardinal features of Parkinson’s disease unraveled by focused ultrasound ablation. Sci. Adv. 10, eadr9891 (2024).

    PubMed  PubMed Central  Google Scholar 

  133. Neumann, W. et al. A localized pallidal physiomarker in cervical dystonia. Ann. Neurol. 82, 912–924 (2017).

    PubMed  CAS  Google Scholar 

  134. Meyer, G. M. et al. Deep brain stimulation for obsessive-compulsive disorder: optimal stimulation sites. Biol. Psychiatry 96, 101–113 (2024).

    PubMed  Google Scholar 

  135. Hollunder, B. Neuromodulation-informed connectomics as a roadmap towards personalized brain circuit therapy in obsessive-compulsive disorder. Brain Stimul. 18, 243–244 (2025).

    Google Scholar 

  136. Horn, A. et al. Deep brain stimulation response circuits in obsessive–compulsive disorder. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2025.03.008 (2025).

  137. Siddiqi, S. H. et al. Distinct symptom-specific treatment targets for circuit-based neuromodulation. Am. J. Psychiatry 177, 435–446 (2020).

    PubMed  PubMed Central  Google Scholar 

  138. Ji, G.-J. et al. A generalized epilepsy network derived from brain abnormalities and deep brain stimulation. Nat. Commun. 16, 2783 (2025).

    PubMed  PubMed Central  CAS  Google Scholar 

  139. Sheth, S. A. & Mayberg, H. S. Deep brain stimulation for obsessive-compulsive disorder and depression. Annu. Rev. Neurosci. 46, 341–358 (2023).

    PubMed  CAS  Google Scholar 

  140. Merk, T. et al. Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation. Exp. Neurol. 351, 113993 (2022).

    PubMed  PubMed Central  Google Scholar 

  141. Treu, S. et al. Deep brain stimulation: imaging on a group level. Neuroimage 219, 117018 (2020).

    PubMed  Google Scholar 

  142. Ehlen, F. et al. Thalamic deep brain stimulation decelerates automatic lexical activation. Brain Cogn. 111, 34–43 (2017).

    PubMed  Google Scholar 

  143. Neumann, W.-J. & Rodriguez-Oroz, M. C. Machine learning will extend the clinical utility of adaptive deep brain stimulation. Mov. Disord. 36, 796–799 (2021).

    PubMed  Google Scholar 

  144. Mosley, P. E., et al. The structural connectivity of subthalamic deep brain stimulation correlates with impulsivity in Parkinson’s disease. Brain 143, 2235–2254 (2020).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the pioneering work by N. Rajamani and T. Merk in the development of this concept. A.H. was supported by the Schilling Foundation. W.-J.N. was funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — Project-ID 424778381 — TRR 295 and the European Union (ERC, ReinforceBG, 101077060). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Andreas Horn or Wolf-Julian Neumann.

Ethics declarations

Competing interests

A.H. reports lecture fees from Boston Scientific, is a consultant for Modulight.bio, was a consultant for FxNeuromodulation and Abbott in recent years, and serves as a co-inventor on a patent granted to Charité University Medicine Berlin that covers multisymptom deep brain stimulation (DBS) fibre filtering and an automated DBS parameter suggestion algorithm (patent #LU103178). W.J.N. received honoraria for consulting from INBRAIN Neuroelectronics, which is a neurotechnology company, and honoraria for talks from Medtronic, which is a manufacturer of DBS devices unrelated to this manuscript.

Peer review

Peer review information

Nature Reviews Neurology thanks P. Starr and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horn, A., Neumann, WJ. From adaptive deep brain stimulation to adaptive circuit targeting. Nat Rev Neurol 21, 556–566 (2025). https://doi.org/10.1038/s41582-025-01131-5

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41582-025-01131-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing