Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Distinct mucosal endotypes as initiators and drivers of rheumatoid arthritis

Abstract

Rheumatoid arthritis (RA) is a potentially devastating autoimmune disease. The great majority of patients with RA are seropositive for anti-citrullinated protein antibodies (ACPAs), rheumatoid factors, or other autoantibodies. The onset of clinically apparent inflammatory arthritis meeting classification criteria (clinical RA) is preceded by ACPA seropositivity for an average of 3–5 years, a period that is designated as ‘at-risk’ of RA for ACPA-positive individuals who do not display signs of arthritis, or ‘pre-RA’ for individuals who are known to have progressed to developing clinical RA. Prior studies of individuals at-risk of RA have associated pulmonary mucosal inflammation with local production of ACPAs and rheumatoid factors, leading to development of the ‘mucosal origins hypothesis’. Recent work now suggests the presence of multiple distinct mucosal site-specific mechanisms that drive RA evolution. Indicatively, subsets of individuals at-risk of RA and patients with RA harbour a faecal bacterial strain that has exhibited arthritogenic activity in animal models and that favours T helper 17 (TH17) cell responses in patients. Periodontal inflammation and oral microbiota have also been suggested to promote the development of arthritis through breaches in the mucosal barrier. Herein, we argue that mucosal sites and their associated microbial strains can contribute to RA evolution via distinct pathogenic mechanisms, which can be considered causal mucosal endotypes. Future therapies instituted for prevention in the at-risk period, or, perhaps, during clinical RA as therapeutics for active arthritis, will possibly have to address these individual mechanisms as part of precision medicine approaches.

Key points

  • The onset of seropositive rheumatoid arthritis (RA) is typically preceded by the presence of RA-related autoantibodies (ACPAs, rheumatoid factors, AMPAs) in the peripheral blood for 3–5 years prior to the onset of symptoms and histologically or imaging-identified joint inflammation.

  • The period of time prior to clinical RA onset can be designated a period ‘at-risk of RA’ prospectively, or a ‘pre-RA’ period retrospectively.

  • An increasing number of studies have identified immune and microbial alterations at mucosal sites in subsets of individuals at-risk of RA or with pre-RA. The primary sites studied include the lung, gut and oral or periodontal regions.

  • Each of the mucosal sites seems to elaborate unique phenotypes and mechanisms that might drive the development of pre-RA and generation of local or systemic autoantibodies. These apparent mechanistic differences underlie the causal mucosal endotype hypothesis.

  • The inter-relationships and relative timing of changes at each of these mucosal sites is not yet understood but is the object of ongoing studies in conjunction with work to understand the underlying mechanisms of loss of tolerance.

  • If confirmed, the presence of distinct causal mucosal endotypes is likely to influence the design of RA prevention trials as well as potentially underlie differences in therapeutic responses in patients with clinical RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transitions from pre-RA to clinical RA during the natural history of rheumatoid arthritis.
Fig. 2: Mechanisms potentially involved in the lung mucosal endotype of rheumatoid arthritis.
Fig. 3: Mechanisms linking dysbiosis and the gut mucosal endotype to the systemic spread of autoimmunity.
Fig. 4: Mechanisms involved in the oral and periodontal endotype.

Similar content being viewed by others

References

  1. Lee, D. M. & Weinblatt, M. E. Rheumatoid arthritis. Lancet 359, 903–911 (2001).

    Article  Google Scholar 

  2. Gravallese, E. M. & Firestein, G. S. Rheumatoid arthritis — common origins, divergent mechanisms. N. Engl. J. Med. 388, 529–542 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Karlson, E. W. & Costenbader, K. H. Epidemiology: interpreting studies of interactions between RA risk factors. Nat. Rev. Rheum. 6, 72–73 (2010).

    Article  Google Scholar 

  4. Karlson, E. W. & Deane, K. D. Environmental and gene-environment interactions and risk of rheumatoid arthritis. Rheum. Dis. Clin. North. Am. 38, 405–426 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Silman, A. J. Epidemiology of rheumatoid arthritis. APMIS 102, 721–728 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Peschken, C. A. & Esdaile, J. M. Rheumatic diseases in North America’s indigenous peoples. Semin. Arthritis Rheum. 28, 368–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Aletaha, D. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62, 2569–2581 (2010).

    Article  PubMed  Google Scholar 

  8. Arnett, F. C. et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31, 314–324 (1998).

    Google Scholar 

  9. Fuchs, H. A. & Sergent, J. S. in Arthritis and Allied Conditions: A Textbook of Rheumatology. (ed Koopman W. J.) 1041–1070 (Williams and Wilkins, 1997).

  10. Trouw, L. A., Rispens, T. & Toes, R. E. M. Beyond citrullination: other post-translational protein modifications in rheumatoid arthritis. Nat. Rev. Rheum. 13, 331–339 (2017).

    Article  CAS  Google Scholar 

  11. Emery, P. Review of health economics modelling in rheumatoid arthritis. Pharmacoeconomics 22, 55–69 (2004).

    Article  PubMed  Google Scholar 

  12. Deane, K. D., Norris, J. M. & Holers, V. M. Pre-clinical rheumatoid arthritis: identification, evaluation and future directions for investigation. Rheum. Dis. Clin. North Am. 36, 236–241 (2010).

    Article  Google Scholar 

  13. Malmström, V., Catrina, A. I. & Klareskog, L. The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nat. Rev. Immunol. 17, 60–75 (2017).

    Article  PubMed  Google Scholar 

  14. Kelmenson, L. B. et al. Timing of elevations of autoantibody isotypes in rheumatoid arthritis prior to disease diagnosis. Arthritis Rheumatol. 72, 251–261 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gerlag, D. M. et al. EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: report from the Study Group for Risk Factors for Rheumatoid Arthritis. Ann. Rheum. Dis. 71, 638–641 (2012).

    Article  PubMed  Google Scholar 

  16. Sokolove, J. et al. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS ONE 7, e35296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deane, K. D. et al. The number of elevated cytokines and chemokines in preclinical seropositive rheumatoid arthritis predicts time to diagnosis in an age-dependent manner. Arthritis Rheum. 62, 3161–3172 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Suwannalai, P. et al. Avidity maturation of anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheum. 64, 1323–1328 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Brink, M. et al. Multiplex analyses of antibodies against citrullinated peptides in individuals prior to the development of rheumatoid arthritis. Arthritis Rheum. 65, 899–910 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Whiting, P. F. et al. Systematic review: accuracy of anti-citrullinated peptide antibodies for diagnosing rheumatoid arthritis. Ann. Intern. Med. 152, 456–464 (2010).

    Article  PubMed  Google Scholar 

  21. Deane, K. D. & Holers, V. M. Rheumatoid arthritis pathogenesis, prediction, and prevention: an emerging paradigm shift. Arthritis Rheumatol. 73, 181–193 (2021).

    Article  PubMed  Google Scholar 

  22. Ponchel, F. et al. T-cell subset abnormalities predict progression along the inflammatory arthritis disease continuum: implications for management. Sci. Rep. 10, 3669 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nepom, G. T. & Nepom, B. S. Prediction of susceptibility to rheumatoid arthritis by human leukocyte antigen phenotyping. Rheum. Dis. Clin. North. Am. 18, 785–792 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Reveille, J. D. The genetic contribution to the pathogenesis of rheumatoid arthritis. Curr. Opin. Rheum. 10, 187–200 (1998).

    Article  CAS  Google Scholar 

  26. Coenen, M. J. & Gregersen, P. K. Rheumatoid arthritis: a view of the current genetic landscape. Genes. Immun. 10, 101–111 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Viatte, S., Plant, D. & Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheum. 9, 141–153 (2013).

    Article  CAS  Google Scholar 

  28. Ishigaki, K. et al. Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis. Nat. Genet. 54, 1640–1651 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lufkin, L., Budišić, M., Mondal, S. & Sur, S. A Bayesian model to analyze the association of rheumatoid arthritis with risk factors and their interactions. Front. Public. Health 9, 693830 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Terao, C., Raychaudhuri, S. & Gregersen, P. K. Recent advances in defining the genetic basis of rheumatoid arthritis. Ann. Rev. Genomics Hum. Genet. 17, 273–301 (2016).

    Article  CAS  Google Scholar 

  31. Goldmann, K. et al. Expression quantitative trait loci analysis in rheumatoid arthritis identifies tissue specific variants associated with severity and outcome. Ann. Rheum. Dis. 83, 288–299 (2023).

    Article  Google Scholar 

  32. Holers, V. M. Autoimmunity to citrullinated proteins and the initiation of rheumatoid arthritis. Curr. Opin. Immunol. 25, 728–735 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holers, V. M. et al. Rheumatoid arthritis and the mucosal origins hypothesis: protection turns to destruction. Nat. Rev. Rheum. 14, 542–557 (2018).

    Article  Google Scholar 

  34. Holers, V. M. et al. Mechanism-driven strategies for the prevention of rheumatoid arthritis. Rheumatol. Autoimmun. 2, 109–119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kinslow, J. D. et al. Elevated IgA plasmablast levels in subjects at risk of developing rheumatoid arthritis. Arthritis Rheumatol. 68, 2372–2383 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Elliott, S. E. et al. Affinity maturation drives epitope spreading and generation of proinflammatory anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheumatol. 70, 1946–1958 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sparks, J. A. et al. Association of fish intake and smoking with risk of rheumatoid arthritis and age of onset: a prospective cohort study. BMC Musculoskelet. Disord. 20, 2 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Klareskog, L., Malmstrom, V., Lundberg, K., Padyukov, L. & Alfredsson, L. Smoking, citrullination and genetic variability in the immunopathogenesis of rheumatoid arthritis. Semin. Immunol. 23, 92–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Ljungberg, K. R., Martinsson, K., Wetterö, J., Svärd, A. & Kastbom, A. Circulating anti-citrullinated protein antibodies containing secretory component are prognostic for arthritis onset in at-risk patients. Clin. Exp. Immunol. 204, 344–351 (2021).

    Article  Google Scholar 

  40. Johansson, L. et al. Concentration of antibodies against Porphyromonas gingivalis is increased before the onset of symptoms of rheumatoid arthritis. Arthritis Res. Ther. 18, 201 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cheng, Z. et al. Dysbiosis in the oral microbiomes of anti-CCP positive individuals at risk of developing rheumatoid arthritis. Ann. Rheum. Dis. 80, 162–168 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Luo, Y. et al. Alteration of gut microbiota in individuals at high-risk for rheumatoid arthritis associated with disturbed metabolome and the initiation of arthritis through the triggering of mucosal immunity imbalance. Arthritis Rheumatol. 75, 1736–1748 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Wells, P. M. et al. Associations between gut microbiota and genetic risk for rheumatoid arthritis in the absence of disease: a cross-sectional study. Lancet Rheumatol. 25, e418–e427 (2020).

    Article  Google Scholar 

  44. Nii, T. et al. Genomic repertoires linked with pathogenic potency of arthritogenic Prevotella copri isolated from the gut of patients with rheumatoid arthritis. Ann. Rheum. Dis. 82, 621–629 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Lin, L. et al. Gut microbiota in pre-clinical rheumatoid arthritis: from pathogenesis to preventing progression. J. Autoimmun. 141, 103001 (2023).

    Article  PubMed  Google Scholar 

  46. Chriswell, M. et al. Dual IgA/IgG family autoantibodies from individuals at-risk for rheumatoid arthritis identify an arthritogenic strain of Subdoligranulum. Sci. Trans. Med. 14, eabn5166 (2022).

    Article  CAS  Google Scholar 

  47. van Steenbergen, H. W., Cope, A. P. & van der Helm-van Mil, A. H. M. Rheumatoid arthritis prevention in arthralgia: fantasy or reality? Nat. Rev. Rheum. 19, 767–777 (2023).

    Article  Google Scholar 

  48. Yunt, Z. X. & Solomon, J. J. Lung disease in rheumatoid arthritis. Rheum. Dis. Clin. North Am. 41, 225–236 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rangel-Moreno, J. et al. Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J. Clin. Invest. 116, 3183–3194 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zaccardelli, A. et al. Elevated anti-citrullinated protein antibodies prior to rheumatoid arthritis diagnosis and risks for chronic obstructive pulmonary disease or asthma. Arthritis Res. Care 73, 498–509 (2019).

    Article  Google Scholar 

  51. Kronzer, V. L., Crowson, C. S., Sparks, J. A., Vassallo, R. & Davis, J. M. III Investigating asthma, allergic disease, passive smoke exposure, and risk of rheumatoid arthritis. Arthritis Rheumatol. 71, 1217–1224 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Joshua, V. et al. Rheumatoid arthritis specific autoimmunity in the lung before and at the onset of disease. Arthritis Rheumatol. 75, 1910–1922 (2023)

    Article  CAS  PubMed  Google Scholar 

  53. Reynisdottir, G. et al. Signs of immune activation and local inflammation are present in the bronchial tissue of patients with untreated early rheumatoid arthritis. Ann. Rheum. Dis. 75, 1722–1727 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Scher, J. U. et al. The lung microbiota in early rheumatoid arthritis and autoimmunity. Microbiome 4, 60 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Demoruelle, M. K. et al. Brief report: airways abnormalities and rheumatoid arthritis-related autoantibodies in subjects without arthritis: early injury or initiating site of autoimmunity? Arthritis Rheum. 64, 1756–1761 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Demoruelle, M. K. et al. Antibody responses to citrullinated and non-citrullinated antigens in the sputum of subjects with and at-risk for rheumatoid arthritis. Arthritis Rheumatol. 70, 516–527 (2017).

    Article  Google Scholar 

  57. Demoruelle, M. K. et al. Anti-citrullinated protein antibodies are associated with neutrophil extracellular traps in the sputum in relatives of rheumatoid arthritis patients. Arthritis Rheumatol. 69, 1165–1175 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Willis, V. C. et al. Sputa autoantibodies in patients with established rheumatoid arthritis and subjects at-risk for future clinically apparent disease. Arthritis Rheum. 65, 2545–2554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Okamoto, Y. et al. Association of sputum neutrophil extracellular trap subsets with IgA anti-citrullinated protein antibodies in subjects at risk for rheumatoid arthritis. Arthritis Rheumatol. 74, 38–48 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Wilson, T. et al. Sputum RA-associated autoantibodies independently associate with future development of classified RA in an at-risk cohort of individuals with systemic anti-CCP positivity. Arthritis Rheumatol. 10.1002/art.42355 (2022).

  61. Thompson, K. N. et al. Alterations in the gut microbiome implicate key taxa and metabolic pathways across inflammatory arthritis phenotypes. Sci. Trans. Med. 15, eabn4722 (2023).

    Article  CAS  Google Scholar 

  62. Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Chen, J. et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 8, 43 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pianta, A. et al. Evidence of the immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheumatol. 69, 964–975 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Seifert, J. A. et al. Association of antibodies to Prevotella copri in anti-cyclic citrullinated peptide-positive individuals at risk of developing rheumatoid arthritis and in patients with early or established rheumatoid arthritis. Arthritis Rheumatol. 75, 507–516 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Alpizar-Rodriguez, D. et al. Prevotella copri in individuals at risk for rheumatoid arthritis. Ann. Rheum. Dis. 78, 590–593 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Tajik, N. et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun. 11, 1995 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rooney, C. M. et al. Perturbations of the gut microbiome in anti-CCP positive individuals at risk of developing rheumatoid arthritis. Rheumatology 60, 3380–3387 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Eriksson, K. et al. Prevalence of periodontitis in patients with established rheumatoid arthritis: a Swedish population based case-control study. PLoS ONE https://doi.org/10.1371/journal.pone.0155956 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Li, Y. et al. The relationship between Porphyromonas gingivalis and rheumatoid arthritis: a meta-analysis. Front. Cell Infect. Microbiol. 12, 956417 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mankia, K. et al. Prevalence of periodontal disease and periodontopathic bacteria in anti-cyclic citrullinated protein antibody-positive at-risk adults without arthritis. JAMA Netw. Open. 5, e195394 (2019).

    Article  Google Scholar 

  73. Gómez-Bañuelos, E., Mukherjee, A., Darrah, E. & Andrade, F. Rheumatoid arthritis-associated mechanisms of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. J. Clin. Med. 8, 1309 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kharlamova, N. et al. Antibodies to Porphyromonas gingivalis indicate interaction between oral infection, smoking, and risk genes in rheumatoid arthritis etiology. Arthritis Rheumatol. 68, 604–613 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lundberg, K., Wegner, N., Yucel-Lindberg, T. & Venables, P. J. Periodontitis in RA — the citrullinated enolase connection. Nat. Rev. Rheum. 6, 727–730 (2010).

    Article  CAS  Google Scholar 

  76. Brewer, C. et al. Oral mucosal breaks trigger unique systemic immune responses that mediate rheumatoid arthritis. Sci. Trans. Med 15, eabq8476 (2022).

    Article  Google Scholar 

  77. Kronzer, V. L. et al. Timing of sinusitis and other respiratory tract diseases and risk of rheumatoid arthritis. Semin. Arthritis Rheum. 52, 151937 (2022).

    Article  PubMed  Google Scholar 

  78. Young, K. A. et al. Relatives without rheumatoid arthritis show reactivity to anti-citrullinated protein/peptide antibodies that are associated with arthritis-related traits: studies of the etiology of rheumatoid arthritis. Arthritis Rheum. 65, 1995–2004 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, G. et al. Identification and characterization of the lactating mouse mammary gland citrullinome. Int. J. Mol. Sci. 21, 2634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ebringer, A. & Rashid, T. Rheumatoid arthritis is caused by a Proteus urinary tract infection. APMIS 122, 363–368 (2013).

    Article  PubMed  Google Scholar 

  81. Lamacchia, C. et al. A potential role for chlamydial infection in rheumatoid arthritis development. Rheumatology 13, kead682 (2023).

    Article  Google Scholar 

  82. Berglin, E. et al. A combination of autoantibodies to cyclic citrullinated peptide (CCP) and HLA-DRB1 locus antigens is strongly associated with the future onset of rheumatoid arthritis. Arthritis Res. Ther. 6, R303–R308 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nielen, M. M. J. et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis. Arthritis Rheum. 50, 380–386 (2004).

    Article  PubMed  Google Scholar 

  84. Gan, R. W. et al. Anti-carbamylated protein antibodies are present prior to rheumatoid arthritis and are associated with its future diagnosis. J. Rheumatol. 42, 572–579 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Costenbader, K. H., Feskanich, D., Mandl, L. A. & Karlson, E. W. Smoking intensity, duration, and cessation, and the risk of rheumatoid arthritis in women. Am. J. Med. 119, e1–e9 (2006).

    Article  Google Scholar 

  86. O’Neil, L. J. et al. Association of a serum protein signature with rheumatoid arthritis development. Arthritis Rheumatol. 73, 78–88 (2021).

    Article  PubMed  Google Scholar 

  87. Kissel, K. et al. Surface Ig variable domain glycosylation affects autoantigen binding and acts as threshold for human autoreactive B cell activation. Sci. Adv. 8, eabm1759 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pfeifle, R. et al. Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat. Immunol. 18, 104–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Aslam, A. et al. Emergence of proinflammatory autoreactive T-cell responses in preclinical rheumatoid arthritis. Lancet https://doi.org/10.1016/S0140-6736(14)60285-3 (2014).

  90. Hunt, L. et al. T cell subsets: an immunological biomarker to predict progression to clinical arthritis in ACPA-positive individuals. Ann. Rheum. Dis. 75, 1884–1889 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. James, E. A. et al. Multifaceted immune dysregulation characterizes individuals at-risk for rheumatoid arthritis. Nat. Commun. 14, 7637 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Takada, H. et al. Expansion of HLA-DR positive peripheral helper T and naive B cells in anticitrullinated protein antibody-positive individuals at risk for rheumatoid arthritis. Arthritis Rheumatol. 76, 1023–1035 (2024).

    Article  CAS  PubMed  Google Scholar 

  93. Chang, H. H. et al. A molecular timeline of preclinical rheumatoid arthritis defined by dysregulated PTPN22, hypercitrullination, aberrant cytokine and metabolic profiles in PBMC of at-risk individuals. J. Clin. Invest. Insight 1, e90045 (2016).

    Google Scholar 

  94. Okamato, Y. et al. Subjects at-risk for future development of rheumatoid arthritis demonstrate a PAD4- and TLR-dependent enhanced histone H3 citrullination and proinflammatory cytokine production in CD14hi monocytes. J. Autoimmun. 117, 102581 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Pattison, D. J. et al. Dietary risk factors for the development of inflammatory polyarthritis: evidence for a role of high level of red meat consumption. Arthritis Rheum. 50, 3804–3812 (2004).

    Article  PubMed  Google Scholar 

  96. Hu, Y. et al. Sugar-sweetened soda consumption and risk of developing rheumatoid arthritis in women. Am. J. Clin. Nutr. 100, 959–967 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Castro-Webb, N. et al. Association of macronutrients and dietary patterns with risk of systemic lupus erythematosus in the Black Women’s Health Study. Am. J. Clin. Nutr. 114, 1486–1494 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Choi, M. Y. et al. Association of a combination of healthy lifestyle behaviors with reduced risk of incident systemic lupus erythematosus. Arthritis Rheumatol. 74, 274–283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gan, R. W. et al. Lower omega-3 fatty acids are associated with the presence of anti-cyclic citrullinated peptide autoantibodies in a population at risk for future rheumatoid arthritis: a nested case-control study. Rheumatology 55, 367–376 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Gan, R. W. et al. Omega-3 fatty acids are associated with a lower prevalence of autoantibodies in shared epitope-positive subjects at risk for rheumatoid arthritis. Ann. Rheum. Dis. 76, 147–152 (2017).

    Article  PubMed  Google Scholar 

  101. Gan, R. W. et al. The association between omega-3 fatty acid biomarkers and inflammatory arthritis in an anti-citrullinated protein antibody positive population. Rheumatology 56, 2229–2236 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vanderlinden, L. A. et al. Relationship between a vitamin D genetic risk score and autoantibodies among first-degree relatives of probands with rheumatoid arthritis and systemic lupus erythematosus. Front. Immunol. 13, 881332 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Deane, K. D. et al. Genetic and environmental risk factors for rheumatoid arthritis. Best. Pract. Res. Clin. Rheumatol. 31, 3–18 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Parks, C. G., de Souza Espindola Santos, A., Barbhaiya, M. & Costenbader, K. H. Understanding the role of environmental factors in the development of systemic lupus erythematosus. Best. Pract. Res. Clin. Rheumatol. 31, 306–320 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gan, R. W. et al. Relationship between air pollution and positivity of RA-related autoantibodies in individuals without established RA: a report on SERA. Ann. Rheum. Dis. 72, 2002–2005 (2013).

    Article  PubMed  Google Scholar 

  106. Zhang, J. et al. Association of combined exposure to ambient air pollutants, genetic risk, and incident rheumatoid arthritis: a prospective cohort study in the UK biobank. Environ. Health Perspect. 131, 37008 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Polinski, K. J. et al. Perceived stress and inflammatory arthritis: a prospective investigation in the studies of the etiologies of rheumatoid arthritis cohort. Arthritis Care Res. 72, 1766–1771 (2020).

    Article  CAS  Google Scholar 

  108. Kuhn, K. A. et al. Antibodies to citrullinated proteins enhance tissue injury in experimental arthritis. J. Clin. Invest. 116, 961–973 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Catrina, A. I., Svensson, C. I., Malmström, V., Schett, G. & Klareskog, L. Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis. Nat. Rev. Rheum. 13, 79–86 (2017).

    Article  CAS  Google Scholar 

  110. Corthésy, B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front. Immunol. 4, 185 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Raposo, B. et al. Divergent and dominant anti-inflammatory effects of patient-derived anticitrullinated protein antibodies (ACPA) in arthritis development. Ann. Rheum. Dis. 82, 724–726 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Gomez, A. M. et al. Anti-citrullinated protein antibodies with multiple specificities ameliorate collagen antibody-induced arthritis in a time-dependent manner. Arthritis Rheumatol. 76, 181–191 (2023).

    Article  PubMed  Google Scholar 

  113. Lu, D. R. et al. T cell-dependent affinity maturation and innate immune pathways differentially drive autoreactive B cell responses in rheumatoid arthritis. Arthritis Rheumatol. 70, 1732–1744 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kanjana, K. et al. Autoimmunity to synovial extracellular matrix proteins in patients with postinfectious Lyme arthritis. J. Clin. Invest. 133, e161170 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lochhead, R. B., Strle, K., Arvikar, S. L., Weis, J. J. & Steere, A. C. Lyme arthritis: linking infection, inflammation, and autoimmunity. Nat. Rev. Rheum. 17, 449–461 (2021).

    Article  CAS  Google Scholar 

  116. Rouse, J. R. et al. HLA-DR-expressing fibroblast-like synoviocytes are inducible antigen presenting cells that present autoantigens in Lyme arthritis. ACR Open Rheumatol. https://doi.org/10.1002/acr2.11710 (2024).

  117. English, J., Patrick, S. & Stewart, L. D. The potential role of molecular mimicry by the anaerobic microbiota in the aetiology of autoimmune disease. Anaerobe 80, 102721 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Albani, S. & Carson, D. A multistep molecular mimicry hypothesis for the pathogenesis of rheumatoid arthritis. Immunol. Today 17, 466–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Mangalea, M. R. et al. Individuals at risk for rheumatoid arthritis harbor differential intestinal bacteriophage communities with distinct metabolic potential. Cell Host Microbe 29, 726–739 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kongpachith, S. et al. Affinity maturation of the anti-citrullinated protein antibody paratope drives epitope spreading and polyreactivity in rheumatoid arthritis. Arthritis Rheumatol. 71, 507–517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, P. et al. A systematic assessment of MHC Class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 4, e100048 (2008).

    Article  Google Scholar 

  122. Lefferts, A. R., Norman, E., Claypool, D. J., Kantheti, U. & Kuhn, K. A. Cytokine competent gut-joint migratory T cells contribute to inflammation in the joint. Front. Immunol. 13, 932393 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jubair, W. K. et al. Modulation of inflammatory arthritis by gut microbiota through mucosal inflammation and autoantibody generation. Arthritis Rheumatol. 70, 1220–1233 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mosconi, I. et al. Intestinal bacteria induce TSLP to promote mutualistic T-cell responses. Mucosal Immunol. 6, 1157–1167 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Thomson, C. A., Nibbs, R. J., McCoy, K. D. & Mowat, A. M. Immunological roles of intestinal mesenchymal cells. Immunol 160, 313–324 (2020).

    Article  CAS  Google Scholar 

  126. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Polinski, K. J. et al. Association of lipid mediators with development of future incident inflammatory arthritis in an anti-citrullinated protein antibody-positive population. Arthritis Rheumatol. 73, 955–962 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Seymour, B. J. et al. Microbiota-dependent indole production stimulates the development of collagen-induced arthritis in mice. J. Clin. Invest. 134, e167671 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Dürholz, K. et al. Dietary short-term fiber interventions in arthritis patients increase systemic SCFA levels and regulate inflammation. Nutrients 12, 3207 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kang, N., Liu, X., Haneef, K. & Liu, W. Old and new damage-associated molecular patterns (DAMPs) in autoimmune diseases. Rheumatol. Autoimmun. https://doi.org/10.1002/rai2.12046 (2022).

  131. Holers, V. M., Carroll, M. C. & Holers Innate autoimmunity. Adv. Immunol. 86, 137–157 (2005).

    Article  PubMed  Google Scholar 

  132. Ge, Y. et al. Interdental oral hygiene interventions elicit varying compositional microbiome changes in naturally occurring gingivitis: secondary data analysis from a clinical trial. J. Clin. Periodont. https://doi.org/10.1111/jcpe.13899 (2023).

  133. Al-Bawardy, B., Shivashankar, R. & Proctor, D. D. Novel and emerging therapies for inflammatory bowel disease. Front. Pharmacol. 12, 651415 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Demoruelle, M. K. et al. Airways abnormalities and rheumatoid arthritis-related autoantibodies in subjects without arthritis: early injury or initiating site of autoimmunity? Arthritis Rheum. 64, 1756–1761 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Klareskog, L. et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 54, 38–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Kinloch, A. et al. Identification of citrullinated α-enolase as a candidate autoantigen in rheumatoid arthritis. Arthritis Res. Ther. 7, R1421–R1429 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang, F. et al. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 623, 616–624 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Greiling, T. M. et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci. Transl. Med. 10, eaan2306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Azzouz, D. F. et al. Longitudinal gut microbiome analyses and blooms of pathogenic strains during lupus disease flares. Ann. Rheum. Dis. 82, 1315–1327 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Brandsma, C.-A., Van den Berge, M., Hackett, T.-L., Brusselle, G. & Timens, W. Recent advances in chronic obstructive pulmonary disease pathogenesis: from disease mechanisms to precision medicine. J. Pathol. 250, 624–635 (2020).

    Article  PubMed  Google Scholar 

  142. Petersen, C. & Round, J. L. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 16, 1024–1033 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kadura, W. & Raghu, G. Rheumatoid arthritis-interstitial lung disease: manifestations and current concepts in pathogenesis and management. Eur. Resp. Rev. 30, 210011 (2021).

    Article  Google Scholar 

  144. Wegner, N. et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 62, 2662–2672 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jung, H. et al. Arthritic role of Porphyromonas gingivalis in collagen-induced arthritis mice. PLoS ONE 12, e0188698 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

V.M.H.’s work is supported by grants U01 AI101981, T32 AR07534, P30 AR079369, UM1 AI110503, R01 AR051394, U19 AI50864 and Rheumatology Research Foundation; K.D.D.’s work is supported by NIH P30 AR079369; K.A.K.’s work is supported by Pfizer ASPIRE, K08 DK107905 and R01 AR075033; J.M.N.’s work is supported by R01 AR081812.

Author information

Authors and Affiliations

Authors

Contributions

V.M.H. wrote the first draft of the manuscript based on concepts devised through years of interactions and discussions with all the other authors, who also all then reviewed, revised and contributed substantially to its content.

Corresponding author

Correspondence to V. Michael Holers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Axel Finckh, Vanessa Kronzer, Renuka Nayak and Mario Zaiss for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Chronic obstructive pulmonary disease

Lung alveolar and airway disease characterized by tissue destruction and defective oxygenation often associated with cigarette and other deleterious environmental exposures141.

Dysbiosis

Alterations of the normal composition of the microbiome at any specific site142.

Inducible bronchus-associated lymphatic tissue

Immune aggregates found in the lung in the interstitial and peri-bronchial sites of patients with clinical rheumatoid arthritis, as well as other immune lung diseases49.

Non-specific interstitial pneumonitis

Form of interstitial lung disease in patients with clinical rheumatoid arthritis that is characterized radiographically by predominant traction bronchiectasis and extensive ground-glass opacities with sub-pleural sparing143.

Usual interstitial pneumonia

Form of interstitial lung disease rheumatoid arthritis characterized by basal predominant reticular opacities in the sub-pleural site, as well as honeycombing, sites of ground-glass opacity, and evidence of traction bronchiectasis143.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holers, V.M., Demoruelle, K.M., Buckner, J.H. et al. Distinct mucosal endotypes as initiators and drivers of rheumatoid arthritis. Nat Rev Rheumatol 20, 601–613 (2024). https://doi.org/10.1038/s41584-024-01154-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-024-01154-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing