Abstract
External beam radiotherapy is an effective curative treatment option for localized prostate cancer, the most common cancer in men worldwide. However, conventionally fractionated courses of curative external beam radiotherapy are usually 8–9 weeks long, resulting in a substantial burden to patients and the health-care system. This problem is exacerbated in low-income and middle-income countries where health-care resources might be scarce and patient funds limited. Trials have shown a clinical equipoise between hypofractionated schedules of radiotherapy and conventionally fractionated treatments, with the advantage of drastically shortening treatment durations with the use of hypofractionation. The hypofractionated schedules are supported by modern consensus guidelines for implementation in clinical practice. Furthermore, several economic evaluations have shown improved cost effectiveness of hypofractionated therapy compared with conventional schedules. However, these techniques demand complex infrastructure and advanced personnel training. Thus, a number of practical considerations must be borne in mind when implementing hypofractionation in low-income and middle-income countries, but the potential gain in the treatment of this patient population is substantial.
Key points
-
The global burden of prostate cancer is increasing and prostate cancer is becoming a major source of health-care burden in low-income and middle-income countries (LMICs).
-
Radiotherapy is an essential treatment modality in the management of prostate cancer. However, radiotherapy resources are lacking in LMICs, resulting in excess morbidity and mortality.
-
Hypofractionated radiotherapy schedules offer an opportunity to maintain excellent treatment outcomes while shortening curative radiotherapy courses. This approach expands the treatment capacity and could improve crucial access in communities with limited radiotherapy resources.
-
Initial investments are required for technological upgrades, such as intensity-modulated radiotherapy and image-guided radiotherapy, as well as in specialized training in order to optimally provide hypofractionated treatment. Discussion amongst government agencies and device manufacturers is essential to lower these costs.
-
Personnel training and access to external consultation are critical resources for developing radiotherapy centres. Information and communication technologies enable remote guidance between developing and developed radiotherapy centres.
-
In the long term, hypofractionation programmes result in long-term cost savings and simultaneously expand patient access to a curative modality in the management of prostate cancer.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Global Burden of Disease Cancer Collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol. 5, 1749–1768 (2019).
Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).
Wong, M. C. S. et al. Global incidence and mortality for prostate cancer: analysis of temporal patterns and trends in 36 Countries. Eur. Urol. 70, 862–874 (2016).
Thompson, S. R. et al. Estimation of the optimal utilisation rates of radical prostatectomy, external beam radiotherapy and brachytherapy in the treatment of prostate cancer by a review of clinical practice guidelines. Radiother. Oncol. 118, 118–121 (2016).
Hamdy, F. C. et al. 10-Year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N. Engl. J. Med. 375, 1415–1424 (2016).
Donovan, J. L. et al. Patient-reported outcomes after monitoring, surgery, or radiotherapy for prostate cancer. N. Engl. J. Med. 375, 1425–1437 (2016).
Lane, J. A. et al. Active monitoring, radical prostatectomy, or radiotherapy for localised prostate cancer: study design and diagnostic and baseline results of the ProtecT randomised phase 3 trial. Lancet Oncol. 15, 1109–1118 (2014).
Pasalic, D. et al. Dose escalation for prostate adenocarcinoma: a long-term update on the outcomes of a phase 3, single institution randomized clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 104, 790–797 (2019).
Michalski, J. M. et al. Effect of standard vs dose-escalated radiation therapy for patients with intermediate-risk prostate cancer: the NRG Oncology RTOG 0126 randomized clinical trial. JAMA Oncol. 4, e180039 (2018).
Peeters, S. T. et al. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J. Clin. Oncol. 24, 1990–1996 (2006).
Wortel, R. C. et al. Late side effects after image guided intensity modulated radiation therapy compared to 3D-conformal radiation therapy for prostate cancer: results from 2 prospective cohorts. Int. J. Radiat. Oncol. Biol. Phys. 95, 680–689 (2016).
Pollack, A. et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J. Clin. Oncol. 31, 3860–3868 (2013).
Hoffman, K. E. et al. Risk of late toxicity in men receiving dose-escalated hypofractionated intensity modulated prostate radiation therapy: results from a randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 88, 1074–1084 (2014).
Lee, W. R. et al. Randomized phase III noninferiority study comparing two radiotherapy fractionation schedules in patients with low-risk prostate cancer. J. Clin. Oncol. 34, 2325–2332 (2016).
Aluwini, S. et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): late toxicity results from a randomised, non-inferiority, phase 3 trial. Lancet Oncol. 17, 464–474 (2016).
Dearnaley, D. et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 17, 1047–1060 (2016).
Arcangeli, G. et al. Moderate hypofractionation in high-risk, organ-confined prostate cancer: final results of a phase III randomized trial. J. Clin. Oncol. 35, 1891–1897 (2017).
Catton, C. N. et al. Randomized trial of a hypofractionated radiation regimen for the treatment of localized prostate cancer. J. Clin. Oncol. 35, 1884–1890 (2017).
Brand, D. H. et al. Intensity-modulated fractionated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): acute toxicity findings from an international, randomised, open-label, phase 3, non-inferiority trial. Lancet Oncol. 20, 1531–1543 (2019).
Widmark, A. et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet 394, 385–395 (2019).
Wang, J., Guerrero, M. & Li, X. How low is the alpha/beta ratio for prostate cancer? Int. J. Radiat. Oncol. Biol. Phys. 55, 194–203 (2003).
Morgan, S. C. et al. Hypofractionated radiation therapy for localized prostate cancer: an ASTRO, ASCO, and AUA evidence-based guideline. J. Clin. Oncol. 36, JCO1801097 (2018).
Jaffray, D. A. & Gospodarowicz, M. K. in Disease Control Priorities 3rd edn, Vol 3 (eds Gelband, H. & Jha, P.) Ch.14 (The World Bank, 2015).
Delaney, G., Jacob, S. & Barton, M. Estimating the optimal external-beam radiotherapy utilization rate for genitourinary malignancies. Cancer 103, 462–473 (2005).
Barton, M. B. et al. Estimating the demand for radiotherapy from the evidence: a review of changes from 2003 to 2012. Radiother. Oncol. 112, 140–144 (2014).
Tyldesley, S. et al. Estimating the Need for radiotherapy for patients with prostate, breast, and lung cancers: verification of model estimates of need with radiotherapy utilization data from British Columbia. Int. J. Radiat. Oncol. Biol. Phys. 79, 1507–1515 (2011).
Zubizarreta, E. H., Fidarova, E., Healy, B. & Rosenblatt, E. Need for radiotherapy in low and middle income countries — the silent crisis continues. Clin. Oncol. 27, 107–114 (2015).
Abdel-Wahab, M. et al. Status of radiotherapy resources in Africa: an International Atomic Energy Agency analysis. Lancet Oncol. 14, e168–e175 (2013).
Datta, N. R., Samiei, M. & Bodis, S. Radiation therapy infrastructure and human resources in low- and middle-income countries: present status and projections for 2020. Int. J. Radiat. Oncol. Biol. Phys. 89, 448–457 (2014).
Jaffray, D. A. & Gospodarowicz, M. Bringing global access to radiation therapy: time for a change in approach. Int. J. Radiat. Oncol. Biol. Phys. 89, 446–447 (2014).
Mendez, L. C., Moraes, F. Y., Fernandes, G. D. S. & Weltman, E. Cancer deaths due to lack of universal access to radiotherapy in the Brazilian public health system. Clin. Oncol. 30, e29–e36 (2018).
Ministerio de Saude, Secretaria de Atenção Especializada á Saúde; Departamento de Atenção Especializada e Temática. Censo Radioterapia https://portalarquivos.saude.gov.br/images/pdf/2019/julho/26/paper-radioterapia-ALT3.pdf (2019).
Olsson, L. I., Granstrom, F. & Glimelius, B. Socioeconomic inequalities in the use of radiotherapy for rectal cancer: a nationwide study. Eur. J. Cancer 47, 347–353 (2011).
Aneja, S. et al. Geographic analysis of the radiation oncology workforce. Int. J. Radiat. Oncol. Biol. Phys. 82, 1723–1729 (2012).
Aneja, S., Pratiwadi, R. R. & Yu, J. B. Hypofractionated radiation therapy for prostate cancer: risks and potential benefits in a fiscally conservative health care system. Oncology 26, 512–518 (2012).
Plataniotis, G. A. et al. A short radiotherapy course for locally advanced non-small cell lung cancer (NSCLC): effective palliation and patients’ convenience. Lung Cancer 35, 203–207 (2002).
Atun, R. et al. Expanding global access to radiotherapy. Lancet Oncol. 16, 1153–1186 (2015).
Incrocci, L. et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 17, 1061–1069 (2016).
Aluwini, S. et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): acute toxicity results from a randomised non-inferiority phase 3 trial. Lancet Oncol. 16, 274–283 (2015).
Brenner, D. J. & Hall, E. J. Are we now able to define guidelines for moderate hypofractionation in prostate cancer radiation therapy? Int. J. Radiat. Oncol. Biol. Phys. 100, 871–873 (2018).
Hickey, B. E., James, M. L., Daly, T., Soh, F. Y. & Jeffery, M. Hypofractionation for clinically localized prostate cancer. Cochrane Database Syst. Rev. 9, CD011462 (2019).
National Comprehensive Cancer Network. Prostate Cancer https://www.nccn.org/professionals/physician_gls/pdf/prostate_blocks.pdf (2020).
Gomez, C. L. et al. Dosimetric parameters predict short-term quality-of-life outcomes for patients receiving stereotactic body radiation therapy for prostate cancer. Pract. Radiat. Oncol. 5, 257–262 (2015).
Jackson, W. C. et al. Stereotactic body radiation therapy for localized prostate cancer: a systematic review and meta-analysis of over 6,000 patients treated on prospective studies. Int. J. Radiat. Oncol. Biol. Phys. 104, 778–789 (2019).
Bolla, M. et al. Duration of androgen suppression in the treatment of prostate cancer. N. Engl. J. Med. 360, 2516–2527 (2009).
Hanks, G. E. et al. Phase III trial of long-term adjuvant androgen deprivation after neoadjuvant hormonal cytoreduction and radiotherapy in locally advanced carcinoma of the prostate: the radiation therapy oncology group protocol 92–02. J. Clin. Oncol. 21, 3972–3978 (2003).
Denham, J. W. et al. Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): 10-year results from a randomised, phase 3, factorial trial. Lancet Oncol. 20, 267–281 (2019).
Nabid, A. et al. Duration of androgen deprivation therapy in high-risk prostate cancer: a randomized phase III trial. Eur. Urol. 74, 432–441 (2018).
Zapatero, A. et al. High-dose radiotherapy with short-term or long-term androgen deprivation in localised prostate cancer (DART01/05 GICOR): a randomised, controlled, phase 3 trial. Lancet Oncol. 16, 320–327 (2015).
D’Amico, A. V., Chen, M.-H., Renshaw, A. A., Loffredo, M. & Kantoff, P. W. Androgen suppression and radiation vs radiation alone for prostate cancer. JAMA 299, 289–295 (2008).
Jones, C. U. et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N. Engl. J. Med. 365, 107–118 (2011).
Denham, J. W. et al. Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol. 12, 451–459 (2011).
Sanda, M. G. et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part I: risk stratification, shared decision making, and care options. J. Urol. 199, 683–690 (2018).
Patel, S. A. et al. Stereotactic body radiotherapy versus conventional/moderate fractionated radiation therapy with androgen deprivation therapy for unfavorable risk prostate cancer. Radiat. Oncol. 15, 217 (2020).
Macias, V. A. & Barrera-Mellado, I. Ultra-hypofractionated radiation therapy for unfavourable intermediate-risk and high-risk prostate cancer is safe and effective: 5-year outcomes of a phase II trial. BJU Int. 125, 215–225 (2020).
Callan, L. et al. A phase I/II trial of fairly brief androgen suppression and stereotactic radiation therapy for high-risk prostate cancer (FASTR-2): preliminary results and toxicity analysis. Adv. Radiat. Oncol. 4, 668–673 (2019).
van Dams, R. et al. Stereotactic body radiotherapy for high-risk localized CARcinoma of the Prostate (SHARP) consortium: analysis of 344 prospectively treated patients. Int. J. Radiat. Oncol. Biol. Phys. 110, 731–737 (2021).
Zaorsky, N. G. et al. Prostate cancer radiation therapy recommendations in response to COVID-19. Adv. Radiat. Oncol. 5, 659–665 (2020).
Mcnair, H. A. et al. A systematic review: effectiveness of rectal emptying preparation in prostate cancer patients. Pract. Radiat. Oncol. 4, 437–447 (2014).
Heemsbergen, W. D. et al. Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: results from the Dutch trial of 68 GY versus 78 Gy. Int. J. Radiat. Oncol. Biol. Phys. 67, 1418–1424 (2007).
De Crevoisier, R. et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 62, 965–973 (2005).
Moiseenko, V., Liu, M., Kristensen, S., Gelowitz, G. & Berthelet, E. Effect of bladder filling on doses to prostate and organs at risk: a treatment planning study. J. Appl. Clin. Med. Phys. 8, 55–68 (2006).
Ali, A. N. et al. Impact of magnetic resonance imaging on computed tomography-based treatment planning and acute toxicity for prostate cancer patients treated with intensity modulated radiation therapy. Pract. Radiat. Oncol. 3, e1–e9 (2013).
Buyyounouski, M. K. et al. Intensity-modulated radiotherapy with MRI simulation to reduce doses received by erectile tissue during prostate cancer treatment. Int. J. Radiat. Oncol. Biol. Phys. 58, 743–749 (2004).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03525262 (2021).
Patel, D., Tan, A., Brown, A. & Pain, T. Absence of prostate oedema obviates the need for delay between fiducial marker insertion and radiotherapy simulation. J. Med. Radiat. Sci. 67, 302–309 (2020).
Havnen, A., Liauw, S., Pelizzari, C. & Yenice, K. Image guided radiotherapy to the prostate after implantation of gold fiducials: is it necessary to wait 7 days for planning? Int. J. Radiat. Oncol. Biol. Phys. 72, S565–S566 (2008).
Linam, J. M., Yang, L. X. & Lee, J. W. No need to wait: fiducial migration in immediate versus delayed simulation for prostate IGRT. Int. J. Radiat. Oncol. Biol. Phys. 90, S824 (2014).
Moseley, D. J. et al. Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 67, 942–953 (2007).
Dehnad, H. et al. Clinical feasibility study for the use of implanted gold seeds in the prostate as reliable positioning markers during megavoltage irradiation. Radiother. Oncol. 67, 295–302 (2003).
Iocolano, M. et al. Prostate fiducial marker placement in patients on anticoagulation: feasibility prior to prostate SBRT. Front. Oncol. 10, 203 (2020).
Gill, S. et al. Patient-reported complications from fiducial marker implantation for prostate image-guided radiotherapy. Br. J. Radiol. 85, 1011–1017 (2012).
Njeh, C. F., Parker, B. C. & Orton, C. G. Implanted fiducial markers are no longer needed for prostate cancer radiotherapy. Med. Phys. 44, 6113–6116 (2017).
Tøndel, H. et al. Radiotherapy for prostate cancer – does daily image guidance with tighter margins improve patient reported outcomes compared to weekly orthogonal verified irradiation? Results from a randomized controlled trial. Radiother. Oncol. 126, 229–235 (2018).
Ruggieri, R. et al. Volumetric-modulated arc stereotactic body radiotherapy for prostate cancer: dosimetric impact of an increased near-maximum target dose and of a rectal spacer. Br. J. Radiol. 88, 20140736 (2015).
Zelefsky, M. J. et al. Early tolerance and tumor control outcomes with high-dose ultrahypofractionated radiation therapy for prostate cancer. Eur. Urol. Oncol. 3, 748–755 (2020).
Levy, J. F. et al. Evaluating the cost-effectiveness of hydrogel rectal spacer in prostate cancer radiation therapy. Pract. Radiat. Oncol. 9, e172–e179 (2019).
Hutchinson, R. C., Sundaram, V., Folkert, M. & Lotan, Y. Decision analysis model evaluating the cost of a temporary hydrogel rectal spacer before prostate radiation therapy to reduce the incidence of rectal complications. Urol. Oncol. 34, 291.e19-26 (2016).
Edel, A. SpaceOAR Hydrogel — is the Difference Worthwhile? https://prostatecancerinfolink.net/2017/01/10/spaceoar-hydrogel-is-the-difference-worthwhile/#:∼:text=Is%20it%20worthwhile%20to%20treat,of%20bothersome%20acute%20rectal%20symptoms (2017).
Mariados, N. et al. Hydrogel spacer prospective multicenter randomized controlled pivotal trial: dosimetric and clinical effects of perirectal spacer application in men undergoing prostate image guided intensity modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 92, 971–977 (2015).
Hall, W. A. et al. Considering benefit and risk before routinely recommending SpaceOAR. Lancet Oncol. 22, 11–13 (2021).
Salembier, C. et al. ESTRO ACROP consensus guideline on CT- and MRI-based target volume delineation for primary radiation therapy of localized prostate cancer. Radiother. Oncol. 127, 49–61 (2018).
Chaurasia, A. R. et al. Evaluating the potential benefit of reduced planning target volume margins for low and intermediate risk patients with prostate cancer using real-time electromagnetic tracking. Adv. Radiat. Oncol. 3, 630–638 (2018).
Norkus, D. et al. A randomized trial comparing hypofractionated and conventionally fractionated three-dimensional external-beam radiotherapy for localized prostate adenocarcinoma. Strahlenther. Onkol. 185, 715–721 (2009).
Norkus, D. et al. A randomized hypofractionation dose escalation trial for high risk prostate cancer patients: interim analysis of acute toxicity and quality of life in 124 patients. Radiat. Oncol. 8, 206 (2013).
Sanguineti, G. et al. Macroscopic hematuria after conventional or hypofractionated radiation therapy: results from a prospective phase 3 study. Int. J. Radiat. Oncol. Biol. Phys. 96, 304–312 (2016).
Hall, W. A. et al. NRG oncology updated international consensus atlas on pelvic lymph node volumes for intact and post-operative prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 109, 174–185 (2020).
Sarfaraz, M. CyberKnife® robotic arm stereotactic radiosurgery. J. Am. Coll. Radiol. 4, 563–565 (2007).
Alongi, F., Fiorentino, A. & De Bari, B. SBRT and extreme hypofractionation: a new era in prostate cancer treatments? Rep. Pract. Oncol. Radiother. 20, 411–416 (2015).
King, C. R. et al. Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials. Radiother. Oncol. 109, 217–221 (2013).
Saul, S. Geography has a role in Medicare cancer coverage. The New York Times https://www.nytimes.com/2008/12/17/health/policy/17knife.html (2008).
Avkshtol, V. et al. A comparison of robotic arm versus gantry linear accelerator stereotactic body radiation therapy for prostate cancer. Res. Rep. Urol. 8, 145–158 (2016).
Pawlicki, T. et al. Investigation of LINAC-based image-guided hypofractionated prostate radiotherapy. Med. Dosim. 32, 71–79 (2007).
Scobioala, S. et al. A treatment planning study comparing IMRT techniques and cyber knife for stereotactic body radiotherapy of low-risk prostate carcinoma. Radiat. Oncol. 14, 143 (2019).
Pathmanathan, A. U. et al. Magnetic resonance imaging-guided adaptive radiation therapy: a “Game Changer” for prostate treatment? Int. J. Radiat. Oncol. Biol. Phys. 100, 361–373 (2018).
Alongi, F. et al. 1.5T MR-guided and daily adapted SBRT for prostate cancer: feasibility, preliminary clinical tolerability, quality of life and patient-reported outcomes during treatment. Radiat. Oncol. 15, 69 (2020).
Corradini, S. et al. MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiat. Oncol. 14, 92 (2019).
Lagendijk, J. J. W. et al. MRI/LINAC integration. Radiother. Oncol. 86, 25–29 (2008).
Eccles, C. L. & Campbell, M. Keeping up with the hybrid magnetic resonance linear accelerators: how do radiation therapists stay current in the era of hybrid technologies? J. Med. Imaging Radiat. Sci. 50, 195–198 (2019).
Morrison, A. Magnetic resonance guided radiotherapy: MR-simulation and MR-LINAC (CADTH, 2020).
Tetar, S. U. et al. Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy for localized prostate cancer. Phys. Imaging Radiat. Oncol. 9, 69–76 (2019).
Viani, G. A. et al. Intensity-modulated radiotherapy reduces toxicity with similar biochemical control compared with 3-dimensional conformal radiotherapy for prostate cancer: a randomized clinical trial. Cancer 122, 2004–2011 (2016).
Michalski, J. M. et al. Preliminary toxicity analysis of 3-dimensional conformal radiation therapy versus intensity modulated radiation therapy on the high-dose arm of the Radiation Therapy Oncology Group 0126 prostate cancer trial. Int. J. Radiat. Oncol. Biol. Phys. 87, 932–938 (2013).
Kothari, G. et al. Stereotactic body radiotherapy for primary prostate cancer. Technol. Cancer Res. Treat. 17, 1533033818789633 (2018).
De Crevoisier, R. et al. Daily versus weekly prostate cancer image guided radiation therapy: phase 3 multicenter randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 102, 1420–1429 (2018).
Bottero, M. et al. Electromagnetic transponder localization and real-time tracking for prostate cancer radiation therapy: clinical impact of metallic hip prostheses. Pract. Radiat. Oncol. 10, e538–e542 (2020).
Oehler, C. et al. PTV margin definition in hypofractionated IGRT of localized prostate cancer using cone beam CT and orthogonal image pairs with fiducial markers. Radiat. Oncol. 9, 229 (2014).
Loblaw, D. et al. Comparison of biochemical and toxicity outcomes from a contemporaneous cohort study of low-risk prostate cancer treated with different radiation techniques. Int. J. Radiat. Oncol. Biol. Phys. 87, S26 (2013).
Katz, A. J., Santoro, M., Ashley, R., Diblasio, F. & Witten, M. Stereotactic body radiotherapy for organ-confined prostate cancer. BMC Urol. 10, 1 (2010).
McBride, S. M. et al. Hypofractionated stereotactic body radiotherapy in low-risk prostate adenocarcinoma: preliminary results of a multi-institutional phase 1 feasibility trial. Cancer 118, 3681–3690 (2012).
Alongi, F. et al. Linac based SBRT for prostate cancer in 5 fractions with VMAT and flattening filter free beams: preliminary report of a phase II study. Radiat. Oncol. 8, 171 (2013).
Boike, T. P. et al. Phase I dose-escalation study of stereotactic body radiation therapy for low- and intermediate-risk prostate cancer. J. Clin. Oncol. 29, 2020–2026 (2011).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03367702 (2021).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01794403 (2021).
Yong, J. H. E. et al. Cost-effectiveness of intensity-modulated radiotherapy in prostate cancer. Clin. Oncol. 24, 521–531 (2012).
Yong, J. H. E. et al. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario. Curr. Oncol. 23, 228–238 (2016).
Cooperberg, M. R. et al. Primary treatments for clinically localised prostate cancer: a comprehensive lifetime cost-utility analysis. BJU Int. 111, 437–450 (2013).
Hummel, S. R., Stevenson, M. D., Simpson, E. L. & Staffurth, J. A model of the cost-effectiveness of intensity-modulated radiotherapy in comparison with three-dimensional conformal radiotherapy for the treatment of localised prostate cancer. Clin. Oncol. 24, e159–e167 (2012).
Konski, A. et al. Using decision analysis to determine the cost-effectiveness of intensity-modulated radiation therapy in the treatment of intermediate risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 66, 408–415 (2006).
Konski, A. Cost effectiveness of prostate cancer radiotherapy. Transl. Androl. Urol. 7, 371–377 (2018).
Zemplenyi, A. T. et al. Cost-effectiveness analysis of intensity-modulated radiation therapy with normal and hypofractionated schemes for the treatment of localised prostate cancer. Eur J Cancer Care https://doi.org/10.1111/ecc.12430 (2018).
Voong, K. R. et al. Long-term economic value of hypofractionated prostate radiation: Secondary analysis of a randomized trial. Adv. Radiat. Oncol. 2, 249–258 (2017).
Sharieff, W. et al. The technique, resources and costs of stereotactic body radiotherapy of prostate cancer: a comparison of dose regimens and delivery systems. Technol. Cancer Res. Treat. 15, 171–178 (2016).
Sher, D. J., Parikh, R. B., Mays-Jackson, S. & Punglia, R. S. Cost-effectiveness analysis of SBRT versus IMRT for low-risk prostate cancer. Am. J. Clin. Oncol. 37, 215–221 (2014).
Hodges, J. C. et al. Cost-effectiveness analysis of stereotactic body radiation therapy versus intensity-modulated radiation therapy: an emerging initial radiation treatment option for organ-confined prostate cancer. J. Oncol. Pract. 8, e31s–e337 (2012).
Parthan, A. et al. Comparative cost-effectiveness of stereotactic body radiation therapy versus intensity-modulated and proton radiation therapy for localized prostate cancer. Front. Oncol. 2, 81 (2012).
Moore, A. et al. The financial impact of hypofractionated radiation for localized prostate cancer in the United States. J. Oncol. 2019, 8170428 (2019).
Das, S. et al. Comparison of image-guided radiotherapy technologies for prostate cancer. Am. J. Clin. Oncol. 37, 616–623 (2014).
Van Dyk, J., Zubizarreta, E. & Lievens, Y. Cost evaluation to optimise radiation therapy implementation in different income settings: a time-driven activity-based analysis. Radiother. Oncol. 125, 178–185 (2017).
da Saude, M. Plano de Expansão da Radioterapia no SUS. https://www.saude.gov.br/ciencia-e-tecnologia-e-complexo-industrial/complexo-industrial/plano-de-expansao-da-radioterapia-no-sus (2020).
Rosa, A. A. Status da Radioterapia Nacional e Desafios do Setor. (Sociedade Brasileira de Radioterapia, 2020).
Ige, T. A. et al. Surveying the challenges to improve linear accelerator-based radiation therapy in africa: a unique collaborative platform of all 28 african countries offering such treatment. Clin. Oncol. https://doi.org/10.1016/j.clon.2021.05.008 (2021).
Balogun, O., Rodin, D., Ngwa, W., Grover, S. & Longo, J. Challenges and prospects for providing radiation oncology services in Africa. Semin. Radiat. Oncol. 27, 184–188 (2017).
Van Der Giessen, P. H. et al. Multinational assessment of some operational costs of teletherapy. Radiother. Oncol. 71, 347–355 (2004).
Lariviere, M. J., Zhu, T. C. & Christodouleas, J. P. Important technical considerations for implementing the ASTRO/ASCO/AUA prostate cancer hypofractionated radiation guideline. Pract. Radiat. Oncol. 9, 197–199 (2019).
Barton, M. B., Zubizarreta, E. & Gospodarowicz, M. Radiotherapy in low- and middle-income countries. What can we do differently? Clin. Oncol. 29, 69–71 (2017).
El Saghir, N. S. et al. Impact of merit-based immigration policies on brain drain from low- and middle-income countries. JCO Glob. Oncol. 6, 185–189 (2020).
Rodin, D. et al. Hypofractionated radiotherapy in the real-world setting: an international ESTRO-GIRO survey. Radiother. Oncol. 157, 32–39 (2021).
Abdel-Wahab, M., Fidarova, E. & Polo, A. Global access to radiotherapy in low- and middle-income countries. Clin. Oncol. 29, 99–104 (2017).
Mayr, N. A. et al. International outreach: what is the responsibility of ASTRO and the major international radiation oncology societies? Int. J. Radiat. Oncol. Biol. Phys. 89, 481–484 (2014).
Ngwa, W. et al. Potential for information and communication technologies to catalyze global collaborations in radiation oncology. Int. J. Radiat. Oncol. Biol. Phys. 91, 444–447 (2015).
Scrase, C., Alonzi, R., El-Gayed, A., Shouman, T. H. & Hopkins, K. Radiotherapy training programs in lower- and middle-income countries (LMIC) of Africa: experience of the International Atomic Energy Agency (IAEA) in upskilling contouring competencies in disease specific sites - prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 108, e438–e439 (2020).
Elmore, S. N. C. et al. Global palliative radiotherapy: a framework to improve access in resource-constrained settings. Ann. Palliat. Med. 8, 274–284 (2019).
Ngwa, W. et al. Closing the cancer divide through ubuntu: information and communication technology-powered models for global radiation oncology. Int. J. Radiat. Oncol. Biol. Phys. 94, 440–449 (2016).
Efstathiou, J. A. et al. Addressing the growing cancer burden in the wake of the AIDS epidemic in Botswana: The BOTSOGO collaborative partnership. Int. J. Radiat. Oncol. Biol. Phys. 89, 468–475 (2014).
Fisher, B. J. et al. Radiation oncology in Africa: improving access to cancer care on the african continent. Int. J. Radiat. Oncol. Biol. Phys. 89, 458–461 (2014).
Global RT. Union for International Cancer Control & Global Task Force on Radiotherapy for Cancer Control. http://globalrt.org (2021).
Berlin, A. et al. Clinical application of a novel voxel- and machine learning-based automated planning method for prostate volumetric arc radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 102, e533 (2018).
Feng, M., Valdes, G., Dixit, N. & Solberg, T. D. Machine learning in radiation oncology: opportunities, requirements, and needs. Front. Oncol. 8, 110 (2018).
Chamunyonga, C., Edwards, C., Caldwell, P., Rutledge, P. & Burbery, J. The impact of artificial intelligence and machine learning in radiation therapy: considerations for future curriculum enhancement. J. Med. Imaging Radiat. Sci. 51, 214–220 (2020).
International Atomic Energy Association. Directory of radiotherapy centres. (IAEA, 2020).
Bentzen, S. M. et al. Towards evidence-based guidelines for radiotherapy infrastructure and staffing needs in Europe: the ESTRO QUARTS project. Radiother. Oncol. 75, 355–365 (2005).
The Royal College of Radiologists. Radiotherapy Dose Fractionation Third Edition (Royal College of Radiologists, 2019).
Badmus, T. A. et al. Burden of prostate cancer in southwestern Nigeria. Urology 76, 412–416 (2010).
Magnus, F. E. & Ofoha, C. G. Presentation, characteristics and co-morbidities of men with prostate cancer in Nigeria. J. Adv. Med. https://doi.org/10.9734/jammr/2019/v31i530297 (2019).
Irabor, O. C. et al. Can the adoption of hypofractionation guidelines expand global radiotherapy access? An analysis for breast and prostate radiotherapy. JCO Glob. Oncol. 6, 667–678 (2020).
Author information
Authors and Affiliations
Contributions
M.Y., A.G.G., N.M., V.F.B., L.C.M. and F.Y.M. researched data for the article. A.G.G., F.L.C., L.C.M. and F.Y.M. made substantial contributions to discussions of content. M.Y., A.G.G., F.L.C., N.M., V.F.B., H.P., A.B. and F.Y.M. wrote the article. All authors reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
H.P. declares consulting fees and conference support from Varian Medica Systems unrelated to the current work. F.L.C. declares grants from Boston Scientific and Sanofi, honoraria and conference support from Varian Medical Systems and participates on the data safety monitoring board of Abbvie and Bayer. The other authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Urology thanks S. Arcangeli, F. Alongi and the other, anonymous, reviewers for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
AFRONET: https://www.iaea.org/resources/webinar/africa-radiation-oncology-network-afronet
BOTSOGO: http://www.botsogo.org/
Global RT: http://globalrt.org/
Radiating Hope: https://www.radiatinghope.org/
Glossary
- Alpha/beta ratio
-
The ratio of linear and quadratic components that make up the model of cancer cell killing in response to radiotherapy; a measure of intrinsic sensitivity of a cell to radiation-induced death.
- Cone-beam CT
-
(CBCT). A medical imaging technique utilizing divergent X-ray beams to perform CT. Often used for onboard image-guided radiotherapy.
- Co-registered
-
Within treatment planning systems, the fusion or overlay of two separate images, often of different modalities (for example, MRI and CT) to aid treatment planning.
- Soft-tissue matching
-
During image-guided radiotherapy, matching is performed before each treatment fraction to ensure treatment accuracy. In prostate radiotherapy using CBCT, the soft tissue interface between the rectum and prostate (as opposed to bony landmarks) are used for set-up verification.
- Dose constraint points
-
Accepted dosimetric values to ensure the safety of normal tissues. Often, these constraints are expressed as a maximal dose limit to a specified volume of a normal tissue.
- Megavoltage photons
-
Megavoltage is the most common energy level used in modern linear accelerators for the treatment of most cancers owing to its deep penetration. Other photon energies, such as kilovoltage or orthovoltage, can be used for superficial cancers such as skin cancers.
- Incremental cost-effectiveness ratio
-
(ICER). A summary measure representing the economic value of an intervention in comparison to an alternative (comparator). The ICER is usually expressed as a monetary amount per quality-adjusted life year.
- Quality-adjusted life year
-
(QALY). A measure of disease burden that accounts for the quality and quantity of life lived. QALY scores range from 1 (a year lived in perfect health) to 0 (death). Comorbid conditions will result in a QALY measure that is intermediate to these values.
Rights and permissions
About this article
Cite this article
Yan, M., Gouveia, A.G., Cury, F.L. et al. Practical considerations for prostate hypofractionation in the developing world. Nat Rev Urol 18, 669–685 (2021). https://doi.org/10.1038/s41585-021-00498-6
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41585-021-00498-6
This article is cited by
-
Genomic and transcriptomic profiling of radioresistant prostate and head and neck cancers implicate a BAHD1-dependent modification of DNA damage at the heterochromatin
Cell Death & Disease (2024)
-
A randomized phase II trial of MR-guided prostate stereotactic body radiotherapy administered in 5 or 2 fractions for localized prostate cancer (FORT)
BMC Cancer (2023)
-
Preoperative hypofractionated radiotherapy for soft tissue sarcomas: a systematic review
Radiation Oncology (2022)
-
A global approach to improving penile cancer care
Nature Reviews Urology (2022)
-
Mortality and biochemical recurrence after surgery, brachytherapy, or external radiotherapy for localized prostate cancer: a 10-year follow-up cohort study
Scientific Reports (2022)


