Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Practical considerations for prostate hypofractionation in the developing world

Abstract

External beam radiotherapy is an effective curative treatment option for localized prostate cancer, the most common cancer in men worldwide. However, conventionally fractionated courses of curative external beam radiotherapy are usually 8–9 weeks long, resulting in a substantial burden to patients and the health-care system. This problem is exacerbated in low-income and middle-income countries where health-care resources might be scarce and patient funds limited. Trials have shown a clinical equipoise between hypofractionated schedules of radiotherapy and conventionally fractionated treatments, with the advantage of drastically shortening treatment durations with the use of hypofractionation. The hypofractionated schedules are supported by modern consensus guidelines for implementation in clinical practice. Furthermore, several economic evaluations have shown improved cost effectiveness of hypofractionated therapy compared with conventional schedules. However, these techniques demand complex infrastructure and advanced personnel training. Thus, a number of practical considerations must be borne in mind when implementing hypofractionation in low-income and middle-income countries, but the potential gain in the treatment of this patient population is substantial.

Key points

  • The global burden of prostate cancer is increasing and prostate cancer is becoming a major source of health-care burden in low-income and middle-income countries (LMICs).

  • Radiotherapy is an essential treatment modality in the management of prostate cancer. However, radiotherapy resources are lacking in LMICs, resulting in excess morbidity and mortality.

  • Hypofractionated radiotherapy schedules offer an opportunity to maintain excellent treatment outcomes while shortening curative radiotherapy courses. This approach expands the treatment capacity and could improve crucial access in communities with limited radiotherapy resources.

  • Initial investments are required for technological upgrades, such as intensity-modulated radiotherapy and image-guided radiotherapy, as well as in specialized training in order to optimally provide hypofractionated treatment. Discussion amongst government agencies and device manufacturers is essential to lower these costs.

  • Personnel training and access to external consultation are critical resources for developing radiotherapy centres. Information and communication technologies enable remote guidance between developing and developed radiotherapy centres.

  • In the long term, hypofractionation programmes result in long-term cost savings and simultaneously expand patient access to a curative modality in the management of prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Isodose map of moderate hypofractionation plans.
Fig. 2: Cumulative dose volume histograms (DVH) for moderate hypofractionation. Cumulative DVHs for the planning target volume (red) and rectum (brown) for the 3D treatment plan (triangle) and IMRT (square) plans from Fig. 1 are depicted.
Fig. 3: Isodose map of ultrahypofractionation plans.
Fig. 4: Cumulative dose volume histograms (DVH) for ultrahypofractionation. Cumulative DVHs for the planning target volume (red) and rectum (brown) for the non-image-guided radiotherapy (triangle) and image-guided radiotherapy (square) plans from Fig. 3.

Similar content being viewed by others

References

  1. Global Burden of Disease Cancer Collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol. 5, 1749–1768 (2019).

    Article  PubMed Central  Google Scholar 

  2. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  3. Wong, M. C. S. et al. Global incidence and mortality for prostate cancer: analysis of temporal patterns and trends in 36 Countries. Eur. Urol. 70, 862–874 (2016).

    Article  PubMed  Google Scholar 

  4. Thompson, S. R. et al. Estimation of the optimal utilisation rates of radical prostatectomy, external beam radiotherapy and brachytherapy in the treatment of prostate cancer by a review of clinical practice guidelines. Radiother. Oncol. 118, 118–121 (2016).

    Article  PubMed  Google Scholar 

  5. Hamdy, F. C. et al. 10-Year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N. Engl. J. Med. 375, 1415–1424 (2016).

    Article  PubMed  Google Scholar 

  6. Donovan, J. L. et al. Patient-reported outcomes after monitoring, surgery, or radiotherapy for prostate cancer. N. Engl. J. Med. 375, 1425–1437 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Lane, J. A. et al. Active monitoring, radical prostatectomy, or radiotherapy for localised prostate cancer: study design and diagnostic and baseline results of the ProtecT randomised phase 3 trial. Lancet Oncol. 15, 1109–1118 (2014).

    Article  PubMed  Google Scholar 

  8. Pasalic, D. et al. Dose escalation for prostate adenocarcinoma: a long-term update on the outcomes of a phase 3, single institution randomized clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 104, 790–797 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Michalski, J. M. et al. Effect of standard vs dose-escalated radiation therapy for patients with intermediate-risk prostate cancer: the NRG Oncology RTOG 0126 randomized clinical trial. JAMA Oncol. 4, e180039 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Peeters, S. T. et al. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J. Clin. Oncol. 24, 1990–1996 (2006).

    Article  PubMed  Google Scholar 

  11. Wortel, R. C. et al. Late side effects after image guided intensity modulated radiation therapy compared to 3D-conformal radiation therapy for prostate cancer: results from 2 prospective cohorts. Int. J. Radiat. Oncol. Biol. Phys. 95, 680–689 (2016).

    Article  PubMed  Google Scholar 

  12. Pollack, A. et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J. Clin. Oncol. 31, 3860–3868 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hoffman, K. E. et al. Risk of late toxicity in men receiving dose-escalated hypofractionated intensity modulated prostate radiation therapy: results from a randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 88, 1074–1084 (2014).

    Article  PubMed  Google Scholar 

  14. Lee, W. R. et al. Randomized phase III noninferiority study comparing two radiotherapy fractionation schedules in patients with low-risk prostate cancer. J. Clin. Oncol. 34, 2325–2332 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Aluwini, S. et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): late toxicity results from a randomised, non-inferiority, phase 3 trial. Lancet Oncol. 17, 464–474 (2016).

    Article  PubMed  Google Scholar 

  16. Dearnaley, D. et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 17, 1047–1060 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arcangeli, G. et al. Moderate hypofractionation in high-risk, organ-confined prostate cancer: final results of a phase III randomized trial. J. Clin. Oncol. 35, 1891–1897 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Catton, C. N. et al. Randomized trial of a hypofractionated radiation regimen for the treatment of localized prostate cancer. J. Clin. Oncol. 35, 1884–1890 (2017).

    Article  PubMed  CAS  Google Scholar 

  19. Brand, D. H. et al. Intensity-modulated fractionated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): acute toxicity findings from an international, randomised, open-label, phase 3, non-inferiority trial. Lancet Oncol. 20, 1531–1543 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Widmark, A. et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet 394, 385–395 (2019).

    Article  PubMed  Google Scholar 

  21. Wang, J., Guerrero, M. & Li, X. How low is the alpha/beta ratio for prostate cancer? Int. J. Radiat. Oncol. Biol. Phys. 55, 194–203 (2003).

    Article  PubMed  Google Scholar 

  22. Morgan, S. C. et al. Hypofractionated radiation therapy for localized prostate cancer: an ASTRO, ASCO, and AUA evidence-based guideline. J. Clin. Oncol. 36, JCO1801097 (2018).

    Google Scholar 

  23. Jaffray, D. A. & Gospodarowicz, M. K. in Disease Control Priorities 3rd edn, Vol 3 (eds Gelband, H. & Jha, P.) Ch.14 (The World Bank, 2015).

  24. Delaney, G., Jacob, S. & Barton, M. Estimating the optimal external-beam radiotherapy utilization rate for genitourinary malignancies. Cancer 103, 462–473 (2005).

    Article  PubMed  Google Scholar 

  25. Barton, M. B. et al. Estimating the demand for radiotherapy from the evidence: a review of changes from 2003 to 2012. Radiother. Oncol. 112, 140–144 (2014).

    Article  PubMed  Google Scholar 

  26. Tyldesley, S. et al. Estimating the Need for radiotherapy for patients with prostate, breast, and lung cancers: verification of model estimates of need with radiotherapy utilization data from British Columbia. Int. J. Radiat. Oncol. Biol. Phys. 79, 1507–1515 (2011).

    Article  PubMed  Google Scholar 

  27. Zubizarreta, E. H., Fidarova, E., Healy, B. & Rosenblatt, E. Need for radiotherapy in low and middle income countries — the silent crisis continues. Clin. Oncol. 27, 107–114 (2015).

    Article  CAS  Google Scholar 

  28. Abdel-Wahab, M. et al. Status of radiotherapy resources in Africa: an International Atomic Energy Agency analysis. Lancet Oncol. 14, e168–e175 (2013).

    Article  PubMed  Google Scholar 

  29. Datta, N. R., Samiei, M. & Bodis, S. Radiation therapy infrastructure and human resources in low- and middle-income countries: present status and projections for 2020. Int. J. Radiat. Oncol. Biol. Phys. 89, 448–457 (2014).

    Article  PubMed  Google Scholar 

  30. Jaffray, D. A. & Gospodarowicz, M. Bringing global access to radiation therapy: time for a change in approach. Int. J. Radiat. Oncol. Biol. Phys. 89, 446–447 (2014).

    Article  PubMed  Google Scholar 

  31. Mendez, L. C., Moraes, F. Y., Fernandes, G. D. S. & Weltman, E. Cancer deaths due to lack of universal access to radiotherapy in the Brazilian public health system. Clin. Oncol. 30, e29–e36 (2018).

    Article  CAS  Google Scholar 

  32. Ministerio de Saude, Secretaria de Atenção Especializada á Saúde; Departamento de Atenção Especializada e Temática. Censo Radioterapia https://portalarquivos.saude.gov.br/images/pdf/2019/julho/26/paper-radioterapia-ALT3.pdf (2019).

  33. Olsson, L. I., Granstrom, F. & Glimelius, B. Socioeconomic inequalities in the use of radiotherapy for rectal cancer: a nationwide study. Eur. J. Cancer 47, 347–353 (2011).

    Article  PubMed  CAS  Google Scholar 

  34. Aneja, S. et al. Geographic analysis of the radiation oncology workforce. Int. J. Radiat. Oncol. Biol. Phys. 82, 1723–1729 (2012).

    Article  PubMed  Google Scholar 

  35. Aneja, S., Pratiwadi, R. R. & Yu, J. B. Hypofractionated radiation therapy for prostate cancer: risks and potential benefits in a fiscally conservative health care system. Oncology 26, 512–518 (2012).

    PubMed  Google Scholar 

  36. Plataniotis, G. A. et al. A short radiotherapy course for locally advanced non-small cell lung cancer (NSCLC): effective palliation and patients’ convenience. Lung Cancer 35, 203–207 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. Atun, R. et al. Expanding global access to radiotherapy. Lancet Oncol. 16, 1153–1186 (2015).

    Article  PubMed  Google Scholar 

  38. Incrocci, L. et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 17, 1061–1069 (2016).

    Article  PubMed  Google Scholar 

  39. Aluwini, S. et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): acute toxicity results from a randomised non-inferiority phase 3 trial. Lancet Oncol. 16, 274–283 (2015).

    Article  PubMed  Google Scholar 

  40. Brenner, D. J. & Hall, E. J. Are we now able to define guidelines for moderate hypofractionation in prostate cancer radiation therapy? Int. J. Radiat. Oncol. Biol. Phys. 100, 871–873 (2018).

    Article  PubMed  Google Scholar 

  41. Hickey, B. E., James, M. L., Daly, T., Soh, F. Y. & Jeffery, M. Hypofractionation for clinically localized prostate cancer. Cochrane Database Syst. Rev. 9, CD011462 (2019).

    PubMed  Google Scholar 

  42. National Comprehensive Cancer Network. Prostate Cancer https://www.nccn.org/professionals/physician_gls/pdf/prostate_blocks.pdf (2020).

  43. Gomez, C. L. et al. Dosimetric parameters predict short-term quality-of-life outcomes for patients receiving stereotactic body radiation therapy for prostate cancer. Pract. Radiat. Oncol. 5, 257–262 (2015).

    Article  PubMed  Google Scholar 

  44. Jackson, W. C. et al. Stereotactic body radiation therapy for localized prostate cancer: a systematic review and meta-analysis of over 6,000 patients treated on prospective studies. Int. J. Radiat. Oncol. Biol. Phys. 104, 778–789 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bolla, M. et al. Duration of androgen suppression in the treatment of prostate cancer. N. Engl. J. Med. 360, 2516–2527 (2009).

    Article  PubMed  CAS  Google Scholar 

  46. Hanks, G. E. et al. Phase III trial of long-term adjuvant androgen deprivation after neoadjuvant hormonal cytoreduction and radiotherapy in locally advanced carcinoma of the prostate: the radiation therapy oncology group protocol 92–02. J. Clin. Oncol. 21, 3972–3978 (2003).

    Article  PubMed  CAS  Google Scholar 

  47. Denham, J. W. et al. Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): 10-year results from a randomised, phase 3, factorial trial. Lancet Oncol. 20, 267–281 (2019).

    Article  PubMed  CAS  Google Scholar 

  48. Nabid, A. et al. Duration of androgen deprivation therapy in high-risk prostate cancer: a randomized phase III trial. Eur. Urol. 74, 432–441 (2018).

    Article  PubMed  CAS  Google Scholar 

  49. Zapatero, A. et al. High-dose radiotherapy with short-term or long-term androgen deprivation in localised prostate cancer (DART01/05 GICOR): a randomised, controlled, phase 3 trial. Lancet Oncol. 16, 320–327 (2015).

    Article  PubMed  CAS  Google Scholar 

  50. D’Amico, A. V., Chen, M.-H., Renshaw, A. A., Loffredo, M. & Kantoff, P. W. Androgen suppression and radiation vs radiation alone for prostate cancer. JAMA 299, 289–295 (2008).

    Article  PubMed  Google Scholar 

  51. Jones, C. U. et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N. Engl. J. Med. 365, 107–118 (2011).

    Article  PubMed  CAS  Google Scholar 

  52. Denham, J. W. et al. Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol. 12, 451–459 (2011).

    Article  PubMed  CAS  Google Scholar 

  53. Sanda, M. G. et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part I: risk stratification, shared decision making, and care options. J. Urol. 199, 683–690 (2018).

    Article  PubMed  Google Scholar 

  54. Patel, S. A. et al. Stereotactic body radiotherapy versus conventional/moderate fractionated radiation therapy with androgen deprivation therapy for unfavorable risk prostate cancer. Radiat. Oncol. 15, 217 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Macias, V. A. & Barrera-Mellado, I. Ultra-hypofractionated radiation therapy for unfavourable intermediate-risk and high-risk prostate cancer is safe and effective: 5-year outcomes of a phase II trial. BJU Int. 125, 215–225 (2020).

    Article  PubMed  Google Scholar 

  56. Callan, L. et al. A phase I/II trial of fairly brief androgen suppression and stereotactic radiation therapy for high-risk prostate cancer (FASTR-2): preliminary results and toxicity analysis. Adv. Radiat. Oncol. 4, 668–673 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. van Dams, R. et al. Stereotactic body radiotherapy for high-risk localized CARcinoma of the Prostate (SHARP) consortium: analysis of 344 prospectively treated patients. Int. J. Radiat. Oncol. Biol. Phys. 110, 731–737 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zaorsky, N. G. et al. Prostate cancer radiation therapy recommendations in response to COVID-19. Adv. Radiat. Oncol. 5, 659–665 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mcnair, H. A. et al. A systematic review: effectiveness of rectal emptying preparation in prostate cancer patients. Pract. Radiat. Oncol. 4, 437–447 (2014).

    Article  PubMed  Google Scholar 

  60. Heemsbergen, W. D. et al. Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: results from the Dutch trial of 68 GY versus 78 Gy. Int. J. Radiat. Oncol. Biol. Phys. 67, 1418–1424 (2007).

    Article  PubMed  CAS  Google Scholar 

  61. De Crevoisier, R. et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 62, 965–973 (2005).

    Article  PubMed  Google Scholar 

  62. Moiseenko, V., Liu, M., Kristensen, S., Gelowitz, G. & Berthelet, E. Effect of bladder filling on doses to prostate and organs at risk: a treatment planning study. J. Appl. Clin. Med. Phys. 8, 55–68 (2006).

    Article  PubMed  Google Scholar 

  63. Ali, A. N. et al. Impact of magnetic resonance imaging on computed tomography-based treatment planning and acute toxicity for prostate cancer patients treated with intensity modulated radiation therapy. Pract. Radiat. Oncol. 3, e1–e9 (2013).

    Article  PubMed  Google Scholar 

  64. Buyyounouski, M. K. et al. Intensity-modulated radiotherapy with MRI simulation to reduce doses received by erectile tissue during prostate cancer treatment. Int. J. Radiat. Oncol. Biol. Phys. 58, 743–749 (2004).

    Article  PubMed  Google Scholar 

  65. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03525262 (2021).

  66. Patel, D., Tan, A., Brown, A. & Pain, T. Absence of prostate oedema obviates the need for delay between fiducial marker insertion and radiotherapy simulation. J. Med. Radiat. Sci. 67, 302–309 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Havnen, A., Liauw, S., Pelizzari, C. & Yenice, K. Image guided radiotherapy to the prostate after implantation of gold fiducials: is it necessary to wait 7 days for planning? Int. J. Radiat. Oncol. Biol. Phys. 72, S565–S566 (2008).

    Article  Google Scholar 

  68. Linam, J. M., Yang, L. X. & Lee, J. W. No need to wait: fiducial migration in immediate versus delayed simulation for prostate IGRT. Int. J. Radiat. Oncol. Biol. Phys. 90, S824 (2014).

    Article  Google Scholar 

  69. Moseley, D. J. et al. Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 67, 942–953 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dehnad, H. et al. Clinical feasibility study for the use of implanted gold seeds in the prostate as reliable positioning markers during megavoltage irradiation. Radiother. Oncol. 67, 295–302 (2003).

    Article  PubMed  Google Scholar 

  71. Iocolano, M. et al. Prostate fiducial marker placement in patients on anticoagulation: feasibility prior to prostate SBRT. Front. Oncol. 10, 203 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gill, S. et al. Patient-reported complications from fiducial marker implantation for prostate image-guided radiotherapy. Br. J. Radiol. 85, 1011–1017 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Njeh, C. F., Parker, B. C. & Orton, C. G. Implanted fiducial markers are no longer needed for prostate cancer radiotherapy. Med. Phys. 44, 6113–6116 (2017).

    Article  PubMed  Google Scholar 

  74. Tøndel, H. et al. Radiotherapy for prostate cancer – does daily image guidance with tighter margins improve patient reported outcomes compared to weekly orthogonal verified irradiation? Results from a randomized controlled trial. Radiother. Oncol. 126, 229–235 (2018).

    Article  PubMed  Google Scholar 

  75. Ruggieri, R. et al. Volumetric-modulated arc stereotactic body radiotherapy for prostate cancer: dosimetric impact of an increased near-maximum target dose and of a rectal spacer. Br. J. Radiol. 88, 20140736 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zelefsky, M. J. et al. Early tolerance and tumor control outcomes with high-dose ultrahypofractionated radiation therapy for prostate cancer. Eur. Urol. Oncol. 3, 748–755 (2020).

    Article  PubMed  Google Scholar 

  77. Levy, J. F. et al. Evaluating the cost-effectiveness of hydrogel rectal spacer in prostate cancer radiation therapy. Pract. Radiat. Oncol. 9, e172–e179 (2019).

    Article  PubMed  Google Scholar 

  78. Hutchinson, R. C., Sundaram, V., Folkert, M. & Lotan, Y. Decision analysis model evaluating the cost of a temporary hydrogel rectal spacer before prostate radiation therapy to reduce the incidence of rectal complications. Urol. Oncol. 34, 291.e19-26 (2016).

    Article  PubMed  Google Scholar 

  79. Edel, A. SpaceOAR Hydrogel — is the Difference Worthwhile? https://prostatecancerinfolink.net/2017/01/10/spaceoar-hydrogel-is-the-difference-worthwhile/#::text=Is%20it%20worthwhile%20to%20treat,of%20bothersome%20acute%20rectal%20symptoms (2017).

  80. Mariados, N. et al. Hydrogel spacer prospective multicenter randomized controlled pivotal trial: dosimetric and clinical effects of perirectal spacer application in men undergoing prostate image guided intensity modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 92, 971–977 (2015).

    Article  PubMed  Google Scholar 

  81. Hall, W. A. et al. Considering benefit and risk before routinely recommending SpaceOAR. Lancet Oncol. 22, 11–13 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Salembier, C. et al. ESTRO ACROP consensus guideline on CT- and MRI-based target volume delineation for primary radiation therapy of localized prostate cancer. Radiother. Oncol. 127, 49–61 (2018).

    Article  PubMed  Google Scholar 

  83. Chaurasia, A. R. et al. Evaluating the potential benefit of reduced planning target volume margins for low and intermediate risk patients with prostate cancer using real-time electromagnetic tracking. Adv. Radiat. Oncol. 3, 630–638 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Norkus, D. et al. A randomized trial comparing hypofractionated and conventionally fractionated three-dimensional external-beam radiotherapy for localized prostate adenocarcinoma. Strahlenther. Onkol. 185, 715–721 (2009).

    Article  PubMed  Google Scholar 

  85. Norkus, D. et al. A randomized hypofractionation dose escalation trial for high risk prostate cancer patients: interim analysis of acute toxicity and quality of life in 124 patients. Radiat. Oncol. 8, 206 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sanguineti, G. et al. Macroscopic hematuria after conventional or hypofractionated radiation therapy: results from a prospective phase 3 study. Int. J. Radiat. Oncol. Biol. Phys. 96, 304–312 (2016).

    Article  PubMed  Google Scholar 

  87. Hall, W. A. et al. NRG oncology updated international consensus atlas on pelvic lymph node volumes for intact and post-operative prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 109, 174–185 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sarfaraz, M. CyberKnife® robotic arm stereotactic radiosurgery. J. Am. Coll. Radiol. 4, 563–565 (2007).

    Article  PubMed  Google Scholar 

  89. Alongi, F., Fiorentino, A. & De Bari, B. SBRT and extreme hypofractionation: a new era in prostate cancer treatments? Rep. Pract. Oncol. Radiother. 20, 411–416 (2015).

    Article  PubMed  Google Scholar 

  90. King, C. R. et al. Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials. Radiother. Oncol. 109, 217–221 (2013).

    Article  PubMed  Google Scholar 

  91. Saul, S. Geography has a role in Medicare cancer coverage. The New York Times https://www.nytimes.com/2008/12/17/health/policy/17knife.html (2008).

  92. Avkshtol, V. et al. A comparison of robotic arm versus gantry linear accelerator stereotactic body radiation therapy for prostate cancer. Res. Rep. Urol. 8, 145–158 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Pawlicki, T. et al. Investigation of LINAC-based image-guided hypofractionated prostate radiotherapy. Med. Dosim. 32, 71–79 (2007).

    Article  PubMed  Google Scholar 

  94. Scobioala, S. et al. A treatment planning study comparing IMRT techniques and cyber knife for stereotactic body radiotherapy of low-risk prostate carcinoma. Radiat. Oncol. 14, 143 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Pathmanathan, A. U. et al. Magnetic resonance imaging-guided adaptive radiation therapy: a “Game Changer” for prostate treatment? Int. J. Radiat. Oncol. Biol. Phys. 100, 361–373 (2018).

    Article  PubMed  Google Scholar 

  96. Alongi, F. et al. 1.5T MR-guided and daily adapted SBRT for prostate cancer: feasibility, preliminary clinical tolerability, quality of life and patient-reported outcomes during treatment. Radiat. Oncol. 15, 69 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Corradini, S. et al. MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiat. Oncol. 14, 92 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Lagendijk, J. J. W. et al. MRI/LINAC integration. Radiother. Oncol. 86, 25–29 (2008).

    Article  PubMed  Google Scholar 

  99. Eccles, C. L. & Campbell, M. Keeping up with the hybrid magnetic resonance linear accelerators: how do radiation therapists stay current in the era of hybrid technologies? J. Med. Imaging Radiat. Sci. 50, 195–198 (2019).

    Article  PubMed  Google Scholar 

  100. Morrison, A. Magnetic resonance guided radiotherapy: MR-simulation and MR-LINAC (CADTH, 2020).

  101. Tetar, S. U. et al. Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy for localized prostate cancer. Phys. Imaging Radiat. Oncol. 9, 69–76 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Viani, G. A. et al. Intensity-modulated radiotherapy reduces toxicity with similar biochemical control compared with 3-dimensional conformal radiotherapy for prostate cancer: a randomized clinical trial. Cancer 122, 2004–2011 (2016).

    Article  PubMed  Google Scholar 

  103. Michalski, J. M. et al. Preliminary toxicity analysis of 3-dimensional conformal radiation therapy versus intensity modulated radiation therapy on the high-dose arm of the Radiation Therapy Oncology Group 0126 prostate cancer trial. Int. J. Radiat. Oncol. Biol. Phys. 87, 932–938 (2013).

    Article  PubMed  Google Scholar 

  104. Kothari, G. et al. Stereotactic body radiotherapy for primary prostate cancer. Technol. Cancer Res. Treat. 17, 1533033818789633 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. De Crevoisier, R. et al. Daily versus weekly prostate cancer image guided radiation therapy: phase 3 multicenter randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 102, 1420–1429 (2018).

    Article  PubMed  Google Scholar 

  106. Bottero, M. et al. Electromagnetic transponder localization and real-time tracking for prostate cancer radiation therapy: clinical impact of metallic hip prostheses. Pract. Radiat. Oncol. 10, e538–e542 (2020).

    Article  PubMed  Google Scholar 

  107. Oehler, C. et al. PTV margin definition in hypofractionated IGRT of localized prostate cancer using cone beam CT and orthogonal image pairs with fiducial markers. Radiat. Oncol. 9, 229 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Loblaw, D. et al. Comparison of biochemical and toxicity outcomes from a contemporaneous cohort study of low-risk prostate cancer treated with different radiation techniques. Int. J. Radiat. Oncol. Biol. Phys. 87, S26 (2013).

    Article  Google Scholar 

  109. Katz, A. J., Santoro, M., Ashley, R., Diblasio, F. & Witten, M. Stereotactic body radiotherapy for organ-confined prostate cancer. BMC Urol. 10, 1 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. McBride, S. M. et al. Hypofractionated stereotactic body radiotherapy in low-risk prostate adenocarcinoma: preliminary results of a multi-institutional phase 1 feasibility trial. Cancer 118, 3681–3690 (2012).

    Article  PubMed  Google Scholar 

  111. Alongi, F. et al. Linac based SBRT for prostate cancer in 5 fractions with VMAT and flattening filter free beams: preliminary report of a phase II study. Radiat. Oncol. 8, 171 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Boike, T. P. et al. Phase I dose-escalation study of stereotactic body radiation therapy for low- and intermediate-risk prostate cancer. J. Clin. Oncol. 29, 2020–2026 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  113. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03367702 (2021).

  114. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01794403 (2021).

  115. Yong, J. H. E. et al. Cost-effectiveness of intensity-modulated radiotherapy in prostate cancer. Clin. Oncol. 24, 521–531 (2012).

    Article  CAS  Google Scholar 

  116. Yong, J. H. E. et al. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario. Curr. Oncol. 23, 228–238 (2016).

    Article  Google Scholar 

  117. Cooperberg, M. R. et al. Primary treatments for clinically localised prostate cancer: a comprehensive lifetime cost-utility analysis. BJU Int. 111, 437–450 (2013).

    Article  PubMed  Google Scholar 

  118. Hummel, S. R., Stevenson, M. D., Simpson, E. L. & Staffurth, J. A model of the cost-effectiveness of intensity-modulated radiotherapy in comparison with three-dimensional conformal radiotherapy for the treatment of localised prostate cancer. Clin. Oncol. 24, e159–e167 (2012).

    Article  CAS  Google Scholar 

  119. Konski, A. et al. Using decision analysis to determine the cost-effectiveness of intensity-modulated radiation therapy in the treatment of intermediate risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 66, 408–415 (2006).

    Article  PubMed  Google Scholar 

  120. Konski, A. Cost effectiveness of prostate cancer radiotherapy. Transl. Androl. Urol. 7, 371–377 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Zemplenyi, A. T. et al. Cost-effectiveness analysis of intensity-modulated radiation therapy with normal and hypofractionated schemes for the treatment of localised prostate cancer. Eur J Cancer Care https://doi.org/10.1111/ecc.12430 (2018).

    Article  Google Scholar 

  122. Voong, K. R. et al. Long-term economic value of hypofractionated prostate radiation: Secondary analysis of a randomized trial. Adv. Radiat. Oncol. 2, 249–258 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sharieff, W. et al. The technique, resources and costs of stereotactic body radiotherapy of prostate cancer: a comparison of dose regimens and delivery systems. Technol. Cancer Res. Treat. 15, 171–178 (2016).

    Article  PubMed  Google Scholar 

  124. Sher, D. J., Parikh, R. B., Mays-Jackson, S. & Punglia, R. S. Cost-effectiveness analysis of SBRT versus IMRT for low-risk prostate cancer. Am. J. Clin. Oncol. 37, 215–221 (2014).

    Article  PubMed  Google Scholar 

  125. Hodges, J. C. et al. Cost-effectiveness analysis of stereotactic body radiation therapy versus intensity-modulated radiation therapy: an emerging initial radiation treatment option for organ-confined prostate cancer. J. Oncol. Pract. 8, e31s–e337 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Parthan, A. et al. Comparative cost-effectiveness of stereotactic body radiation therapy versus intensity-modulated and proton radiation therapy for localized prostate cancer. Front. Oncol. 2, 81 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Moore, A. et al. The financial impact of hypofractionated radiation for localized prostate cancer in the United States. J. Oncol. 2019, 8170428 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Das, S. et al. Comparison of image-guided radiotherapy technologies for prostate cancer. Am. J. Clin. Oncol. 37, 616–623 (2014).

    Article  PubMed  Google Scholar 

  129. Van Dyk, J., Zubizarreta, E. & Lievens, Y. Cost evaluation to optimise radiation therapy implementation in different income settings: a time-driven activity-based analysis. Radiother. Oncol. 125, 178–185 (2017).

    Article  PubMed  Google Scholar 

  130. da Saude, M. Plano de Expansão da Radioterapia no SUS. https://www.saude.gov.br/ciencia-e-tecnologia-e-complexo-industrial/complexo-industrial/plano-de-expansao-da-radioterapia-no-sus (2020).

  131. Rosa, A. A. Status da Radioterapia Nacional e Desafios do Setor. (Sociedade Brasileira de Radioterapia, 2020).

  132. Ige, T. A. et al. Surveying the challenges to improve linear accelerator-based radiation therapy in africa: a unique collaborative platform of all 28 african countries offering such treatment. Clin. Oncol. https://doi.org/10.1016/j.clon.2021.05.008 (2021).

    Article  Google Scholar 

  133. Balogun, O., Rodin, D., Ngwa, W., Grover, S. & Longo, J. Challenges and prospects for providing radiation oncology services in Africa. Semin. Radiat. Oncol. 27, 184–188 (2017).

    Article  PubMed  Google Scholar 

  134. Van Der Giessen, P. H. et al. Multinational assessment of some operational costs of teletherapy. Radiother. Oncol. 71, 347–355 (2004).

    Article  Google Scholar 

  135. Lariviere, M. J., Zhu, T. C. & Christodouleas, J. P. Important technical considerations for implementing the ASTRO/ASCO/AUA prostate cancer hypofractionated radiation guideline. Pract. Radiat. Oncol. 9, 197–199 (2019).

    Article  PubMed  Google Scholar 

  136. Barton, M. B., Zubizarreta, E. & Gospodarowicz, M. Radiotherapy in low- and middle-income countries. What can we do differently? Clin. Oncol. 29, 69–71 (2017).

    Article  CAS  Google Scholar 

  137. El Saghir, N. S. et al. Impact of merit-based immigration policies on brain drain from low- and middle-income countries. JCO Glob. Oncol. 6, 185–189 (2020).

    Article  PubMed  Google Scholar 

  138. Rodin, D. et al. Hypofractionated radiotherapy in the real-world setting: an international ESTRO-GIRO survey. Radiother. Oncol. 157, 32–39 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Abdel-Wahab, M., Fidarova, E. & Polo, A. Global access to radiotherapy in low- and middle-income countries. Clin. Oncol. 29, 99–104 (2017).

    Article  CAS  Google Scholar 

  140. Mayr, N. A. et al. International outreach: what is the responsibility of ASTRO and the major international radiation oncology societies? Int. J. Radiat. Oncol. Biol. Phys. 89, 481–484 (2014).

    Article  PubMed  Google Scholar 

  141. Ngwa, W. et al. Potential for information and communication technologies to catalyze global collaborations in radiation oncology. Int. J. Radiat. Oncol. Biol. Phys. 91, 444–447 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Scrase, C., Alonzi, R., El-Gayed, A., Shouman, T. H. & Hopkins, K. Radiotherapy training programs in lower- and middle-income countries (LMIC) of Africa: experience of the International Atomic Energy Agency (IAEA) in upskilling contouring competencies in disease specific sites - prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 108, e438–e439 (2020).

    Article  Google Scholar 

  143. Elmore, S. N. C. et al. Global palliative radiotherapy: a framework to improve access in resource-constrained settings. Ann. Palliat. Med. 8, 274–284 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ngwa, W. et al. Closing the cancer divide through ubuntu: information and communication technology-powered models for global radiation oncology. Int. J. Radiat. Oncol. Biol. Phys. 94, 440–449 (2016).

    Article  PubMed  Google Scholar 

  145. Efstathiou, J. A. et al. Addressing the growing cancer burden in the wake of the AIDS epidemic in Botswana: The BOTSOGO collaborative partnership. Int. J. Radiat. Oncol. Biol. Phys. 89, 468–475 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Fisher, B. J. et al. Radiation oncology in Africa: improving access to cancer care on the african continent. Int. J. Radiat. Oncol. Biol. Phys. 89, 458–461 (2014).

    Article  PubMed  Google Scholar 

  147. Global RT. Union for International Cancer Control & Global Task Force on Radiotherapy for Cancer Control. http://globalrt.org (2021).

  148. Berlin, A. et al. Clinical application of a novel voxel- and machine learning-based automated planning method for prostate volumetric arc radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 102, e533 (2018).

    Article  Google Scholar 

  149. Feng, M., Valdes, G., Dixit, N. & Solberg, T. D. Machine learning in radiation oncology: opportunities, requirements, and needs. Front. Oncol. 8, 110 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Chamunyonga, C., Edwards, C., Caldwell, P., Rutledge, P. & Burbery, J. The impact of artificial intelligence and machine learning in radiation therapy: considerations for future curriculum enhancement. J. Med. Imaging Radiat. Sci. 51, 214–220 (2020).

    Article  PubMed  Google Scholar 

  151. International Atomic Energy Association. Directory of radiotherapy centres. (IAEA, 2020).

  152. Bentzen, S. M. et al. Towards evidence-based guidelines for radiotherapy infrastructure and staffing needs in Europe: the ESTRO QUARTS project. Radiother. Oncol. 75, 355–365 (2005).

    Article  PubMed  Google Scholar 

  153. The Royal College of Radiologists. Radiotherapy Dose Fractionation Third Edition (Royal College of Radiologists, 2019).

  154. Badmus, T. A. et al. Burden of prostate cancer in southwestern Nigeria. Urology 76, 412–416 (2010).

    Article  PubMed  Google Scholar 

  155. Magnus, F. E. & Ofoha, C. G. Presentation, characteristics and co-morbidities of men with prostate cancer in Nigeria. J. Adv. Med. https://doi.org/10.9734/jammr/2019/v31i530297 (2019).

    Article  Google Scholar 

  156. Irabor, O. C. et al. Can the adoption of hypofractionation guidelines expand global radiotherapy access? An analysis for breast and prostate radiotherapy. JCO Glob. Oncol. 6, 667–678 (2020).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.Y., A.G.G., N.M., V.F.B., L.C.M. and F.Y.M. researched data for the article. A.G.G., F.L.C., L.C.M. and F.Y.M. made substantial contributions to discussions of content. M.Y., A.G.G., F.L.C., N.M., V.F.B., H.P., A.B. and F.Y.M. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Fabio Y. Moraes.

Ethics declarations

Competing interests

H.P. declares consulting fees and conference support from Varian Medica Systems unrelated to the current work. F.L.C. declares grants from Boston Scientific and Sanofi, honoraria and conference support from Varian Medical Systems and participates on the data safety monitoring board of Abbvie and Bayer. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks S. Arcangeli, F. Alongi and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

AFRONET: https://www.iaea.org/resources/webinar/africa-radiation-oncology-network-afronet

BOTSOGO: http://www.botsogo.org/

Global RT: http://globalrt.org/

Radiating Hope: https://www.radiatinghope.org/

Glossary

Alpha/beta ratio

The ratio of linear and quadratic components that make up the model of cancer cell killing in response to radiotherapy; a measure of intrinsic sensitivity of a cell to radiation-induced death.

Cone-beam CT

(CBCT). A medical imaging technique utilizing divergent X-ray beams to perform CT. Often used for onboard image-guided radiotherapy.

Co-registered

Within treatment planning systems, the fusion or overlay of two separate images, often of different modalities (for example, MRI and CT) to aid treatment planning.

Soft-tissue matching

During image-guided radiotherapy, matching is performed before each treatment fraction to ensure treatment accuracy. In prostate radiotherapy using CBCT, the soft tissue interface between the rectum and prostate (as opposed to bony landmarks) are used for set-up verification.

Dose constraint points

Accepted dosimetric values to ensure the safety of normal tissues. Often, these constraints are expressed as a maximal dose limit to a specified volume of a normal tissue.

Megavoltage photons

Megavoltage is the most common energy level used in modern linear accelerators for the treatment of most cancers owing to its deep penetration. Other photon energies, such as kilovoltage or orthovoltage, can be used for superficial cancers such as skin cancers.

Incremental cost-effectiveness ratio

(ICER). A summary measure representing the economic value of an intervention in comparison to an alternative (comparator). The ICER is usually expressed as a monetary amount per quality-adjusted life year.

Quality-adjusted life year

(QALY). A measure of disease burden that accounts for the quality and quantity of life lived. QALY scores range from 1 (a year lived in perfect health) to 0 (death). Comorbid conditions will result in a QALY measure that is intermediate to these values.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, M., Gouveia, A.G., Cury, F.L. et al. Practical considerations for prostate hypofractionation in the developing world. Nat Rev Urol 18, 669–685 (2021). https://doi.org/10.1038/s41585-021-00498-6

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41585-021-00498-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing