Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct visualization of relativistic quantum scars in graphene quantum dots

Abstract

Quantum scars refer to eigenstates with enhanced probability density along unstable classical periodic orbits. First predicted 40 years ago1, scars are special eigenstates that counterintuitively defy ergodicity in quantum systems whose classical counterpart is chaotic2,3. Despite the importance and long history of scars, their direct visualization in quantum systems remains an open field4,5,6,7,8,9,10. Here we demonstrate that, by using an in situ graphene quantum dot (GQD) creation and a wavefunction mapping technique11,12, quantum scars are imaged for Dirac electrons with nanometre spatial resolution and millielectronvolt energy resolution with a scanning tunnelling microscope. Specifically, we find enhanced probability densities in the form of lemniscate ∞-shaped and streak-like patterns within our stadium-shaped GQDs. Both features show equal energy interval recurrence, consistent with predictions for relativistic quantum scars13,14. By combining classical and quantum simulations, we demonstrate that the observed patterns correspond to two unstable periodic orbits that exist in our stadium-shaped GQD, thus proving that they are both quantum scars. In addition to providing unequivocal visual evidence of quantum scarring, our work offers insight into the quantum–classical correspondence in relativistic chaotic quantum systems and paves the way to experimental investigation of other recently proposed scarring species such as perturbation-induced scars15,16,17, chiral scars18,19 and antiscarring20.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: STM characterization of an in situ-created stadium-shaped GQD.
Fig. 2: VG and VS dependence of dI/dVS maps.
Fig. 3: Equal energy interval recurrence of the ∞-shaped and streak-like dI/dVS patterns.
Fig. 4: Classical and quantum dynamics simulations for a stadium-shaped GQD.

Similar content being viewed by others

Data availability

Source data that support the findings of this study are available on Zenodo at https://doi.org/10.5281/zenodo.13751637 (ref. 53).

Code availability

All codes used in this article are available from the corresponding authors upon request.

References

  1. Heller, E. J. Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits. Phys. Rev. Lett. 53, 1515–1518 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  2. Stöckmann, H.-J. Quantum Chaos: An Introduction (American Association of Physics Teachers, 2000).

  3. Gutzwiller, M. C. Chaos in Classical and Quantum Mechanics Vol. 1 (Springer Science & Business Media, 2013).

  4. Heller, E., Crommie, M., Lutz, C. & Eigler, D. Scattering and absorption of surface electron waves in quantum corrals. Nature 369, 464–466 (1994).

    Article  ADS  Google Scholar 

  5. Crook, R. et al. Imaging fractal conductance fluctuations and scarred wave functions in a quantum billiard. Phys. Rev. Lett. 91, 246803 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Martins, F. et al. Imaging electron wave functions inside open quantum rings. Phys. Rev. Lett. 99, 136807 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Burke, A. et al. Periodic scarred states in open quantum dots as evidence of quantum Darwinism. Phys. Rev. Lett. 104, 176801 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Aoki, N. et al. Direct imaging of electron states in open quantum dots. Phys. Rev. Lett. 108, 136804 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Cabosart, D. et al. Recurrent quantum scars in a mesoscopic graphene ring. Nano Lett. 17, 1344–1349 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Ge, Z. et al. Imaging quantum interference in stadium-shaped monolayer and bilayer graphene quantum dots. Nano Lett. 21, 8993–8998 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Lee, J. et al. Imaging electrostatically confined Dirac fermions in graphene quantum dots. Nat. Phys. 12, 1032–1036 (2016).

    Article  CAS  Google Scholar 

  12. Ge, Z. et al. Visualization and manipulation of bilayer graphene quantum dots with broken rotational symmetry and nontrivial topology. Nano Lett. 20, 8682–8688 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Huang, L., Lai, Y.-C., Ferry, D. K., Goodnick, S. M. & Akis, R. Relativistic quantum scars. Phys. Rev. Lett. 103, 054101 (2009).

    Article  ADS  PubMed  Google Scholar 

  14. Huang, L., Xu, H.-Y., Grebogi, C. & Lai, Y.-C. Relativistic quantum chaos. Phys. Rep. 753, 1–128 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Luukko, P. J. et al. Strong quantum scarring by local impurities. Sci. Rep. 6, 37656 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Keski-Rahkonen, J., Luukko, P. J., Kaplan, L., Heller, E. & Räsänen, E. Controllable quantum scars in semiconductor quantum dots. Phys. Rev. B 96, 094204 (2017).

    Article  ADS  Google Scholar 

  17. Keski-Rahkonen, J., Ruhanen, A., Heller, E. & Räsänen, E. Quantum Lissajous scars. Phys. Rev. Lett. 123, 214101 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Xu, H., Huang, L., Lai, Y.-C. & Grebogi, C. Chiral scars in chaotic dirac fermion systems. Phys. Rev. Lett. 110, 064102 (2013).

    Article  ADS  PubMed  Google Scholar 

  19. Song, M.-Y., Li, Z.-Y., Xu, H.-Y., Huang, L. & Lai, Y.-C. Quantization of massive Dirac billiards and unification of nonrelativistic and relativistic chiral quantum scars. Phys. Rev. Res. 1, 033008 (2019).

    Article  CAS  Google Scholar 

  20. Keski-Rahkonen, J., Graf, A. & Heller, E. Antiscarring in chaotic quantum wells. Preprint at https://arxiv.org/abs/2403.18081 (2024).

  21. Berry, M. Quantum chaology, not quantum chaos. Phys. Scr. 40, 335 (1989).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  22. Einstein, A. Zum quantensatz von Sommerfeld und Epstein. Verh. Dtsch. Phys. Ges. 19, 82–92 (1917).

  23. Stone, A. D. Einstein’s unknown insight and the problem of quantizing chaos. Phys. Today 58, 37 (2005).

    Article  Google Scholar 

  24. Pilatowsky-Cameo, S. et al. Ubiquitous quantum scarring does not prevent ergodicity. Nat. Commun. 12, 852 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hummel, Q., Richter, K. & Schlagheck, P. Genuine many-body quantum scars along unstable modes in Bose–Hubbard systems. Phys. Rev. Lett. 130, 250402 (2023).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  26. Evrard, B., Pizzi, A., Mistakidis, S. I. & Dag, C. B. Quantum scars and regular eigenstates in a chaotic spinor condensate. Phys. Rev. Lett. 132, 020401 (2024).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  27. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Heller, E. J. The Semiclassical Way to Dynamics and Spectroscopy (Princeton Univ. Press, 2018).

  29. Zelditch, S. Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55, 919–941 (1987).

    Article  MathSciNet  Google Scholar 

  30. Bohigas, O., Giannoni, M.-J. & Schmit, C. Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  31. Sridhar, S. Experimental observation of scarred eigenfunctions of chaotic microwave cavities. Phys. Rev. Lett. 67, 785 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Stein, J. & Stöckmann, H.-J. Experimental determination of billiard wave functions. Phys. Rev. Lett. 68, 2867 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Chinnery, P. A. & Humphrey, V. F. Experimental visualization of acoustic resonances within a stadium-shaped cavity. Phys. Rev. E 53, 272 (1996).

    Article  ADS  CAS  Google Scholar 

  34. Kudrolli, A., Abraham, M. C. & Gollub, J. P. Scarred patterns in surface waves. Phys. Rev. E 63, 026208 (2001).

    Article  ADS  CAS  Google Scholar 

  35. Manoharan, H., Lutz, C. & Eigler, D. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Ghahari, F. et al. An on/off Berry phase switch in circular graphene resonators. Science 356, 845–849 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Behn, W. A. et al. Measuring and tuning the potential landscape of electrostatically defined quantum dots in graphene. Nano Lett. 21, 5013–5020 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Ge, Z. et al. Giant orbital magnetic moments and paramagnetic shift in artificial relativistic atoms and molecules. Nat. Nanotechnol. 18, 250–256 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Zhao, Y. et al. Creating and probing electron whispering-gallery modes in graphene. Science 348, 672–675 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Gutiérrez, C., Brown, L., Kim, C.-J., Park, J. & Pasupathy, A. N. Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots. Nat. Phys. 12, 1069–1075 (2016).

    Article  Google Scholar 

  42. Zheng, Q., Zhuang, Y.-C., Sun, Q.-F. & He, L. Coexistence of electron whispering-gallery modes and atomic collapse states in graphene/WSe2 heterostructure quantum dots. Nat. Commun. 13, 1597 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Akis, R., Ferry, D. & Bird, J. Wave function scarring effects in open stadium shaped quantum dots. Phys. Rev. Lett. 79, 123 (1997).

    Article  ADS  CAS  Google Scholar 

  44. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006).

    Article  CAS  Google Scholar 

  46. Berry, M. V. & Mondragon, R. Neutrino billiards: time-reversal symmetry-breaking without magnetic fields. Proc. R. Soc. Lond. A 412, 53–74 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  47. Chen, S. et al. Electron optics with pn junctions in ballistic graphene. Science 353, 1522–1525 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Cao, H. & Wiersig, J. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys. 87, 61–111 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  49. Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009).

    Article  CAS  Google Scholar 

  50. Ge, Z. Wavefunction Mapping and Magnetic Field Response of Electrostatically Defined Graphene Quantum Dots. PhD thesis, Univ. California, Santa Cruz (2023).

  51. Zomer, P., Dash, S., Tombros, N. & Van Wees, B. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011).

    Article  ADS  Google Scholar 

  52. Goossens, A. et al. Mechanical cleaning of graphene. Appl. Phys. Lett. 100, 073110 (2012).

    Article  ADS  Google Scholar 

  53. Ge, Z. et al. Source data for “Direct visualization of relativistic quantum scars”. Zenodo. https://doi.org/10.5281/zenodo.13751637 (2024).

Download references

Acknowledgements

We thank M. Crommie and A. Zettl for discussions about quantum chaos at the initial stages of the project; D. Liu for assistance with STM cryogen refilling at the beginning of the project; and the Hummingbird Computational Cluster team at UC Santa Cruz for providing computational resources for the numerical tight-binding calculations performed in this work. J.V.J. and Z.G. acknowledge support from the National Science Foundation under award DMR-1753367. J.V.J. acknowledges support from the Army Research Office under contract W911NF-17-1-0473 and the Gordon and Betty Moore Foundation award 10.37807/GBMF11569. V.I.F. and S.S. acknowledge support from the Research Collaborations grant 1185409051 under the International Science Partnerships Fund. V.I.F. acknowledges support from Lloyd Register Foundation Nanotechnology Grant, EPSRC grants EP/V007033/1, EP/S030719/1 and EP/N010345/1. K.W. and T.T. acknowledge support from the JSPS KAKENHI (grant numbers 21H05233 and 23H02052) and the World Premier International Research Center Initiative (WPI), MEXT, Japan. A.M.G. acknowledges support from the Harvard Quantum Initiative. J.K.-R. acknowledges support from the Emil Aaltonen Foundation and the Oskar Huttunen Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.V.J. and Z.G. conceived of the work and designed the research strategy. Z.G. fabricated the samples and performed data analysis under the supervision of J.V.J. Z.G. carried out tunnelling spectroscopy measurements with assistance from P.P. and under the supervision of J.V.J. A.M.G. and J.K.-R. performed quantum dynamics simulations under the supervision of E.J.H. Z.G. performed classical dynamics and tight-binding simulations with input from S.S. under the supervision of V.I.F. and J.V.J. K.W. and T.T. provided hBN crystals. R.V.H. and D.L. provided instrument support. Z.G., J.V.J., J.K.-R., A.M.G. and E.J.H. wrote the paper. All authors discussed the paper and commented on the paper.

Corresponding authors

Correspondence to Zhehao Ge or Jairo Velasco Jr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Lin He and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Raw dI/dVS (VS,d) data used to acquire Fig. 1e,f.

a-b, Experimentally measured dI/dVS (VS,d) at VG = −19 V for the same stadium-shaped GQD shown in Fig. 1 across its center along the horizontal (a) and vertical (b) directions. The inset shows the schematic of the measurement direction. The setpoint used to acquire the dI/dVS (VS,d) data was I = 1 nA, VS = −500 mV with a 10 mV ac modulation. Panels a and b reproduced from ref. 50 under a Creative Commons licence CC BY 4.0.

Extended Data Fig. 2 Extended dI/dVS map data at VG = −19 V from VS = −30 mV to −6 mV.

a-m, dI/dVS maps measured at VG = −19 V with different applied VS for the same in-situ created GQD shown in Fig. 3. The applied VS is shown at the top right corner of each dI/dVS map. A 2 mV ac modulation was used to acquire the dI/dVS maps. The red star marks the dI/dVS maps that show a ∞-shaped pattern with enhanced dI/dVS intensity. Panels a and gl adapted from ref. 50 under a Creative Commons licence CC BY 4.0. Panel d reproduced from ref. 50 under a Creative Commons licence CC BY 4.0.

Extended Data Fig. 3 Extended dI/dVS map data at VG = −19 V from VS = 6 mV to 36 mV.

a-n, dI/dVS maps measured at VG = −19 V with different applied VS for the same in-situ created GQD shown in Fig. 3. The applied VS is shown at the top right corner of each dI/dVS map. A 2 mV ac modulation was used to acquire the dI/dVS maps. The green star marks the dI/dVS maps that show a streak-like pattern with enhanced dI/dVS intensity. Panels af, k and n adapted from ref. 50 under a Creative Commons licence CC BY 4.0.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Z., Graf, A.M., Keski-Rahkonen, J. et al. Direct visualization of relativistic quantum scars in graphene quantum dots. Nature 635, 841–846 (2024). https://doi.org/10.1038/s41586-024-08190-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-08190-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing