Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global terrestrial nitrogen fixation and its modification by agriculture

Subjects

Abstract

Biological nitrogen fixation (BNF) is the largest natural source of new nitrogen (N) that supports terrestrial productivity1,2, yet estimates of global terrestrial BNF remain highly uncertain3,4. Here we show that this uncertainty is partly because of sampling bias, as field BNF measurements in natural terrestrial ecosystems occur where N fixers are 17 times more prevalent than their mean abundances worldwide. To correct this bias, we develop new estimates of global terrestrial BNF by upscaling field BNF measurements using spatially explicit abundances of all major biogeochemical N-fixing niches. We find that natural biomes sustain lower BNF, 65 (52–77) Tg N yr−1, than previous empirical bottom-up estimates3,4, with most BNF occurring in tropical forests and drylands. We also find high agricultural BNF in croplands and cultivated pastures, 56 (54–58) Tg N yr−1. Agricultural BNF has increased terrestrial BNF by 64% and total terrestrial N inputs from all sources by 60% over pre-industrial levels. Our results indicate that BNF may impose stronger constraints on the carbon sink in natural terrestrial biomes and represent a larger source of agricultural N than is generally considered in analyses of the global N cycle5,6, with implications for proposed safe operating limits for N use7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Location of field measurements of BNF in natural terrestrial biomes.
Fig. 2: Global distribution of terrestrial BNF.
Fig. 3: Global estimates of terrestrial N inputs to the land surface.
Fig. 4: Relationships of global natural terrestrial BNF with AET and NPP.
Fig. 5: Biome and niche contribution to global terrestrial BNF.

Similar content being viewed by others

Data availability

The global gridded datasets of BNF generated here are available in the ScienceBase repository (ref. 74) (https://doi.org/10.5066/P13THKNR). The underlying BNF rate dataset in natural terrestrial biomes is also available in ScienceBase (ref. 75) (https://doi.org/10.5066/P1MFBVHK). All other data are available from the databases cited or are in the main text or the Supplementary Information.

Code availability

All analyses were conducted using publicly available code packages: raster (ref. 73) and terra (ref. 66).

References

  1. Houlton, B. Z., Morford, S. L. & Dahlgren, R. A. Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment. Science 360, 58–62 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B 368, 20130164 (2013).

    Article  Google Scholar 

  3. Cleveland, C. C. et al. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem. Cycles 13, 623–645 (1999).

    Article  CAS  ADS  Google Scholar 

  4. Davies-Barnard, T. & Friedlingstein, P. The global distribution of biological nitrogen fixation in terrestrial natural ecosystems. Global Biogeochem. Cycles 34, e2019GB006387 (2020).

    Article  CAS  ADS  Google Scholar 

  5. Kou-Giesbrecht, S. et al. Evaluating nitrogen cycling in terrestrial biosphere models: a disconnect between the carbon and nitrogen cycles. Earth Syst. Dyn. 14, 767–795 (2023).

    Article  ADS  Google Scholar 

  6. Davies-Barnard, T., Zaehle, S. & Friedlingstein, P. Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models. Biogeosciences 19, 3491–3503 (2022).

    Article  CAS  ADS  Google Scholar 

  7. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  PubMed  Google Scholar 

  8. Rockström, J. et al. Safe and just Earth system boundaries. Nature 619, 102–111 (2023).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  9. Friedlingstein, P. et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).

    Article  Google Scholar 

  10. Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010).

    Article  CAS  ADS  Google Scholar 

  11. LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    Article  PubMed  Google Scholar 

  12. Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).

    Article  CAS  ADS  Google Scholar 

  13. Cleveland, C. C. et al. Patterns of new versus recycled primary production in the terrestrial biosphere. Proc. Natl Acad. Sci. USA 110, 12733–12737 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).

    Article  CAS  ADS  Google Scholar 

  15. Mason, R. E. et al. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 376, eabh3767 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Vitousek, P. M., Menge, D. N. L., Reed, S. C. & Cleveland, C. C. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos. Trans. R. Soc. B 368, 20130119 (2013).

    Article  Google Scholar 

  17. Xu-Ri, & Prentice, I. C. Modelling the demand for new nitrogen fixation by terrestrial ecosystems. Biogeosciences 14, 2003–2017 (2017).

    Article  CAS  Google Scholar 

  18. Ito, A. A historical meta-analysis of global terrestrial net primary productivity: are estimates converging? Glob. Change Biol. 17, 3161–3175 (2011).

    Article  ADS  Google Scholar 

  19. Reis Ely, C. R. et al. A global dataset of terrestrial biological nitrogen fixation. Sci. Data (in the press).

  20. Herridge, D. F., Giller, K. E., Jensen, E. S. & Peoples, M. B. Quantifying country-to-global scale nitrogen fixation for grain legumes: II. Coefficients, templates and estimates for soybean, groundnut and pulses. Plant Soil 474, 1–15 (2022).

    Article  CAS  Google Scholar 

  21. Peoples, M. B., Giller, K. E., Jensen, E. S. & Herridge, D. F. Quantifying country-to-global scale nitrogen fixation for grain legumes: I. Reliance on nitrogen fixation of soybean, groundnut and pulses. Plant Soil 469, 1–14 (2021).

    Article  CAS  Google Scholar 

  22. Galloway, J. N. et al. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226 (2004).

    Article  CAS  Google Scholar 

  23. Herridge, D. F., Peoples, M. B. & Boddey, R. M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1–18 (2008).

    Article  CAS  Google Scholar 

  24. Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Soumare, A. et al. Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants 9, 1011 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Erisman, J. W. et al. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. B 368, 20130116 (2013).

    Article  Google Scholar 

  27. Robertson, G. P. & Groffman, P. M. in Soil Microbiology, Ecology and Biochemistry 5th edn (eds Paul, E. A. & Frey, S. D.) 407–438 (Elsevier, 2024).

  28. Carlsson, G. & Huss-Danell, K. Nitrogen fixation in perennial forage legumes in the field. Plant Soil 253, 353–372 (2003).

    Article  CAS  Google Scholar 

  29. Crews, T. E. et al. Going where no grains have gone before: from early to mid-succession. Agric. Ecosyst. Environ. 223, 223–238 (2016).

    Article  Google Scholar 

  30. Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Bruelheide, H. et al. sPlot – a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).

    Article  Google Scholar 

  32. Piipponen, J. et al. Global trends in grassland carrying capacity and relative stocking density of livestock. Glob. Change Biol. 28, 3902–3919 (2022).

    Article  CAS  Google Scholar 

  33. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Burrill, E. A. et al. The Forest Inventory and Analysis Database: Database Description and User Guide Version 9.1 for Phase 2 (US Department of Agriculture, Forest Service, 2023).

  35. Rodriguez-Caballero, E. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11, 185–189 (2018).

    Article  CAS  ADS  Google Scholar 

  36. Jovan, S. et al. User Guide for the National Forest Inventory and Analysis Lichen Database (Version 1.0) (US Department of Agriculture, Forest Service, 2020).

  37. FAO. FAOSTAT. License: CC BY-NC-SA 3.0 IGO. https://www.fao.org/faostat/en/#data (2021).

  38. Schimel, D. S., Braswell, B. H. & Parton, W. J. Equilibration of the terrestrial water, nitrogen, and carbon cycles. Proc. Natl Acad. Sci. USA 94, 8280–8283 (1997).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Menge, D. N. L. et al. Why are nitrogen-fixing trees rare at higher compared to lower latitudes? Ecology 98, 3127–3140 (2017).

    Article  PubMed  Google Scholar 

  40. Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).

    Article  Google Scholar 

  41. Reed, S. C., Cleveland, C. C. & Townsend, A. R. Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu. Rev. Ecol. Evol. Syst. 42, 489–512 (2011).

    Article  Google Scholar 

  42. Cleveland, C. C. et al. Exploring the role of cryptic nitrogen fixers in terrestrial ecosystems: a frontier in nitrogen cycling research. Ecosystems 25, 1653–1669 (2022).

    Article  CAS  Google Scholar 

  43. Elbert, W. et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 5, 459–462 (2012).

    Article  CAS  ADS  Google Scholar 

  44. Lawrence, D. M. et al. The Community Land Model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model Earth Syst. 11, 4245–4287 (2019).

    Article  ADS  Google Scholar 

  45. Kou-Giesbrecht, S. & Arora, V. K. Representing the dynamic response of vegetation to nitrogen limitation via biological nitrogen fixation in the CLASSIC land model. Global Biochem. Cycles 36, e2022GB007341 (2022).

    Article  CAS  ADS  Google Scholar 

  46. Schumann, U. & Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. Discuss. 7, 2623–2818 (2007).

    ADS  Google Scholar 

  47. Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    Article  CAS  Google Scholar 

  48. Soper, F. M. et al. A roadmap for sampling and scaling biological nitrogen fixation in terrestrial ecosystems. Methods Ecol. Evol. 12, 1122–1137 (2021).

    Article  Google Scholar 

  49. Winbourne, J. B. et al. A new framework for evaluating estimates of symbiotic nitrogen fixation in forests. Am. Nat. 192, 618–629 (2018).

    Article  PubMed  Google Scholar 

  50. Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Friedl, M. A. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V006. LP DAAC. https://doi.org/10.5067/MODIS/MCD12Q1.006 (2019).

  52. Cummings, S. P., Humphry, D. R., Santos, S. R., Andrews, M. & James, E. K. The potential and pitfalls of exploiting nitrogen fixing bacteria in agricultural soils as a substitute for inorganic fertiliser. Environ. Biotechnol. 2, 1–10 (2006).

    Google Scholar 

  53. Urquiaga, S. et al. Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant Soil 356, 5–21 (2012).

    Article  CAS  Google Scholar 

  54. Boddey, R. M., Polidoro, J. C., Resende, A. S., Alves, B. J. R. & Urquiaga, S. Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugar cane and other grasses. Aust. J. Plant Physiol. 28, 889–895 (2001).

    Google Scholar 

  55. IFA. Fertilizer use by crop. IFASTAT. https://www.ifastat.org/consumption/fertilizeruse-by-crop (2022).

  56. Dynarski, K. A. & Houlton, B. Z. Nutrient limitation of terrestrial free-living nitrogen fixation. New Phytol. 217, 1050–1061 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, Y. et al. How do different nitrogen application levels and irrigation practices impact biological nitrogen fixation and its distribution in paddy system? Plant Soil 467, 329–344 (2021).

    Article  CAS  Google Scholar 

  58. Peoples, M. B. et al. Factors affecting the potential contributions of N2 fixation by legumes in Australian pasture systems. Crop Pasture Sci. 63, 759–786 (2012).

    Article  CAS  Google Scholar 

  59. Staccone, A. et al. A spatially explicit, empirical estimate of tree-based biological nitrogen fixation in forests of the United States. Global Biochem. Cycles 34, e2019GB006241 (2020).

    Article  CAS  ADS  Google Scholar 

  60. Liao, W., Menge, D. N. L., Lichstein, J. W. & Ángeles-Pérez, G. Global climate change will increase the abundance of symbiotic nitrogen-fixing trees in much of North America. Glob. Change Biol. 23, 4777–4787 (2017).

    Article  ADS  Google Scholar 

  61. Lepik, M. et al. The nitrogen‐fixing potential of plant communities depends on climate and land management. J. Biogeogr. 50, 591–601 (2023).

    Article  Google Scholar 

  62. Zheng, M. et al. Effects of human disturbance activities and environmental change factors on terrestrial nitrogen fixation. Glob. Change Biol. 26, 6203–6217 (2020).

    Article  ADS  Google Scholar 

  63. Zheng, M., Zhou, Z., Luo, Y., Zhao, P. & Mo, J. Global pattern and controls of biological nitrogen fixation under nutrient enrichment: a meta-analysis. Glob. Change Biol. 25, 3018–3030 (2019).

    Article  ADS  Google Scholar 

  64. Ghimire, B. et al. Global albedo change and radiative cooling from anthropogenic land cover change, 1700 to 2005 based on MODIS, land use harmonization, radiative kernels, and reanalysis. Geophys. Res. Lett. 41, 9087–9096 (2014).

    Article  ADS  Google Scholar 

  65. Running, S. W. & Zhao, M. MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500 m SIN Grid V061. NASA LP DAAC. https://lpdaac.usgs.gov/products/mod17a3hgfv061/ (2021).

  66. Hijmans, R. J. terra: spatial data analysis. CRAN.R-project. https://CRAN.R-project.org/package=terra (2023).

  67. Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  68. Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  69. Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  70. Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  71. Taylor, B. N., Chazdon, R. L. & Menge, D. N. L. Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology 100, 1–13 (2019).

    Article  Google Scholar 

  72. Wilcox, R. R. & Keselman, H. J. Modern robust data analysis methods: measures of central tendency. Psychol. Methods 8, 254–274 (2003).

    Article  PubMed  Google Scholar 

  73. Hijmans, R. J. raster: geographic data analysis and modeling. CRAN.R-project https://CRAN.R-project.org/package=raster (2023).

  74. Reis Ely, C. R. et al. Global gridded dataset of terrestrial biological nitrogen fixation across natural and agricultural biomes. US Geological Survey data release https://doi.org/10.5066/P13THKNR (2025).

  75. Reis Ely, C. R. et al. A global dataset of terrestrial biological nitrogen fixation. US Geological Survey data release, https://doi.org/10.5066/P1MFBVHK (2025).

Download references

Acknowledgements

This paper is a contribution from a working group on BNF supported by the US Geological Survey (USGS) John Wesley Powell Center for Analysis and Synthesis (G19AC00036, S.S.P., D.N.L.M., C.C.C., S.C.R.). This research was supported in part by an appointment to the USGS Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the US Departments of Energy (DOE) and Interior (DOI) under DOE contract no. DE-SC0014664. D.N.L.M. was funded by the National Science Foundation (IOS-2129542). S.A.B. was funded by the Leverhulme Trust and the Natural Environment Research Council (NE/S009663/1 and NE/M019497/1). J.P. was funded by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme (819202). E.R.-C. was supported by FEDER/Ministerio de Ciencia e Inovacion-Agencia Estatal de Investigación (PID2021-127631NA-I00 and RYC2020-030762-I). V.G.S. was supported by the U.S. Department of Energy Biological Environmental Research Program to UT-Battelle, LLC (DE-AC05-00OR22725) and the NGEE-Arctic project. This paper was reviewed by the USGS, USFS and USEPA for technical and policy content and approved for publication. The views and conclusions in this article represent those of USGS, and represent those solely of the authors from ORAU/ORISE, USFS and USEPA. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US government. We thank C. Ely, K. Kavanagh, J. Larison, T. Greaver, A. Gray and M. Brehob.

Author information

Authors and Affiliations

Authors

Contributions

C.R.R.E., S.S.P., D.N.L.M., C.C.C. and S.C.R. led the investigation. C.R.R.E. conducted formal analyses and wrote the first draft with inputs from S.S.P., D.N.L.M., C.C.C. and S.C.R. All authors, C.R.R.E., S.S.P., D.N.L.M., C.C.C., S.C.R., B.N.T., S.A.B., C.M.C., T.E.C., K.A.D., M.G., M.J.G., D.F.H., S.E.J., S.K.-G., M.B.P., J.P., E.R.-C., V.G.S., F.M.S., A.P.S., B.W., C.A.W. and N.W., contributed to methods development, data collection and editing the paper.

Corresponding author

Correspondence to Carla R. Reis Ely.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Eric Davidson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Confidence interval of natural terrestrial BNF.

Total BNF rate (kg N ha−1 yr−1) lower (a) and upper bound (b) 68% confidence interval values (analogous to ± 1 standard error). BNF is mapped across terrestrial lands aside from croplands, urban areas, and areas with permanent snow/ice cover.

Extended Data Fig. 2 Confidence interval of agricultural BNF.

Total BNF rate (kg N ha−1 yr−1) lower (a) and upper bound (b) 68% confidence interval values (analogous to ± 1 standard error). N-fixing crop BNF is mapped across the total land area of croplands (by country) and N-fixing forage BNF is mapped across the total land area of grasslands between 67°N/S (thus overlapping with natural grasslands in Extended Data Fig. 1), with rates adjusted to total land areas (see details in Methods and Supplementary Methods).

Extended Data Table 1 Niche-specific estimates of BNF activity per unit of N fixer or N-fixing substrate abundance in natural terrestrial biomes
Extended Data Table 2 Niche-specific estimates of BNF activity per unit of N fixer abundance in agricultural systems
Extended Data Table 3 Summary of current terrestrial BNF rates (kg N ha−1 yr−1) by niche by biome and global totals
Extended Data Table 4 Summary of current terrestrial BNF inputs (Tg N yr−1) by niche by biome and global totals
Extended Data Table 5 Summary of N fixer or N-fixing substrate abundance in natural terrestrial biomes
Extended Data Table 6 Alternative calculation of current terrestrial BNF rates (kg N ha−1 yr−1) using the assumptions in ref. 3
Extended Data Table 7 Alternative calculation of current terrestrial BNF inputs (Tg N yr−1) using the assumptions in ref. 3
Extended Data Table 8 Summary of pre-industrial terrestrial BNF inputs (Tg N yr−1) by niche by biome and global total

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Text, Supplementary Figs. 1–2, Supplementary Tables 1–7 and Supplementary References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis Ely, C.R., Perakis, S.S., Cleveland, C.C. et al. Global terrestrial nitrogen fixation and its modification by agriculture. Nature 643, 705–711 (2025). https://doi.org/10.1038/s41586-025-09201-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09201-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing