Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low-power integrated optical amplification through second-harmonic resonance

Abstract

Optical amplifiers are fundamental to modern photonics, enabling long-distance communications1, precision sensing2,3 and quantum information processing4,5. Erbium-doped amplifiers dominate telecommunications but are restricted to specific wavelength bands1,6, whereas semiconductor amplifiers offer broader coverage but suffer from high noise and nonlinear distortions7. Optical parametric amplifiers (OPAs) promise broadband, quantum-limited amplification across arbitrary wavelengths8. However, their miniaturization and deployment have been hampered by watt-level power requirements. Here we demonstrate an integrated OPA on thin-film lithium niobate that achieves >17 dB gain with <200 mW input power—an order of magnitude improvement over previous demonstrations. Our second-harmonic-resonant design enhances both pump generation efficiency (95% conversion) and pump power utilization through recirculation, without sacrificing bandwidth. The resonant architecture increases the effective pump power by nearly an order of magnitude compared with conventional single-pass designs, while also multiplexing the signal and pump. We demonstrate flat near-quantum-limited noise performance over 110 nm. Our low-power architecture enables practical on-chip OPAs for next-generation quantum and classical photonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrated optical parametric amplification and SH resonant design.
Fig. 2: Resonant SH generation.
Fig. 3: SH-resonant optical parametric amplification measurements.
Fig. 4: OPA noise figure measurements.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Desurvire, E. Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).

  2. Tse, M. et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy. Nature 594, 201–206 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kawasaki, A. et al. Real-time observation of picosecond-timescale optical quantum entanglement towards ultrafast quantum information processing. Nat. Photon. 19, 271–276 (2025).

    Article  ADS  CAS  Google Scholar 

  6. Mears, R., Reekie, L., Jauncey, I. & Payne, D. Low-noise erbium-doped fibre amplifier operating at 1.54um. Electron. Lett. 23, 1026–1028 (1987).

    Article  ADS  Google Scholar 

  7. Sobhanan, A. et al. Semiconductor optical amplifiers: recent advances and applications. Adv. Opt. Photon. 14, 571–651 (2022).

    Article  Google Scholar 

  8. Baumgartner, R. & Byer, R. Optical parametric amplification. IEEE J. Quantum Electron. 15, 432–444 (1979).

    Article  ADS  Google Scholar 

  9. Jankowski, M., Mishra, J. & Fejer, M. M. Dispersion-engineered χ(2) nanophotonics: a flexible tool for nonclassical light. J. Phys. Photon. 3, 042005 (2021).

    Article  CAS  Google Scholar 

  10. Ho, M.-C., Uesaka, K., Marhic, M., Akasaka, Y. & Kazovsky, L. 200-nm-bandwidth fiber optical amplifier combining parametric and Raman gain. J. Lightwave Technol. 19, 977–981 (2001).

    Article  ADS  Google Scholar 

  11. Kobayashi, T. et al. 103-ch. 132-Gbaud PS-QAM signal inline-amplified transmission with 14.1-THz bandwidth lumped PPLN-based OPAs over 400-km G.652.D SMF. In Proc. Optical Fiber Communication Conference (OFC) 2023 Th4B.6 (Optica Publishing, 2023).

  12. Shimizu, S. et al. Wideband optical parametric amplification of 8.375-THz WDM signal using cascaded PPLN waveguides with reused pump light. J. Lightwave Technol. 41, 7399–7407 (2023).

    Article  ADS  CAS  Google Scholar 

  13. Shimizu, S. et al. Hybrid lumped repeater using PPLN-based high-gain optical parametric phase conjugators and EDFAs for C+L-band transmission. J. Lightwave Technol. 42, 3580–3591 (2024).

    Article  ADS  CAS  Google Scholar 

  14. Kuznetsov, N. et al. An ultra-broadband photonic-chip-based parametric amplifier. Nature 639, 928–934 (2025).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yariv, A., Fekete, D. & Pepper, D. M. Compensation for channel dispersion by nonlinear optical phase conjugation. Opt. Lett. 4, 52–54 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Umeki, T. et al. Simultaneous nonlinearity mitigation in 92 × 180-Gbit/s PDM-16QAM transmission over 3840 km using PPLN-based guard-band-less optical phase conjugation. Opt. Express 24, 16945–16951 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Foo, B., Karlsson, M., Vijayan, K., Mazur, M. & Andrekson, P. A. Analysis of nonlinearity mitigation using phase-sensitive optical parametric amplifiers. Opt. Express 27, 31926–31941 (2019).

    Article  ADS  PubMed  Google Scholar 

  18. Kazama, T. et al. Over-30-dB gain and 1-dB noise figure phase-sensitive amplification using a pump-combiner-integrated fiber I/O PPLN module. Opt. Express 29, 28824–28834 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Ye, Z. et al. Overcoming the quantum limit of optical amplification in monolithic waveguides. Sci. Adv. 7, eabi8150 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, L.-A., Kimble, H. J., Hall, J. L. & Wu, H. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520–2523 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Stokowski, H. S. et al. Integrated quantum optical phase sensor in thin film lithium niobate. Nat. Commun. 14, 3355 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Butt, M., Janaszek, B. & Piramidowicz, R. Lighting the way forward: the bright future of photonic integrated circuits. Sens. Int. 6, 100326 (2025).

    Article  Google Scholar 

  24. Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Liu, X., Osgood, R. M., Vlasov, Y. A. & Green, W. M. J. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat. Photon. 4, 557–560 (2010).

    Article  ADS  CAS  Google Scholar 

  26. Kuyken, B. et al. 50 db parametric on-chip gain in silicon photonic wires. Opt. Lett. 36, 4401–4403 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Wang, K.-Y. & Foster, A. C. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides. Opt. Lett. 37, 1331–1333 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Ooi, K. J. A. et al. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge. Nat. Commun. 8, 13878 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Riemensberger, J. et al. A photonic integrated continuous-travelling-wave parametric amplifier. Nature 612, 56–61 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Ayan, A., Liu, J., Kippenberg, T. J. & Brès, C.-S. Towards efficient broadband parametric conversion in ultra-long Si3N4 waveguides. Opt. Express 31, 40916–40927 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Qu, Y. et al. Integrated optical parametric amplifiers in silicon nitride waveguides incorporated with 2D graphene oxide films. Light Adv. Manuf. 4, 437 (2023).

    Article  Google Scholar 

  32. Zhao, P. et al. Ultra-broadband optical amplification using nonlinear integrated waveguides. Nature 640, 918–923 (2025).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sohler, W. & Suche, H. Optical parametric amplification in Ti-diffused LiNbO3 waveguides. Appl. Phys. Lett. 37, 255–257 (1980).

    Article  ADS  CAS  Google Scholar 

  34. Serkland, D. K., Fejer, M. M., Byer, R. L. & Yamamoto, Y. Squeezing in a quasi-phase-matched LiNbO3 waveguide. Opt. Lett. 20, 1649–1651 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Umeki, T., Tadanaga, O., Takada, A. & Asobe, M. Phase sensitive degenerate parametric amplification using directly-bonded PPLN ridge waveguides. Opt. Express 19, 6326–6332 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Kashiwazaki, T. et al. Fabrication of low-loss quasi-single-mode PPLN waveguide and its application to a modularized broadband high-level squeezer. Appl. Phys. Letters 119, 251104 (2021).

    Article  ADS  CAS  Google Scholar 

  37. Jankowski, M. et al. Quasi-static optical parametric amplification. Optica 9, 273–279 (2022).

    Article  ADS  Google Scholar 

  38. Ledezma, L. et al. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica 9, 303–308 (2022).

    Article  ADS  Google Scholar 

  39. Li, X. et al. Two-stage lithium niobate nonlinear photonic circuits for low-crosstalk and broadband all optical wavelength conversion. APL Photon. 10, 076121 (2025).

    Article  ADS  CAS  Google Scholar 

  40. Chen, M. et al. High-gain optical parametric amplification with a continuous-wave pump using a domain-engineered thin-film lithium niobate waveguide. Optica 12, 1242–1249 (2025).

    Article  ADS  CAS  Google Scholar 

  41. Santandrea, M., Stefszky, M. & Silberhorn, C. General framework for the analysis of imperfections in nonlinear systems. Opt. Lett. 44, 5398–5401 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Zhao, J. et al. Unveiling the origins of quasi-phase matching spectral imperfections in thin-film lithium niobate frequency doublers. APL Photon. 8, 126106 (2023).

    Article  ADS  CAS  Google Scholar 

  43. Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

    Article  ADS  CAS  Google Scholar 

  44. Khalatpour, A., Qi, L., Fejer, M. M. & Safavi-Naeini, A. Roughness-limited performance in ultra-low-loss lithium niobate cavities. Adv. Optical Mater. https://doi.org/10.1002/adom.202502355 (2025).

  45. Kashiwazaki, T. et al. Over-8-dB squeezed light generation by a broadband waveguide optical parametric amplifier toward fault-tolerant ultra-fast quantum computers. Appl. Phys. Lett. 122, 234003 (2023).

    Article  ADS  CAS  Google Scholar 

  46. McKenna, T. P. et al. Ultra-low-power second-order nonlinear optics on a chip. Nat. Commun. 13, 4532 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao, Y. et al. Large regenerative parametric amplification on chip at ultra-low pump powers. Optica 10, 819–825 (2023).

    Article  ADS  CAS  Google Scholar 

  48. Menotti, M. et al. Nonlinear coupling of linearly uncoupled resonators. Phys. Rev. Lett. 122, 013904 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Wang, Z.-Y. et al. Toward ultimate-efficiency frequency conversion in nonlinear optical microresonators. Sci. Adv. 11, eadu7605 (2025).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    Article  ADS  PubMed  Google Scholar 

  51. Hu, C. et al. High-efficient coupler for thin-film lithium niobate waveguide devices. Opt. Express 29, 5397–5406 (2021).

    Article  ADS  PubMed  Google Scholar 

  52. Baney, D. M., Gallion, P. & Tucker, R. S. Theory and measurement techniques for the noise figure of optical amplifiers. Opt. Fiber Technol. 6, 122–154 (2000).

    Article  ADS  Google Scholar 

  53. Cestier, I. et al. Chip-scale parametric amplifier with 11dB gain at 1550nm based on a slow-light GaInP photonic crystal waveguide. Opt. Lett. 37, 3996–3998 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Kishimoto, T., Inafune, K., Ogawa, Y., Sasaki, H. & Murai, H. Highly efficient phase-sensitive parametric gain in periodically poled LiNbO3 ridge waveguide. Opt. Lett. 41, 1905–1908 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Lamont, M. R. et al. Net-gain from a parametric amplifier on a chalcogenide optical chip. Opt. Express 16, 20374–20381 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Sua, Y. M., Chen, J.-Y. & Huang, Y.-P. Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched ppln waveguide. Opt. Lett. 43, 2965–2968 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Guo, X., Zou, C.-L. & Tang, H. X. 70 dB long-pass filter on a nanophotonic chip. Opt. Express 24, 21167–21176 (2016).

    Article  ADS  PubMed  Google Scholar 

  58. Guo, Q. et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat. Photon. 16, 625–631 (2022).

    Article  ADS  CAS  Google Scholar 

  59. Siegman, A. E. Lasers (University Science Books, 1986).

  60. Levine, J. A simplified calculation of power-broadened linewidths, with application to resonance ionization mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 69, 61–66 (2012).

    Article  CAS  Google Scholar 

  61. Chen, P.-K. et al. Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides. Nat. Nanotechnol. 19, 44–50 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Xin, C. J. et al. Wavelength-accurate and wafer-scale process for nonlinear frequency mixers in thin-film lithium niobate. Commun. Phys. 8, 136 (2025).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) INSPIRED programme (HR00112420356). Part of this work was performed at the Stanford Nano Shared Facilities (SNSF) and the Stanford Nanofabrication Facility (SNF), supported by the National Science Foundation under award ECCS-2026822. We also thank NTT Research for their financial and technical support. D.J.D. acknowledges support from the NSF GRFP (DGE-1656518). H.S.S. acknowledges support from the Urbanek Family Fellowship. L.Q. gratefully acknowledges support from the Shoucheng Zhang Graduate Fellowship Program. We are grateful for the discussions with J. Kahn, D. Serkland at Sandia, J. Cohen at DARPA, G. H. Ahn and K. Multani.

Author information

Authors and Affiliations

Authors

Contributions

D.J.D. and A.H.S.-N. conceived the idea; D.J.D. designed the device, with input from T.P. and H.S.S.; T.P. fabricated the devices, with assistance from D.J.D., L.Q., S.R., A.Y.H. and J.F.H.; D.J.D. performed the experiments and analysed the data; H.S.S., T.P., M.M.F. and A.H.S.-N. provided the experimental and theoretical support.

Corresponding author

Correspondence to Amir H. Safavi-Naeini.

Ethics declarations

Competing interests

D.J.D., T.P., H.S.S. and A.H.S.-N. are inventors on a patent application that covers methods for achieving quantum advantage in power-constrained photonic sensors. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Wenzhao Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Chip-scale broadband OPA demonstrations.

(a) Gain versus pump power for chip-scale OPAs in the literature (see Extended Data Table 1). Green circles represent phase-insensitive amplification measurements and red squares phase-sensitive amplification. Darker points correspond to data from this work (see Fig. 3). Curves are simulations using the same parameters as Section III. (b) Gain rate (at max reported power) vs loss rate of chip-scale OPAs. Dashed lines are lines of constant nonlinearity-to-loss ratio. Those references that did not include loss rate information could not be plotted.

Extended Data Fig. 2 Broadband gain and noise spectra.

(a) OPA gain spectrum for a L = 6 mm device. Inset: OPA gain spectrum as predicted by simulated dispersion. (b) Spontaneous parametric fluorescence spectrum verifying bandwidth exceeds 150 nm.

Extended Data Fig. 3 Gain measurements at various on-chip input powers.

(a) Phase-insensitive gain from OPA and corresponding FH pump depletion from SHG for nondegenerate signal wavelength 1590 nm and on-chip FH pump powers 38 mW and 194 mW. (b) Phase-sensitive gain from OPA and corresponding FH pump depletion from SHG for degenerate signal wavelengths for on-chip pump powers of 15 mW and 65 mW.

Extended Data Fig. 4 Extracting noise figure from SPF spectrum.

(a) Signal and generated idler measured with the max-hold technique (circles), as well as spectrum for a single signal wavelength input (solid line). (b) Degenerate amplification spectra. SPF level is extracted from off-degenerate reading, and the gain is extracted not from this single scan but instead by measuring the amplification/deamplification cycles in time as in Fig. 4(c).

Extended Data Fig. 5 Dichroic coupler characterization.

(a) Microscope Image of fabricated dichroic coupler (0.5 mm straight coupling region is cropped out, left half reflected and shown for clarity). (b) Transmission spectra of dichroic coupler drop (top) and through (bottom) ports. (c) Simulated symmetric mode profiles of fundamental and second harmonic in coupler region.

Extended Data Fig. 6 Fiber inputs and outputs to chip.

Microscope image of fibers coupling light onto and off of the chip. Lensed single mode fiber (top left and bottom right) couple light onto the chip, while lensed multi-mode fiber (bottom left and top right) collect light from the chip.

Extended Data Fig. 7 On-chip transmission spectrum and end-facet reflections.

(a) On-chip signal transmission spectrum through device. Smoothed line also shown to guide the eye. (b) Inset: zoom in on sinusoidal ripples due to end-facet reflections on either side of the chip, creating a weak standing-wave cavity. (c) Simulated amplified signal transmission in the presence of facet reflections, for gains ranging from 0 to 20 dB. The gain ripples increase close to threshold, where net gain approaches net round-trip loss.

Extended Data Fig. 8 Fabrication procedure.

(a) Deposit 100 nm of SiO2 onto thin-film lithium niobate on insulator chip. (b) Use electron beam lithography to pattern and then liftoff 100 nm-thick aluminum electrodes where the poling periods are adaptively designed to compensate for thickness variations across the film. (c) Apply high voltage pulses to periodically pole the LN and then remove the electrodes. (d) Pattern HSQ mask using electron beam lithography for waveguide patterning. (e) Argon ion mill 300 nm of LN to etch the waveguides and then acid cleaning to produce patterned LN waveguides. (f) Deposit 700 nm of SiO2 for cladding using HDPCVD.

Extended Data Table 1 Chip-scale broadband OPA demonstrations

Supplementary information

Supplementary Information

This file contains additional information on SH-resonant SHG calculations, gain and noise figure equations used in data analysis and a brief comment on saturation effects.

Peer Review file

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dean, D.J., Park, T., Stokowski, H.S. et al. Low-power integrated optical amplification through second-harmonic resonance. Nature 649, 1159–1164 (2026). https://doi.org/10.1038/s41586-025-09959-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09959-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing