Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extensive restoration of forelimb function in primates with spinal cord injury by neural stem cell transplantation

Abstract

Research on cell therapy for spinal cord injury has yet to achieve sufficient functional recovery. Previous studies in the field grafted oligodendrocyte progenitors, nonspinal neural stem cells or primary spinal neural progenitors. Here we sought to improve functional outcomes by grafting clinically compatible spinal cord neural stem cells derived from human embryonic stem cells (H9-scNSCs). H9-scNSCs significantly improved functional outcomes on a skilled hand task 9.2-fold (P = 2.5 × 1027) in hemisected subjects compared with lesioned controls, achieving a fine object retrieval success of 53.4 ± 19.2%, and 2.9-fold (P = 6.3 × 10−8) superior to controls in hemicontused subjects. Recovery correlated with rehabilitation effort. Grafts extended up to hundreds of thousands of new axons into host circuits up to 39 mm below the injury, forming synapses with host circuitry. Lesion fill was substantially higher and differentiated cell-fate distributions were much closer to that of the normal spinal cord than in previous studies using primary spinal cord cells, likely enabling the observed superior functional outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: H9-scNSC grafting in C7 hemisection lesion model supports substantial functional recovery of precision grip.
Fig. 2: Hemisection lesion extent and H9-scNSC graft filling.
Fig. 3: H9-scNSC grafts survived and extended axons into host spinal cord; host axons regenerated into grafts.
Fig. 4: H9-scNSC grafting in C6 hemicontusion lesion model.
Fig. 5: MRI scans accurately indicate graft survival.
Fig. 6: H9-scNSC grafts survive, integrate and extend axons for long distances in hemicontusion model.

Similar content being viewed by others

Data availability

The anatomical and behavioral data from this project are maintained in a secure, cloud-based repository platform designed to share research data, the Open Data Commons for Spinal Cord Injury (https://odc-sci.org/), ODC-SCI:1485 (https://doi.org/10.34945/F5V59G).

References

  1. Singh, A. et al. Global prevalence and incidence of traumatic spinal cord injury. Clin. Epidemiol. 6, 309–331 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. Lu, P. et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150, 1264–1273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bonner, J. F. et al. Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J. Neurosci. 31, 4675–4686 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu, P. et al. Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 83, 789–796 (2015).

    Article  Google Scholar 

  5. Kadoya, K. et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat. Med. 22, 479–487 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosenzweig, E. S. et al. Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat. Med. 24, 484–490 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumamaru, H. et al. Generation and post-injury integration of human spinal cord neural stem cells. Nat. Methods 15, 723–731 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Poplawski, G. H. D. et al. Adult rat myelin enhances axonal outgrowth from neural stem cells. Sci. Transl. Med. 10, eaal2563 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Koffler, J. et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat. Med. 25, 263–269 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ceto, S. et al. Neural stem cell grafts form extensive synaptic networks that integrate with host circuits after spinal cord injury. Cell Stem Cell 27, 430–440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Poplawski, G. H. D. et al. Injured adult neurons regress to an embryonic transcriptional growth state. Nature 581, 77–82 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Salegio, E. A. et al. A unilateral cervical spinal cord contusion injury model in non-human primates (Macaca mulatta). J. Neurotrauma 33, 439–459 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Obaid, N. et al. The biomechanical implications of neck position in cervical contusion animal models of SCI. Front Neurol. 14, 1152472 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rosenzweig, E. S. et al. Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat. Neurosci. 13, 1505–1512 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fehlings, M. G. & Chhabra, H. S. Recent trends in spinal trauma management and research. J. Clin. Orthop. Trauma. 49, 102351 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zheng, B. & Tuszynski, M. H. Regulation of axonal regeneration after mammalian spinal cord injury. Nat. Rev. Mol. Cell Biol. 24, 396–413 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Robinson, J. & Lu, P. Optimization of trophic support for neural stem cell grafts in sites of spinal cord injury. Exp. Neurol. 291, 87–97 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Schnell, L. & Schwab, M. E. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth. Nature 343, 269–272 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Ruiz-Sauri, A. et al. Glia to neuron ratio in the posterior aspect of the human spinal cord at thoracic segments relevant to spinal cord stimulation. J. Anat. 235, 997–1006 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu, P. et al. Motor axonal regeneration after partial and complete spinal cord transection. J. Neurosci. 32, 8208–8218 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Álvarez, Z. et al. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science 374, 848–856 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Anderson, M. A. et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561, 396–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, K.-T. et al. Differences in morphometric measures of the uninjured porcine spinal cord and dural sac predict histological and behavioral outcomes after traumatic spinal cord injury. J. Neurotrauma 36, 3005–3017 (2019).

    Article  PubMed  Google Scholar 

  24. Fawcett, J. W. et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord. 45, 190–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. García-Alías, G. et al. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat. Neurosci. 12, 1145–1151 (2009).

    Article  PubMed  Google Scholar 

  26. Lu, P. et al. Prolonged human neural stem cell maturation supports recovery in injured rodent CNS. J. Clin. Invest. 127, 3287–3299 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lukovic, D., Stojkovic, M., Moreno-Manzano, V., Bhattacharya, S. S. & Erceg, S. Perspectives and future directions of human pluripotent stem cell-based therapies: lessons from Geron’s clinical trial for spinal cord injury. Stem Cells Dev. 23, 1–4 (2014).

    Article  PubMed  Google Scholar 

  28. Emery, E. et al. Apoptosis after traumatic human spinal cord injury. J. Neurosurg. 89, 911–920 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Sugai, K. et al. First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury: Study protocol. Regen. Ther. 18, 321–333 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martin, J. R. et al. Long-term clinical and safety outcomes from a single-site phase 1 study of neural stem cell transplantation for chronic thoracic spinal cord injury. Cell Rep. Med. 5, 101841 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, D. et al. Spatial transcriptomics and single-nucleus RNA sequencing reveal a transcriptomic atlas of adult human spinal cord. eLife 12, RP92046 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lu, P., Jones, L. L., Snyder, E. Y. & Tuszynski, M. H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp. Neurol. 181, 115–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Fessler, R. G. et al. A phase 1/2a dose-escalation study of oligodendrocyte progenitor cells in individuals with subacute cervical spinal cord injury. J. Neurosurg. Spine 37, 812–820 (2022).

    Article  PubMed  Google Scholar 

  34. McKenna, S. L. et al. Ten-year safety of pluripotent stem cell transplantation in acute thoracic spinal cord injury. J. Neurosurg. Spine 37, 321–330 (2022).

    Article  PubMed  Google Scholar 

  35. Levi, A. D. et al. Clinical outcomes from a multi-center study of human neural stem cell transplantation in chronic cervical spinal cord injury. J. Neurotrauma 36, 891–902 (2019).

    Article  PubMed  Google Scholar 

  36. Curtis, E. et al. A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell 22, 941–950 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Mcmahon, S. S. et al. Effect of cyclosporin A on functional recovery in the spinal cord following contusion injury. J. Anat. 215, 267–279 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Madsen, J. R. et al. Tacrolimus (FK506) increases neuronal expression of GAP-43 and improves functional recovery after spinal cord injury in rats. Exp. Neurol. 154, 673–683 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Tsuruta, S. et al. The effects of cyclosporin A and insulin on ischemic spinal cord injury in rabbits. Anesth. Analg. 102, 1722–1727 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Weaver, L. C. et al. Methylprednisolone causes minimal improvement after spinal cord injury in rats, contrasting with benefits of an anti-integrin treatment. J. Neurotrauma 22, 1375–1387 (2005).

    Article  PubMed  Google Scholar 

  41. Sharp, K. G., Yee, K. M. & Steward, O. A re-assessment of treatment with a tyrosine kinase inhibitor (imatinib) on tissue sparing and functional recovery after spinal cord injury. Exp. Neurol. 254, 1–11 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Rabchevsky, A. G., Fugaccia, I., Sullivan, P. G. & Scheff, S. W. Cyclosporin A treatment following spinal cord injury to the rat: behavioral effects and stereological assessment of tissue sparing. J. Neurotrauma 18, 513–522 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, J. H. T. et al. Lack of neuroprotective effects of simvastatin and minocycline in a model of cervical spinal cord injury. Exp. Neurol. 225, 219–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Guo, B. et al. Evaluation of benefits and risks of immunosuppressive drugs in biomaterial-based neural progenitor cell transplantation for spinal cord injury repair. Chem. Eng. J. 487, 150404 (2024).

    Article  CAS  Google Scholar 

  45. Baloh, R. H. et al. Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial. Nat. Med. 28, 1813–1822 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rosenzweig, E. S. et al. Extensive spinal decussation and bilateral termination of cervical corticospinal projections in rhesus monkeys. J. Comp. Neurol. 513, 151–163 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schmidlin, E. et al. Behavioral assessment of manual dexterity in non-human primates. J. Vis. Exp. 57, 3258 (2011).

    Google Scholar 

  48. Rosenzweig, E. S. et al. Chondroitinase improves anatomical and functional outcomes after primate spinal cord injury. Nat. Neurosci. 22, 1269–1275 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nout, Y. S. et al. Animal models of neurologic disorders: a nonhuman primate model of spinal cord injury. Neurotherapeutics 9, 380–392 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Veterans Administration (Gordon Mansfield SCI Collaborative Consortium, RR&D B7332R, to M.H.T.), NIH (R01 NS104442, to M.H.T.; R01 NS105478, to J.C.B. and M.S.B.; R01 NS042291, to E.S.R.), Natural Sciences and Engineering Research Council of Canada (RGPIN 2018-06382, to C.J.S.), Canada Foundation for Innovation, the Craig H. Neilsen Foundation (to M.H.T., J.C.B. and M.S.B.), the Bernard and Anne Spitzer Charitable Trust (to M.H.T.) and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (to M.H.T.). Development of the contusion model was also supported by grants from the Neilsen Foundation and the NIH (R01 NS105478, to M.S.B. and J.C.B.). The consortium data and statistical coordinating center was supported by RR&D I01RX002245 (to A.R.F.). We thank E. Mendoza for statistical programming support.

Author information

Authors and Affiliations

Authors

Contributions

E.S., E.S.R., J.H.B., H.K., E.A.S., M.J.C., J.L.W., R.W., R.M., M.W.C., J.R.H., N.K., L.A.H., Y.S.N.-L., C.J.S., A.R.F., M.S.B., J.C.B. and M.H.T. designed the experiments. E.S., E.S.R., E.A.S., Y.S.N.-L., C.J.S., M.S.B., J.C.B. and M.H.T. performed surgery. E.S., E.S.R., J.H.B., J.L.W., R.W., R.M. and M.W.C. processed tissue. E.S., E.S.R., J.H.B., E.A.S., J.L.W., M.W.C., J.R.H. and N.K. imaged tissue. E.S., E.S.R., J.H.B., H.K., E.A.S., M.J.C., J.R.H., N.K., C.J.S., A.R.F., M.S.B., J.C.B. and M.H.T. analyzed the data. E.S., E.S.R., J.H.B., J.R.H., N.K., L.A.H., Y.S.N.-L., C.J.S., A.R.F., M.S.B., J.C.B. and M.H.T. wrote the paper. E.S., E.S.R., J.H.B., J.R.H., N.K., L.A.H., Y.S.N.-L., C.J.S., A.R.F., M.S.B., J.C.B. and M.H.T. edited the paper.

Corresponding author

Correspondence to Mark H. Tuszynski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Graft Vascularization.

Labeling for von Willebrand factor (vWF) shows extensive vascularization of grafts, shown at various magnifications. See Methods regarding sampling methods and reproducibility. Scale Bars: A, 1 mm; B, 200 µm; C, 50 µm.

Extended Data Fig. 2 H9-scNSC Grafts in Monkeys that Underwent Hemi-contusions.

(A) S121 labeling for human cells demonstrates grafts in lesion sites of each contused monkey. There is excellent graft fill of the lesion site in 6 monkeys (#’s 9, 11-15). One monkey, #10, has surviving graft in only the rostral portion of the lesion site: this monkey therefore had very few detectable caudal axons (Fig. 6g). Monkey #10 also exhibited good functional improvement, but had the smallest contusion lesion volume among all animals (less than half the size of the mean lesion volume) and considerable right-sided tissue sparing. Thus, recovery in this subject was likely attributable to lesion incompleteness. (B) S121 labeling in contused monkeys lacking surviving grafts. Scale Bars: 1 mm.

Extended Data Fig. 3 NeuN Expression in Graft.

(A) Low-magnification view encompassing ~9 mm2 of neural stem cell graft. S121 label for human cells, NeuN label for neurons. (B) Same field of view, NeuN. Some clustering of neurons is evident. Scale Bar: 500 µm.

Extended Data Fig. 4 Olig2 Expression in Graft.

(A) Olig2-expressing cells (oligodendrocyte progenitors and both immature and mature oligodendrocytes) were distributed throughout grafts, comprising 9 ± 2% of total grafted cells. NeuN labeling shown in blue. (B) Confocal image of four Olig2+ cells (arrows) in the graft. DAPI labeling shown in gray. See Methods regarding sampling methods and reproducibility. Scale Bars: A, 100 µm; B, 10 µm.

Extended Data Table 1 Hemisected Subject Data
Extended Data Table 2 Contused Subject Data

Supplementary information

Reporting Summary

Supplementary Video 1

Right Hand Use in Grafted Hemisected Subject. Grafted hemisection subject (Monkey #2) can use right hand digits 1-3 (D1-3) in pincer motion to remove and eat a tomato from a small cup.

Supplementary Video 2

Right Hand Use in Hemisected Control Subject. Ungrafted hemisection control subject (Monkey #5) 15 weeks post injury. During manipulation and eating of a piece of fruit in the exercise cage, right hand remains in closed fist during food manipulation: digit 1(D1) is tucked in under digits 2 (D2) and 3 (D3). Left hand is normal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinopoulou, E., Rosenzweig, E.S., Brock, J.H. et al. Extensive restoration of forelimb function in primates with spinal cord injury by neural stem cell transplantation. Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02865-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41587-025-02865-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing