Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-strand deaminase-assisted editing for functional RNA manipulation

Abstract

Rewriting RNA information to alter function requires controllable tools to edit RNA sequences within a user-defined region. Here we report a single-strand deaminase-assisted platform for adjustable RNA information manipulation (AIM). AIM is composed of a loop-forming guide RNA bound to an RNA-targeting Cas protein and an evolved TadA. AIM induces a loop, flanked by paired regions, in the target RNA; the loop size can be adjusted to allow conversions of single and multiple bases. We evolve TadA to achieve A-to-I, C-to-U or simultaneous A+C editing in coding and noncoding regions. We apply AIM to suppress the ochre nonsense codon (UAA) in disease-relevant cell and animal models, in which the two As must be simultaneously edited to rewrite the coding information. Moreover, we use AIM to manipulate adjacent phosphorylation sites important for protein function. Collectively, AIM is a versatile platform for manipulating RNA information within user-defined regions, opening additional avenues for functional RNA modulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The design and implementation of AIM.
Fig. 2: AIM suppresses the ochre (UAA) nonsense codon in disease-relevant cells and a mouse model.
Fig. 3: Expanding the capacity of AIM to C-to-U editing.
Fig. 4: Simultaneous A+C dual-base editing.
Fig. 5: Manipulating single and adjacent phosphorylation sites with the AIM toolkit.
Fig. 6: Characterizing the specificity of AIM.

Similar content being viewed by others

Data availability

The sequence data generated in this study were deposited to the National Center for Biotechnology Information Gene Expression Omnibus under accession code GSE230140. Source data are provided with this paper.

References

  1. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839–859 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pfeiffer, L. S. & Stafforst, T. Precision RNA base editing with engineered and endogenous effectors. Nat. Biotechnol. 41, 1526–1542 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Song, J., Zhuang, Y. & Yi, C. Programmable RNA base editing via targeted modifications. Nat. Chem. Biol. 20, 277–290 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Cox, D. B. T. et al. RNA editing with CRISPR–Cas13. Science 358, 1019–1027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rauch, S. et al. Programmable RNA-guided RNA effector proteins built from human parts. Cell 178, 122–134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yi, Z. et al. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat. Biotechnol. 40, 946–955 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Katrekar, D. et al. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat. Biotechnol. 40, 938–945 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qian, Y. et al. Programmable RNA sensing for cell monitoring and manipulation. Nature 610, 713–721 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang, K. et al. Programmable eukaryotic protein synthesis with RNA sensors by harnessing ADAR. Nat. Biotechnol. 41, 698–707 (2022).

    Article  PubMed  Google Scholar 

  11. Kaseniit, K. E. et al. Modular, programmable RNA sensing using ADAR editing in living cells. Nat. Biotechnol. 41, 482–487 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reautschnig, P. et al. CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nat. Biotechnol. 40, 759–768 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Ojha, N., Diaz Quiroz, J. F. & Rosenthal, J. J. C. In vitro and in cellula site-directed RNA editing using the λNDD-BoxB system. Methods Enzymol. 658, 335–358 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA editing. Science 365, 382–386 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang, X. et al. Programmable C-to-U RNA editing using the human APOBEC3A deaminase. EMBO J. 39, e104741 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Latifi, N., Mack, A. M., Tellioglu, I., Di Giorgio, S. & Stafforst, T. Precise and efficient C-to-U RNA base editing with SNAP-CDAR-S. Nucleic Acids Res. 51, e84 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhakta, S., Sakari, M. & Tsukahara, T. RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code. Sci. Rep. 10, 17304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han, W. et al. Programmable RNA base editing with a single gRNA-free enzyme. Nucleic Acids Res. 50, 9580–9595 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stroppel, A. S. et al. Harnessing self-labeling enzymes for selective and concurrent A-to-I and C-to-U RNA base editing. Nucleic Acids Res. 49, e95 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, Z., Jillette, N., Robson, P. & Cheng, A. W. Simultaneous multifunctional transcriptome engineering by CRISPR RNA scaffold. Nucleic Acids Res. 51, e77 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song, J. et al. CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons. Mol. Cell 83, 139–155 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Adachi, H. et al. Targeted pseudouridylation: an approach for suppressing nonsense mutations in disease genes. Mol. Cell 83, 637–651 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luo, N. et al. Near-cognate tRNAs increase the efficiency and precision of pseudouridine-mediated readthrough of premature termination codons. Nat. Biotechnol. 43, 114–123 (2025).

    Article  CAS  PubMed  Google Scholar 

  24. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tahmasebi, S., Khoutorsky, A., Mathews, M. B. & Sonenberg, N. Translation deregulation in human disease. Nat. Rev. Mol. Cell Biol. 19, 791–807 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Sun, H. X., Li, K., Liu, C. & Yi, C. Q. Regulation and functions of non-m6A mRNA modifications. Nat. Rev. Mol. Cell Biol. 24, 714–731 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Fu, X. D. Non-coding RNA: a new frontier in regulatory biology. Natl Sci. Rev. 1, 190–204 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Ha, M. & Kim, V. N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509–524 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Xiang, J. S., Schafer, D. M., Rothamel, K. L. & Yeo, G. W. Decoding protein–RNA interactions using CLIP-based methodologies. Nat. Rev. Genet. 25, 879–895 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bass, B. L. & Weintraub, H. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55, 1089–1098 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Wagner, R. W., Smith, J. E., Cooperman, B. S. & Nishikura, K. A double-stranded-RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian-cells and Xenopus eggs. Proc. Natl Acad. Sci. USA 86, 2647–2651 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Melcher, T. et al. A mammalian RNA editing enzyme. Nature 379, 460–464 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Salter, J. D., Bennett, R. P. & Smith, H. C. The APOBEC protein family: united by structure, divergent in function. Trends Biochem. Sci. 41, 578–594 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pecori, R., Di Giorgio, S., Lorenzo, J. P. & Papavasiliou, F. N. Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination. Nat. Rev. Genet. 23, 505–518 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wolf, J., Gerber, A. P. & Keller, W. tadA, an essential tRNA-specific adenosine deaminase from. EMBO J. 21, 3841–3851 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Losey, H. C., Ruthenburg, A. J. & Verdine, G. L. Crystal structure of tRNA adenosine deaminase TadA in complex with RNA. Nat. Struct. Mol. Biol. 13, 153–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, L. H. et al. Engineering and optimising deaminase fusions for genome editing. Nat. Commun. 7, 13330 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lam, D. K. et al. Improved cytosine base editors generated from TadA variants. Nat. Biotechnol. 41, 686–697 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lapinaite, A. et al. DNA capture by a CRISPR–Cas9-guided adenine base editor. Science 369, 566–571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rees, H. A., Wilson, C., Doman, J. L. & Liu, D. R. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. 5, eaax5717 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li, J. A. et al. Structure-guided engineering of adenine base editor with minimized RNA off-targeting activity. Nat. Commun. 12, 2287 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grunewald, J. et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat. Biotechnol. 37, 1041–1048 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, C. Y. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Jeong, Y. K. et al. Adenine base editor engineering reduces editing of bystander cytosines. Nat. Biotechnol. 39, 1426–1433 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892–U899 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Mort, M., Ivanov, D., Cooper, D. N. & Chuzhanova, N. A. A meta-analysis of nonsense mutations causing human genetic disease. Hum. Mutat. 29, 1037–1047 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Stenson, P. D. et al. The Human Gene Mutation Database: 2008 update. Genome Med. 1, 13 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bidou, L., Allamand, V., Rousset, J. P. & Namy, O. Sense from nonsense: therapies for premature stop codon diseases. Trends Mol. Med. 18, 679–688 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Bidou, L. et al. Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Ther. 11, 619–627 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Martins-Dias, P. & Romao, L. Nonsense suppression therapies in human genetic diseases. Cell. Mol. Life Sci. 78, 4677–4701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Welch, E. M. et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 447, 87–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Shi, N. et al. Restoration of dystrophin expression in mice by suppressing a nonsense mutation through the incorporation of unnatural amino acids. Nat. Biomed. Eng. 6, 195–206 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Lueck, J. D. et al. Engineered transfer RNAs for suppression of premature termination codons. Nat. Commun. 10, 822 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Albers, S. et al. Engineered tRNAs suppress nonsense mutations in cells and in vivo. Nature 618, 842–848 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, J. M. et al. AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature 604, 343–348 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wong, S. K., Sato, S. & Lazinski, D. W. Substrate recognition by ADAR1 and ADAR2. RNA 7, 846–858 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Matthews, M. M. et al. Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat. Struct. Mol. Biol. 23, 426–433 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Azad, M. T. A., Bhakta, S. & Tsukahara, T. Site-directed RNA editing by adenosine deaminase acting on RNA for correction of the genetic code in gene therapy. Gene Ther. 24, 779–786 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Dugueperoux, I. et al. Cystic fibrosis at the Reunion Island (France): spectrum of mutations and genotype–phenotype for the Y122X mutation. J. Cyst. Fibros. 3, 185–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Karijolich, J. & Yu, Y. T. Therapeutic suppression of premature termination codons: mechanisms and clinical considerations (review). Int. J. Mol. Med. 34, 355–362 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Neugebauer, M. E. et al. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat. Biotechnol. 41, 673–685 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Chen, L. et al. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat. Biotechnol. 41, 663–672 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, E., Neugebauer, M. E., Krasnow, N. A. & Liu, D. R. Phage-assisted evolution of highly active cytosine base editors with enhanced selectivity and minimal sequence context preference. Nat. Commun. 15, 1697 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, Z. Y. et al. dbPTM in 2022: an updated database for exploring regulatory networks and functional associations of protein post-translational modifications. Nucleic Acids Res. 50, D471–D479 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Rao, R. S. P. & Moller, I. M. Large-scale analysis of phosphorylation site occupancy in eukaryotic proteins. Biochim. Biophys. Acta 1824, 405–412 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Schweiger, R. & Linial, M. Cooperativity within proximal phosphorylation sites is revealed from large-scale proteomics data. Biol. Direct 5, 6 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zheng, L. et al. Phosphorylation of stem-loop binding protein (SLBP) on two threonines triggers degradation of SLBP, the sole cell cycle-regulated factor required for regulation of histone mRNA processing, at the end of S phase. Mol. Cell. Biol. 23, 1590–1601 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620–628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu, Y. et al. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity. Nat. Commun. 11, 2052 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, X. H. et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat. Biotechnol. 38, 856–U810 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Li, C. et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol. 38, 875–U866 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Grünewald, J. et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat. Biotechnol. 38, 861–U827 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sakata, R. C. et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat. Biotechnol. 38, 865–U846 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Weber, L. et al. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Sci. Adv. 6, eaay9392 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Antoniou, P. et al. Base-editing-mediated dissection of a γ-globin-regulatory element for the therapeutic reactivation of fetal hemoglobin expression. Nat. Commun. 13, 6618 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lebek, S. et al. Ablation of CaMKIId oxidation by CRISPR–Cas9 base editing as a therapy for cardiac disease. Science 379, 179–185 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yan, H. & Tang, W. Programmed RNA editing with an evolved bacterial adenosine deaminase. Nat. Chem. Biol. 20, 1361–1370 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Giudice, G., Sanchez-Cabo, F., Torroja, C. & Lara-Pezzi, E. ATtRACT—a database of RNA-binding proteins and associated motifs. Database (Oxf.) 2016, baw035 (2016).

    Article  Google Scholar 

  81. Kluesner, M. G. et al. EditR: a method to quantify base editing from Sanger sequencing. CRISPR J. 1, 239–250 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cheng, E. C. K., Lam, J. K. C. & Kwon, S. C. Cytosolic CRISPR RNAs for efficient application of RNA-targeting CRISPR–Cas systems. EMBO Rep. 26, 1891–1912 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lu, B. et al. Transposase assisted tagmentation of RNA/DNA hybrid duplexes. Elife 9, e54919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lu, B. & Yi, C. TRACE-seq: rapid, low-input, one-tube RNA-seq library construction based on tagmentation of RNA/DNA hybrids. Curr. Protoc. 3, e735 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Optical Imaging Core Facility, National Center for Protein Sciences at Peking University for assistance with immunofluorescence experiments. We are grateful to Y. Luo, C. Shan and W. Gao for their help with sample preparation and data collection and to Y. Zhao (Indica Labs) for support with data analysis. We thank the National Center for Protein Sciences at Peking University, particularly G. Li and X. Zhang, for technical support with MGISEQ-2000 sequencing platforms and the Agilent 4150 TapeStation system. We also thank the Center for Quantitative Biology at Peking University for assistance with the ImageXpress Micro4 high-content imaging system and X. Li for help with data collection and analysis. We thank N. Luo and Q. Huang for sharing plasmids, Z. Wei for providing mouse serum and B. Lu, H. Sun and M. Zhang for the discussion. The data analysis was performed on the High-Performance Computing Platform at the School of Life Sciences, Peking University. This work was supported by the National Natural Science Foundation of China (22425071 and 22337001 to C.Y.), the Beijing Municipal Science and Technology Commission (Z231100002723005 to C.Y.) and the Ministry of Agriculture and Rural Affairs of China (NK2022010102 to C.Y.). This work was supported by the New Cornerstone Science Foundation through the XPLORER prize.

Author information

Authors and Affiliations

Authors

Contributions

C.Y. and Y.Z. conceptualized the project. Y.Z., Q.Z. and X.L. designed and performed the experiments with the assistance of Y.Y., P.G., R.Y., R.S., Y.Z. and A.W. H.W. analyzed all the sequencing data. Z.L., H.M., M.C. and H.X. participated in the design and interpretation of key experiments. C.Y., Y.Z., Q.Z., H.W. and X.L. wrote the manuscript. All the authors commented on and approved the paper.

Corresponding author

Correspondence to Chengqi Yi.

Ethics declarations

Competing interests

A patent application has been filed by Peking University for the technology disclosed in this publication. C.Y. and Y.Z. are coinventors on a patent application describing the AIM system. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Identification of TadA variants for programmable RNA editing and investigation of optimal parameters for LF-gRNA design.

a, Structure superposition of tRNA anticodon loop in SaTadA-tRNA complex (PDB: 2B3J) and U-turn-shaped ssDNA substrate in ABE8e-sgRNA-DNA complex (PDB: 6VPC). b, Editing efficiencies of TadA variant fusion proteins with different LF-gRNAs. TadA variants include wild-type TadA (TadA-WT), TadA7.10, and TadA8e. c, Top: the representative on-target sequence in Reporter-UAG and the corresponding LF-gRNAs with diverse base-pairing arm lengths (ranging from 24 nt to 36 nt). Bottom: editing efficiencies of TadA7.10 and TadA8e fusion proteins with the aforementioned LF-gRNAs. n = 2 biological replicates. Data are presented as mean ± SD. d, Top: the representative on-target sequence in Reporter-UAG and the corresponding LF-gRNAs with non-symmetrical base-pairing arms. Bottom: editing efficiencies of TadA7.10 and TadA8e fusion proteins with different LF-gRNAs. n = 2 biological replicates. Data are presented as mean ± SD. e-f, Top: the representative on-target sequence in Reporter-UAG and the corresponding LF-gRNAs with different 3′ or 5′ arm length. Bottom: editing efficiencies of TadA8e fusion proteins with progressively shorten complementary 3′ arm (e) 5′ arm (f) and of the LF-gRNA.

Source data

Extended Data Fig. 2 Performance of AIM-A tools across different sequence contexts and different cell types.

a, Heatmap of 5′ and 3′ base preferences of AIM-Amax for all possible three-base motifs. b, Left: Representative on-target sequences of reporter constructs containing 6–10 consecutive adenosines. The LF-gRNA was used to induce loop sizes ranging from 6–10 nt on reporter transcripts. Right: Heatmap presenting editing efficiencies mediated by AIM-Amax. c. Schematic illustration showing the AIM editing window across LF-gRNA designs with varying loop sizes. d, EGFP + /mCherry+ ratio demonstrating the A-to-I editing activity of AIM-A and AIM-Amax across multiple cell lines. Cells were co-transfected with Reporter-UAG and AIM-A tools. e, Quantifying A-to-I editing rates on two endogenous transcripts mediated by AIM-Amax in N2A cells. f, Workflow to examine RNA editing rate, GAG content and Idua enzymatic activity in primary MEF cells from a Hurler syndrome mouse model containing homozygous Idua-W392X mutation (TGG-to-TAG). g, Quantification of A-to-I editing rates mediated by AIM-Amax in primary MEF cells. n = 3 independent biological replicates. Data are presented as mean ± SD. h, Histograms showing on-target and off-target A-to-I editing of the mouse Idua transcript using the AIM-Amax in primary MEF cells. Editing rates were quantified using NGS. i, The GAG content accumulation in WT, Idua-W392X and AIM-Amax-treated Idua-W392X primary MEF cells. Data represent mean values ± s.d. of n = 3 independently biological replicates. The P value was calculated by a two-tailed Student’s t-test. Statistical significance is denoted as follows: *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001. j, Measurement of Idua enzymatic activity in WT, Idua-W392X and AIM-Amax-treated Idua-W392X primary MEF cells. Data represent mean values ± s.d. of n = 3 independently biological replicates. The P value was calculated by a two-tailed Student’s t-test. Statistical significance is denoted as follows: *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.

Source data

Extended Data Fig. 3 Suppression of ochre nonsense codon in disease-relevant cells and a mouse model.

a, Normalized current-voltage relationships of HEK293T-CFTR-WT cells and HEK293T-CFTR-Y122X cells, showing total membrane currents at basal, stimulation, and inhibition states. HEK293T-CFTR-Y122X cells treated with CFTR-Y122X-targeting AIM-Amax were stimulated with 10 µM Forskolin and 10 µM IBMX, followed by perfusion with 10 µM CFTR inhibitor-172. HEK293T-CFTR-WT cells served as the positive control, while HEK293T-CFTR-Y122X cells treated with non-targeting AIM-Amax as the negative control. Data were collected from independent cells: n = 4. Data are presented as mean ± SEM. b, Schematics showing the structure of AAV constructs. c, In vivo RNA editing rates (UAA > UAG, UGA, and UGG) in AIM-Amax-treated DmdQ995X mice. Data represent mean values ± s.d. of n = 4 independent TA muscles. d, Western blot analysis of dystrophin protein expression in the TA muscles from WT, DmdQ995X, and AIM-Amax-treated DmdQ995X mice. e, H&E staining of TA muscles of WT, DmdQ995X, and AIM-Amax-treated DmdQ995X mice. Red arrows indicate inflammatory areas (shown in the wide view), and green arrows indicate normal myofibers without central nuclei (shown in the magnified view).

Source data

Extended Data Fig. 4 Performance of AIM-C tools across different sequence contexts and different cell types.

a, Heatmap of 5′ and 3′ base preferences of AIM-Cmax for all possible three-base motifs. b, EGFP + /mCherry+ ratio demonstrating the C-to-U editing activity of AIM-C and AIM-Cmax across multiple cell lines. Cells were co-transfected with Reporter-CAC and AIM-C tools. c, Quantifying C-to-U editing rates on two endogenous transcripts mediated by AIM-Cmax in N2A cells. d, Comparison of AIM-Cmax and existing RNA C-to-U editing tools (RESCUE, RESCUE-S, and CURE-N) at three transcripts. Data are presented as mean values (n = 2) and each dot represents an individual value.

Source data

Extended Data Fig. 5 Codon and amino acid changes enabled by AIM-A, AIM-C, and AIM-A&C.

a, Circos plots showing the specific codon changes enabled by AIM-A (left), AIM-C (middle), and AIM-A&C (right), respectively. AIM-A induces 61 different types of codon changes, 46 of which (orange, 75.4%) result in amino acid substitutions. AIM-C can induce 61 different types of codon change, with 43 (green, 70.5%) leading to amino acid changes. AIM-A&C can induce 30 different types of codon alterations, 29 of which (red, 97%) change amino acids. b, Tables summarizing the codon and amino acid changes enabled by AIM-A (left), AIM-C (middle), and AIM-A&C (right). Codon changes leading to different amino acids, induced by the AIM-A or AIM-C tools, are underlined in black. Codons uniquely altered by AIM-A&C are highlighted in green.

Extended Data Fig. 6 Manipulation of single or adjacent PTM sites.

a, Bar-plot showing the distribution of PTMs among various amino acid residues according to the dbPTM database. b, Quantification of concurrent editing rates at the second A of the Y340 codon and the second A of the Y341 codon in endogenous RAF1 transcripts using NGS. c, Quantification of concurrent editing rates at the second C of the S363 codon and the second C of the S364 codon in the endogenous BRAF transcripts using NGS. d, Quantification of concurrent editing rates at the second C of the first codon and the first A of the second codon in the endogenous CDK13 transcripts using NGS.

Source data

Extended Data Fig. 7 Transcriptome-wide specificity of AIM.

a, Sequence context motif plots of identified A-to-I and C-to-U off-targets, showing the preferred binding sequence context for the REPAIRv1, REPAIRv2, AIM-A, AIM-Amax and AIM-A&Cmax systems. b, Jitter plot showing the transcriptome-wide A-to-I off-target events in WT, AIM-Amax-treated, and untreated Idua mutant primary MEF cells. AIM-Amax was delivered via AAV-DJ. c, Scatter plots showing the comparison of the global gene expression levels between control and AIM-treated primary MEF cells. Pearson’s correlation coefficient analysis was used to assess the differential gene expressions.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Tables 1–9.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Y., Zhu, Q., Wu, H. et al. Single-strand deaminase-assisted editing for functional RNA manipulation. Nat Biotechnol (2026). https://doi.org/10.1038/s41587-025-02956-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41587-025-02956-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research