Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcriptome-wide analysis of differential expression in perturbation atlases

Abstract

Single-cell CRISPR screens such as Perturb-seq enable transcriptomic profiling of genetic perturbations at scale. However, the data produced by these screens are noisy, and many effects may go undetected. Here we introduce transcriptome-wide analysis of differential expression (TRADE)—a statistical model for the distribution of true differential expression effects that accounts for estimation error appropriately. TRADE estimates the ‘transcriptome-wide impact’, which quantifies the total effect of a perturbation across the transcriptome. Analyzing several large Perturb-seq datasets, we show that many transcriptional effects remain undetected in standard analyses but emerge in aggregate using TRADE. A typical gene perturbation affects an estimated 45 genes, whereas a typical essential gene affects over 500. We find moderate consistency of perturbation effects across cell types, identify perturbations where transcriptional responses vary qualitatively across dosage levels and clarify the relationship between genetic and transcriptomic correlations across neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transcriptome-wide analysis of differential expression.
Fig. 2: Transcriptome-wide analysis of genome-wide Perturb-seq.
Fig. 3: TRADE-derived enrichment estimates.
Fig. 4: Correlation of differential expression across cell types.
Fig. 5: Dose–response relationships.
Fig. 6: Transcriptomic correspondence of neuropsychiatric conditions.

Similar content being viewed by others

Data availability

Raw sequencing data are deposited on SRA under BioProject PRJNA1100571. Aligned sequencing data and processed single-cell populations are available on GEO at GSE264667. Perturb-seq data from Replogle et al.6 can be accessed at https://gwps.wi.mit.edu/ (raw data available at SRA under BioProject PRJNA831566). dTAG data from Naqvi et al.26 are available at Gene Expression Omnibus (GEO) under accession number GSE205904. dTAG data from Weber et al.27 are available at GEO under accession number GSE145016. Summary statistics from the PsychENCODE consortium are available at https://github.com/mgandal/Shared-molecular-neuropathology-across-major-psychiatric-disorders-parallels-polygenic-overlap; Raw data are all available at Synapse under accession number syn4921369. RNA-seq data from the OneK1K dataset are available at GEO under accession number GSE196830.

Code availability

The TRADE method, with accompanying documentation, is publicly available as an R package at https://github.com/ajaynadig/TRADEtools. The publication version of this package is available as a persistent repository via Zenodo at https://doi.org/10.5281/zenodo.14993815 (ref. 58).

References

  1. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167, 1883–1896.e15 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Replogle, J. M. et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575.e28 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peidli, S. et al. scPerturb: harmonized single-cell perturbation data. Nat. Methods 21, 531–540 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Plaisier, S. B., Taschereau, R., Wong, J. A. & Graeber, T. G. Rank–rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Res. 38, e169 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ma, Y. et al. Integrative differential expression and gene set enrichment analysis using summary statistics for scRNA-seq studies. Nat. Commun. 11, 1585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O’Connor, L. J. The distribution of common-variant effect sizes. Nat. Genet. 53, 1243–1249 (2021).

    Article  PubMed  Google Scholar 

  12. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stephens, M. False discovery rates: a new deal. Biostatistics 18, 275–294 (2016).

    PubMed Central  Google Scholar 

  14. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. O’Connor, L. J. et al. Extreme polygenicity of complex traits is explained by negative selection. Am. J. Hum. Genet. 105, 456–476 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Binder, J. X. et al. COMPARTMENTS: unification and visualization of protein subcellular localization evidence. Database 2014, bau012 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Crow, M., Lim, N., Ballouz, S., Pavlidis, P. & Gillis, J. Predictability of human differential gene expression. Proc. Natl Acad. Sci. USA 116, 6491–6500 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin, Y. et al. Evaluating stably expressed genes in single cells. Gigascience 8, giz106 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Weiss, M. J., Keller, G. & Orkin, S. H. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev. 8, 1184–1197 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Lacher, S. M. et al. HMG-CoA reductase promotes protein prenylation and therefore is indispensible for T-cell survival. Cell Death Dis. 8, e2824 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Collins, R. L. et al. A cross-disorder dosage sensitivity map of the human genome. Cell 185, 3041–3055.e25 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Domingo, J. et al. Non-linear transcriptional responses to gradual modulation of transcription factor dosage. eLife 13, RP100555 (2024).

    Google Scholar 

  25. Jost, M. et al. Titrating gene expression using libraries of systematically attenuated CRISPR guide RNAs. Nat. Biotechnol. 38, 355–364 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Naqvi, S. et al. Precise modulation of transcription factor levels identifies features underlying dosage sensitivity. Nat. Genet. 55, 841–851 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weber, C. M. et al. mSWI/SNF promotes Polycomb repression both directly and through genome-wide redistribution. Nat. Struct. Mol. Biol. 28, 501–511 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359, 693–697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M. & Wray, N. R. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics 28, 2540–2542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reshef, Y. A. et al. Co-varying neighborhood analysis identifies cell populations associated with phenotypes of interest from single-cell transcriptomics. Nat. Biotechnol. 40, 355–363 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Ji, Y. et al. Optimal distance metrics for single-cell RNA-seq populations. Preprint at bioRxiv https://doi.org/10.1101/2023.12.26.572833 (2023).

  33. Yazar, S. et al. Single-cell eQTL mapping identifies cell type–specific genetic control of autoimmune disease. Science 376, eabf3041 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Kang, J. B. et al. Mapping the dynamic genetic regulatory architecture of HLA genes at single-cell resolution. Nat. Genet. 55, 2255–2268 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A. & Murali, T. M. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. Methods 17, 147–154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Squair, J. W. et al. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12, 5692 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 15, 255–261 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rubin, A. J. et al. Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks. Cell 176, 361–376.e17 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Feldman, D. et al. Optical pooled screens in human cells. Cell 179, 787–799.e17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gu, J. et al. CRISPRmap: sequencing-free optical pooled screens mapping multi-omic phenotypes in cells and tissue. Preprint at bioRxiv https://doi.org/10.1101/2023.12.26.572587 (2023).

  42. Binan, L. et al. Simultaneous CRISPR screening and spatial transcriptomics reveals intracellular, intercellular, and functional transcriptional circuits. Preprint at bioRxiv https://doi.org/10.1101/2023.11.30.569494 (2023).

  43. Xu, Z., Sziraki, A., Lee, J., Zhou, W. & Cao, J. Dissecting key regulators of transcriptome kinetics through scalable single-cell RNA profiling of pooled CRISPR screens. Nat. Biotechnol. 42, 1218–1223 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Kudo, T. et al. Multiplexed, image-based pooled screens in primary cells and tissues with PerturbView. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02391-0 (2024).

    Article  PubMed  Google Scholar 

  45. Rood, J. E., Hupalowska, A. & Regev, A. Toward a foundation model of causal cell and tissue biology with a perturbation cell and tissue atlas. Cell 187, 4520–4545 (2024).

    Article  CAS  PubMed  Google Scholar 

  46. Morris, J. A., Sun, J. S. & Sanjana, N. E. Next-generation forward genetic screens: uniting high-throughput perturbations with single-cell analysis. Trends Genet. 40, 118–133 (2024).

    Article  CAS  PubMed  Google Scholar 

  47. Yao, D. et al. Scalable genetic screening for regulatory circuits using compressed Perturb-seq. Nat. Biotechnol. 42, 1282–1295 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Simmons, S. K. et al. Mostly natural sequencing-by-synthesis for scRNA-seq using Ultima sequencing. Nat. Biotechnol. 41, 204–211 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, S. H. et al. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics 28, 2540–2542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Replogle, J. M. et al. Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors. eLife 11, e81856 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Torres, S. E. et al. Ceapins block the unfolded protein response sensor ATF6α by inducing a neomorphic inter-organelle tether. eLife 8, e46595 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Replogle, J. M. et al. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat. Biotechnol. 38, 954–961 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Urbut, S. M., Wang, G., Carbonetto, P. & Stephens, M. Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. Nat. Genet. 51, 187–195 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nicolas, L. B., Harold, P. P. & Pachter, L. M. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Article  Google Scholar 

  56. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482.e11 (2019).

    Article  PubMed Central  Google Scholar 

  57. Rumker, L. et al. Identifying genetic variants that influence the abundance of cell states in single-cell data. Nat. Genet. 56, 2068–2077 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Nadig, A. Ajaynadig/TRADEtools: 0.99.1. Zenodo https://doi.org/10.5281/zenodo.14993815 (2025).

Download references

Acknowledgements

We thank K. A. Lagattuta, D. J. Weiner, B. Harris, T. Aicher, D. L. Barabasi, K. Maher, T. Kamath, M. T. Tegtmeyer and members of the O’Connor and Robinson laboratories for helpful comments and discussions. A.N. is supported by National Institutes of Health (NIH) grant no. F31HG013036. J.M.R. is supported by NIH grant nos. F31NS115380, T32GM007618. This work was supported by a grant from SFARI (704413, E.B.R.). This work was supported by the Stanley Center for Psychiatric Research at the Broad Institute. L.J.O. acknowledges funding from the NIH National Institute of General Medical Sciences, 1R35GM155278, and SFARI, GR0243225. J.S.W. acknowledges funding from the NIH Center of Excellences in Genome Sciences, 2RM1HG009490, the Whitehead Innovation Initiative and The Eric and Wendy Schmidt Center at the Broad Institute. The project described was supported by award no. T32GM007753 and T32GM144273 from the National Institute of General Medical Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the NIH. J.S.W. and S.A.M. are HHMI investigators.

Author information

Authors and Affiliations

Authors

Contributions

A.N., E.B.R. and L.J.O. conceived the study. J.M.R. and A.N.P. collected new data. J.S.W. supervised new data collection. A.N., M.M. and L.J.O. conducted analyses. A.N., J.M.R., M.M. and L.J.O. wrote the manuscript. S.A.M. provided additional project supervision.

Corresponding authors

Correspondence to Ajay Nadig, Joseph M. Replogle or Luke J. O’Connor.

Ethics declarations

Competing interests

J.S.W. declares outside interest in 5 AM Venture, Amgen, Chroma Medicine, KSQ Therapeutics, Maze Therapeutics, Tenaya Therapeutics, Tessera Therapeutics, Ziada Therapeutics and Third Rock Ventures. J.M.R. consults for Third Rock Ventures and Maze Therapeutics, and is a consultant for and equity holder in Waypoint Bio. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Stefan Peidli, Ying Ma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26 and Notes 1–5.

Reporting Summary

Peer Review File

Supplementary Tables 1–20

Supplementary Tables.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadig, A., Replogle, J.M., Pogson, A.N. et al. Transcriptome-wide analysis of differential expression in perturbation atlases. Nat Genet 57, 1228–1237 (2025). https://doi.org/10.1038/s41588-025-02169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41588-025-02169-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing