Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-cell atlas of the transcriptome and chromatin accessibility in the human retina

Abstract

Single-cell sequencing has revolutionized the scale and resolution of molecular profiling of tissues and organs. Here we present an integrated dual-modal reference atlas of the most accessible portion of the mammalian central nervous system, the retina. We compiled around 3.9 million cells from 125 donors of diverse ancestral backgrounds, including 8 published studies and 2.7 million unpublished data points, to create a comprehensive human retina cell atlas (HRCA) with more than 130 cell types identified. We annotated each cluster, identified marker genes and characterized cis-regulatory elements and gene regulatory networks. Our analysis uncovered differences in transcriptome, chromatin and gene regulatory networks across cell types. We modeled changes in gene expression and chromatin accessibility across age, ancestry and tissue region. This integrated atlas enhanced the fine-mapping of genome-wide association study and expression quantitative trait loci variants. Accessible through interactive browsers, this multimodal multidonor and multilab HRCA can facilitate a better understanding of retinal function and pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of single-cell atlas of the human retina.
Fig. 2: BC types are highly conserved across human, macaque and mouse retinas.
Fig. 3: AC and RGC types show increasing divergence among human, macaque, and mouse retinas.
Fig. 4: A high-resolution chromatin accessibility cell atlas of the human retina.
Fig. 5: Regulon of the human BC types.
Fig. 6: Differential gene expression associated with age and tissue region.
Fig. 7: Transcriptomic and chromatin accessibility differences associated with ancestral backgrounds.
Fig. 8: Leveraging multi-omics data to study GWAS and eQTL loci.

Similar content being viewed by others

Data availability

The landing page of the HRCA data resources is accessible at https://rchenlab.github.io/resources/human-atlas.html. Raw sequencing data files, processed Cell Ranger data files and sample metadata information files of HRCA have been deposited in the HCA Data Portal (https://data.humancellatlas.org/hca-bio-networks/eye). The datasets used in HRCA are summarized in Supplementary Table 1. The raw sequencing reads of the newly generated data have been deposited in GEO under accessions GSE265774 and GSE281526, and are included in the SuperSeries GSE265801, which contains all the human eye data produced in our lab. Additionally, raw and normalized count matrices, cell-type annotations and embeddings are also publicly available through the CELLxGENE collection (https://cellxgene.cziscience.com/collections/4c6eaf5c-6d57-4c76-b1e9-60df8c655f1e). HRCA is also accessible at the UCSC Cell Browser (https://retina.cells.ucsc.edu) and the Single Cell Portal (SCP2805-SCP2808).

Code availability

All code used for the HRCA project can be found in the HRCA reproducibility Zenodo repository (https://doi.org/10.5281/zenodo.17265527 (ref. 99)). The pipeline to process the unpublished and collected public datasets is accessible at https://doi.org/10.5281/zenodo.8137510 (ref. 100). Scripts related to the benchmark study are available at https://doi.org/10.5281/zenodo.17412073 (ref. 101). A tutorial on training the HRCA reference model using scArches and performing label transfer with the trained model is available at https://doi.org/10.5281/zenodo.17265527 (ref. 99). The reference model can be downloaded from https://doi.org/10.5281/zenodo.14014720 (ref. 102).

References

  1. Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. Nat. Med. 29, 1563–1577 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar, T. et al. A spatially resolved single-cell genomic atlas of the adult human breast. Nature 620, 181–191 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Jorstad, N. L. et al. Transcriptomic cytoarchitecture reveals principles of human neocortex organization. Science 382, eadf6812 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He, Z. et al. An integrated transcriptomic cell atlas of human neural organoids. Nature 635, 690–698 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu, Q. et al. An integrated transcriptomic cell atlas of human endoderm-derived organoids. Nat. Genet. 57, 1201–1212 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Zyl, T. et al. Cell atlas of the human ocular anterior segment: tissue-specific and shared cell types. Proc. Natl Acad. Sci. USA 119, e2200914119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Monavarfeshani, A. et al. Transcriptomic analysis of the ocular posterior segment completes a cell atlas of the human eye. Proc. Natl Acad. Sci. USA 120, e2306153120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liang, Q. et al. A multi-omics atlas of the human retina at single-cell resolution. Cell Genom. 3, 100298 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hahn, J. et al. Evolution of neuronal cell classes and types in the vertebrate retina. Nature 624, 415–424 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peng, Y. R. et al. Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell 176, 1222–1237 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamagata, M., Yan, W. & Sanes, J. R. A cell atlas of the chick retina based on single-cell transcriptomics. eLife 10, e63907 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tran, N. M. et al. Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron 104, 1039–1055 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yan, W. et al. Mouse retinal cell atlas: molecular identification of over sixty amacrine cell types. J. Neurosci. 40, 5177–5195 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan, W. et al. Cell atlas of the human fovea and peripheral retina. Sci. Rep. 10, 9802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, J. et al. Single-cell multiomics of the human retina reveals hierarchical transcription factor collaboration in mediating cell type-specific effects of genetic variants on gene regulation. Genome Biol. 24, 269 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Luecken, M. D. et al. A sandbox for prediction and integration of DNA, RNA, and proteins in single cells. In Proc. 35th Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2) (NeurIPS, 2021).

  24. Cowan, C. S. et al. Cell types of the human retina and its organoids at single-cell resolution. Cell 182, 1623–1640 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orozco, L. D. et al. Integration of eQTL and a single-cell atlas in the human eye identifies causal genes for age-related macular degeneration. Cell Rep. 30, 1246–1259 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Lukowski, S. W. et al. A single-cell transcriptome atlas of the adult human retina. EMBO J. 38, e100811 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Menon, M. et al. Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat. Commun. 10, 4902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Voigt, A. P. et al. Molecular characterization of foveal versus peripheral human retina by single-cell RNA sequencing. Exp. Eye Res. 184, 234–242 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Santiago, C. P. et al. Comparative analysis of single-cell and single-nucleus RNA-sequencing in a rabbit model of retinal detachment-related proliferative vitreoretinopathy. Ophthalmol. Sci. 3, 100335 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rosen, Y. et al. Toward universal cell embeddings: integrating single-cell RNA-seq datasets across species with SATURN. Nat. Methods 21, 1492–1500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bakken, T. E. et al. Single-cell and single-nucleus RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates, and humans. eLife 10, e64875 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kolb, H., Fernandez, E. & Nelson, R. Webvision: The Organization of the Retina and Visual System (University of Utah Health Sciences Center, 1995).

  34. Liu, A. et al. Discovery of optimal cell type classification marker genes from single cell RNA sequencing data. BMC Methods 1, 15 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cherry, T. J. et al. Mapping the cis-regulatory architecture of the human retina reveals noncoding genetic variation in disease. Proc. Natl Acad. Sci. USA 117, 9001–9012 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hughes, A. E. O., Myers, C. A. & Corbo, J. C. A massively parallel reporter assay reveals context-dependent activity of homeodomain binding sites in vivo. Genome Res. 28, 1520–1531 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shepherdson, J. L. et al. Pathogenic variants in CRX have distinct cis-regulatory effects on enhancers and silencers in photoreceptors. Genome Res. 34, 243–255 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bravo Gonzalez-Blas, C. et al. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat. Methods 20, 1355–1367 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Melo, J. et al. Lhx2 is an essential factor for retinal gliogenesis and notch signaling. J. Neurosci. 36, 2391–2405 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sapkota, D. et al. Onecut1 and Onecut2 redundantly regulate early retinal cell fates during development. Proc. Natl Acad. Sci. USA 111, E4086–E4095 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clark, B. S. et al. Single-cell RNA-seq analysis of retinal development identifies NFI factors as regulating mitotic exit and late-born cell specification. Neuron 102, 1111–1126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamamoto, H., Kon, T., Omori, Y. & Furukawa, T. Functional and evolutionary diversification of Otx2 and Crx in vertebrate retinal photoreceptor and bipolar cell development. Cell Rep. 30, 658–671 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Remez, L. A. et al. Pax6 is essential for the generation of late-born retinal neurons and for inhibition of photoreceptor-fate during late stages of retinogenesis. Dev. Biol. 432, 140–150 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Cheng, H. et al. Photoreceptor-specific nuclear receptor NR2E3 functions as a transcriptional activator in rod photoreceptors. Hum. Mol. Genet. 13, 1563–1575 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Kaewkhaw, R. et al. Transcriptome dynamics of developing photoreceptors in three-dimensional retina cultures recapitulates temporal sequence of human cone and rod differentiation revealing cell surface markers and gene networks. Stem Cells 33, 3504–3518 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Cao, Z. J. & Gao, G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nat. Biotechnol. 40, 1458–1466 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Campello, L. et al. Aging of the retina: molecular and metabolic turbulences and potential interventions. Annu. Rev. Vis. Sci. 7, 633–664 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Aninye, I. O. et al. The roles of sex and gender in women’s eye health disparities in the United States. Biol. Sex Differ. 12, 57 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Urbut, S. M., Wang, G., Carbonetto, P. & Stephens, M. Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. Nat. Genet. 51, 187–195 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Nagai, T. et al. The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev. Biol. 182, 299–313 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Dorgau, B. et al. Deciphering the spatiotemporal transcriptional and chromatin accessibility of human retinal organoid development at the single-cell level. iScience 27, 109397 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. De Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fritsche, L. G. et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet. 48, 134–143 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Currant, H. et al. Sub-cellular level resolution of common genetic variation in the photoreceptor layer identifies continuum between rare disease and common variation. PLoS Genet. 19, e1010587 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gharahkhani, P. et al. Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. Nat. Commun. 12, 1258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khawaja, A. P. et al. Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma. Nat. Genet. 50, 778–782 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Springelkamp, H. et al. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics. Hum. Mol. Genet. 26, 438–453 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hysi, P. G. et al. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nat. Genet. 52, 401–407 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang, L., Zheng, Z., Fang, H. & Yang, J. A generalized linear mixed model association tool for biobank-scale data. Nat. Genet. 53, 1616–1621 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Series B Stat. Methodol. 82, 1273–1300 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zou, Y., Carbonetto, P., Wang, G. & Stephens, M. Fine-mapping from summary data with the ‘Sum of Single Effects’ model. PLoS Genet. 18, e1010299 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Marchal, C. et al. High-resolution genome topology of human retina uncovers super enhancer-promoter interactions at tissue-specific and multifactorial disease loci. Nat. Commun. 13, 5827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ratnapriya, R. et al. Retinal transcriptome and eQTL analyses identify genes associated with age-related macular degeneration. Nat. Genet. 51, 606–610 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Megill, C. et al. cellxgene: a performant, scalable exploration platform for high dimensional sparse matrices. Preprint at bioRxiv https://doi.org/10.1101/2021.04.05.438318 (2021).

  67. Speir, M. L. et al. UCSC Cell Browser: visualize your single-cell data. Bioinformatics 37, 4578–4580 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tarhan, L. et al. Single cell portal: an interactive home for single-cell genomics data. Preprint at bioRxiv https://doi.org/10.1101/2023.07.13.548886 (2023).

  69. Friedman, R. Z. et al. Information content differentiates enhancers from silencers in mouse photoreceptors. eLife 10, e67403 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nedelec, Y. et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell 167, 657–669 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer learning. Nat. Biotechnol. 40, 121–130 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Owen, L. A. et al. The Utah protocol for postmortem eye phenotyping and molecular biochemical analysis. Invest. Ophthalmol. Vis. Sci. 60, 1204–1212 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, J. et al. Comprehensive single-cell atlas of the mouse retina. iScience 27, 109916 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lun, A. T. L. et al. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 20, 63 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Heiser, C. N., Wang, V. M., Chen, B., Hughey, J. J. & Lau, K. S. Automated quality control and cell identification of droplet-based single-cell data using dropkick. Genome Res. 31, 1742–1752 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. GigaScience 9, giaa151 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Alquicira-Hernandez, J., Sathe, A., Ji, H. P., Nguyen, Q. & Powell, J. E. scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data. Genome Biol. 20, 264 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).

  85. Miao, Z. et al. Putative cell type discovery from single-cell gene expression data. Nat. Methods 17, 621–628 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, Y. et al. Model-based analysis of ChIP–seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with signac. Nat. Methods 18, 1333–1341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Hoffman, G. E. & Schadt, E. E. variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinformatics 17, 483 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhou, H., Alexander, D. & Lange, K. A quasi-Newton acceleration for high-dimensional optimization algorithms. Stat. Comput. 21, 261–273 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Benjamin, K. J. M. et al. Analysis of gene expression in the postmortem brain of neurotypical Black Americans reveals contributions of genetic ancestry. Nat. Neurosci. 27, 1064–1074 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Murphy, A. E., Schilder, B. M. & Skene, N. G. MungeSumstats: a Bioconductor package for the standardization and quality control of many GWAS summary statistics. Bioinformatics 37, 4593–4596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Skene, N. G. & Grant, S. G. Identification of vulnerable cell types in major brain disorders using single cell transcriptomes and expression weighted cell type enrichment. Front. Neurosci. 10, 16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Coetzee, S. G., Coetzee, G. A. & Hazelett, D. J. motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites. Bioinformatics 31, 3847–3849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wallace, C. A more accurate method for colocalisation analysis allowing for multiple causal variants. PLoS Genet. 17, e1009440 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li, J. & Wang, J. RCHENLAB/HRCA_reproducibility: manuscript release. Zenodo https://doi.org/10.5281/zenodo.17265527 (2025).

  100. Li, J. lijinbio/cellqc: initial release. Zenodo https://doi.org/10.5281/zenodo.8137510 (2023).

  101. Ibarra, I. theislab/HRCA-reproducibility: manuscript release. Zenodo https://doi.org/10.5281/zenodo.17412073 (2025).

  102. Li, J., & Chen, R. Human Retina Cell Atlas reference model. Zenodo https://doi.org/10.5281/zenodo.14014720 (2024).

Download references

Acknowledgements

This project was supported by the Chan Zuckerberg Initiative (CZI; 2019-002425 and 2021-239847 to R.C. and 2021-237885 to J.T.S.). Additionally, next-generation sequencing was performed on instrument supported by the National Institutes of Health (NIH) and shared instrument grant S10OD023469 (to R.C.). This work was also supported by NIH (grants EY028633 to J.R.S. and U01 MH105960 to J.R.S.), CZI award (CZF-2019-002459 to J.R.S.), NIH/NEI (EY012543 to S.C. and EY002687 to WU-DOVS), NIMH BRAIN (RF1MH132662 to M.H.) and CIRM (DISC0-14514 to M.H.). The authors acknowledge support from the Gavin Herbert Eye Institute at the University of California, Irvine, from an unrestricted grant from Research to Prevent Blindness and from NIH (core grant P30 EY034070). The authors thank J. Zamanian (Department of Biomedical Data Science, Stanford University) and the Lattice team at Stanford for their support with data dissemination. This publication is part of the HCA (http://www.humancellatlas.org/publications/). The authors would also like to acknowledge the feedback and discussions from the members of the HCA Eye Biological Network.

Author information

Authors and Affiliations

Authors

Contributions

J. Li, J.W. and R.C. conceptualized and designed the study. R.C. supervised the work. S.L.Z.C., B.S.C., L.A.O., X.B., M.M.D. and J.T.S. collected the samples. X.C. and Y.L. generated the snRNA-seq and snATAC–seq data in this study. I.L.I. performed the benchmark study for data integration of RNA-seq datasets in this study and label transfer analyses. J. Li and J.W. compiled the dataset collection for public snRNA-seq/scRNA-seq and snATAC–seq datasets. J. Li performed the data integration for RNA-seq datasets. J.W. performed the data integration for ATAC–seq datasets. J. Li performed the construction, annotation and data dissemination of the atlas. J.W. and Z.Z. conducted the multi-omics analysis. J.W. conducted the gene expression across covariates and genetic variant analysis. I.L.I., M.D.L. and F.J.T. provided input to various analysis methods. N.M.T. and K.S. provided input for various annotations. A.M., W.Y. and J.R.S. collected, analyzed and provided the processed data from an unpublished dataset. J. Lu, Y.Z. and S.C. advised and performed the MPRAs in mouse retina. B.W. and M.H. hosted the HRCA on the UCSC Cell Browser. J. Li and J.W. wrote the first draft of the paper. All authors edited the paper and contributed to the critical revisions of the paper.

Corresponding authors

Correspondence to Fabian J. Theis or Rui Chen.

Ethics declarations

Competing interests

F.J.T. consults for Immunai, CytoReason, Cellarity and Omniscope, and owns interests in Dermagnostix GmbH and Cellarity. M.D.L. has received research contracts from the CZI and speaker fees from Pfizer and Janssen Pharmaceuticals. The other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Anand Swaroop and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Overview of the HRCA.

a, Cell proportion distribution of major classes among donors. The x-axis corresponds to each donor, and the y-axis is the cell proportion of major classes. The last bar is the cell proportion across total cells. b, A pie chart illustrating the number of cells for major classes and their proportions. c, Integration of datasets from snRNA-seq and scRNA-seq datasets. The cells are colored by major classes. d, The atlas is colored by the two technologies: snRNA-seq (in coral) and scRNA-seq (in blue). e, The distribution of transcriptomic data for 280 samples obtained from snRNA-seq and scRNA-seq technologies. Each sample is colored by the technology used. f, The atlas of scRNA-seq data, with major classes represented using different colors. g, Dot plot illustrating the distribution of expression levels of marker genes for major cell classes in scRNA-seq data.

Extended Data Fig. 2 Comparison between single-nuclei and single-cell technologies.

a, Cell proportion of major class of samples between snRNA-seq and scRNA-seq in fovea, macular, and periphery tissue regions. The red bar represents cell proportions of major classes in snRNA-seq samples, and the blue bar represents cell proportions of scRNA-seq samples. b, Enriched GO BPs of 1,815 overexpressed genes in snRNA-seq data. c, Enriched GO BPs of 5,473 overexpressed genes in scRNA-seq data. Statistical significance for b and c was calculated using a one-sided Fisher’s exact test and adjusted for FDR using the clusterProfiler package.

Extended Data Fig. 3 Transcriptomic signature of bipolar cells.

a, UMAP visualization of BC cells based on single-cell transcriptome data. b, Dot plot of the distribution of marker gene expression by the single-cell measurements. c, Co-embedding between snRNA-seq and scRNA-seq cells. The label names are prefixed by ‘n’ for snRNA and ‘c’ for scRNA. d, Volcano plot of differentially expressed genes between GB and BB of the snRNA-seq datasets. Differentially expressed genes were identified under |log2 fold change| > 1 and q-value < 0.05. e, Predicted markers per BC type by the binary classification analysis using snRNA-seq datasets. Rows are BC types, and columns represent new markers.

Extended Data Fig. 4 Annotation of amacrine cells.

a, Dot plot of AC cell clusters by markers to identify AC subclasses for GABAergic, glycinergic, and both. PAX6 and TFAP2B were used as AC pan-markers. GAD1/GAD2 were used for GABAergic ACs, and SLC6A9 was used for the glycinergic ACs. MEIS2, TCF4, and EBF1 were also included in the dot plot. b, Dot plot of predicted markers for AC types.

Extended Data Fig. 5 Cross-mapping for human amacrine cells.

a, SATURN co-embedding visualization of AC types between snRNA-seq and scRNA-seq. ACs are colored by the two technologies. b, The same SATURN co-embedding with AC type labels color-coded on top of clusters. Labels are prefixed with ‘n’ for snRNA-seq datasets and ‘c’ for scRNA-seq data. c, SATURN co-embedding visualization of AC types across human, macaque and mouse species. AC labels for the three species are overlaid on clusters. Labels are prefixed with ‘h’ for human, ‘a’ for macaque, and ‘m’ for mouse.

Extended Data Fig. 6 Annotation of retinal ganglion cells.

a, UMAP visualization of RGC clusters, excluding two midget types MG_OFF and MG_ON. b, Dot plot of RGC clusters with existing markers. c, The proportion of parasol RGCs within the RGC population in the samples. Samples enriched by NeuN experiments are highlighted in green. d, Sankey diagram depicting the relationship between RGC clusters from snRNA-seq datasets and the public labeling of RGC types from scRNA-seq datasets. The width of the lines is proportional to the number of cells in the mapping. e, Sankey diagram illustrating RGC types alignment between humans (top row) and mice (bottom row).

Extended Data Fig. 7 A high-resolution snATAC-seq cell atlas of the human retina.

a, Venn diagram showing the overlapped OCRs detected by retinal snATAC-seq and bulk ATAC-seq. b, Pie chart showing cell type specificity of OCRs identified from retinal snATAC-seq (left) and bulk ATAC-seq (right). The color codes the number of cell types where the OCRs were observed. c, Heatmap showing the chromatin accessibility of differential accessible regions (DARs) identified in major retinal cell classes. Rows represented chromatin regions and columns corresponded to cell classes. d, Genome track of the RHO locus showing the cell class-specific chromatin accessibility in the promoter and linked cis-regulatory elements of this gene. e, Heatmap showing chromatin accessibility (left) and gene expression (right) of 129,636 significantly linked CRE–gene pairs identified by the correlation between gene expression and OCR accessibility. Rows represent cis-regulatory element (CRE)–gene pairs, which are clustered into 25 groups using k-means clustering. Columns represent cell groups that were grouped using the K nearest neighbor (KNN) method. f, Density plot showing the activity (log2(FC) value of comparison of the activities between a tested sequence and a basal CRX promoter) distribution of the tested sequences by MPRAs. IRD CREs, n = 1,714 (green); control CREs with a variety of activities, n = 20 (red); scrambled CREs, n = 300 (blue). g, Box plots showing phastCons20way score distribution of validated enhancers, silencers and inactive elements. P-values were calculated using a one-sided Wilcoxon rank-sum test to assess differences among groups (n = 1,714 CREs) without adjustment for multiple comparisons. Centerline represents the median phastCons20way score, upper and lower hinges represent the upper and lower quartiles, respectively, and whiskers represent 1.5× IQR. h, Box plots showing phyloP20way score distribution of validated enhancers, silencers and inactive elements. P-values were calculated using a one-sided Wilcoxon rank-sum test to assess differences among groups (n = 1,714 CREs) without adjustment for multiple comparisons. Centerline represents the median phyloP20way score, upper and lower hinges represent the upper and lower quartiles, respectively, and whiskers represent 1.5× IQR. i, Scatterplot showing eRegulon specificity score of each transcription factor (TF) regulon across cell classes. The top five TFs are highlighted in red.

Extended Data Fig. 8 Multi-omics atlas of the human retinal cell subclasses and cell types.

a, Dot plot showing marker gene expression measured by snRNA-seq and their activity score derived from snATAC-seq in the corresponding bipolar cell types. b, UMAP showing the co-embedding of amacrine cells (AC) from snRNA-seq and snATAC-seq were clustered into AC types. c, Dot plot showing marker gene expression measured by snRNA-seq and their activity score derived from snATAC-seq in the corresponding AC subclasses. d, UMAP showing the co-embedding of horizontal cells (HC) from snRNA-seq and snATAC-seq were clustered into HC types. e, Dot plot showing marker gene expression measured by snRNA-seq and their activity score derived from snATAC-seq in the corresponding HC types. f, UMAP showing the co-embedding of cone cells from snRNA-seq and snATAC-seq were clustered into cone subclasses. g, Dot plot showing marker gene expression measured by snRNA-seq and their activity score derived from snATAC-seq in the corresponding cone subclasses. h, Heatmap showing the identified regulons where TF expression highly correlated with cell type identity. Color scale indicates gene expression level of TF. Dot size indicates enrichment of TF target regions. The rows represent BC cell types, and the columns represent the identified regulons.

Extended Data Fig. 9 Regulon of the human retinal cell subclasses and cell types.

a, Heatmap showing the gene expression and the target site enrichment of transcription factors that regulate cone subclasses. b, Heatmap showing the gene expression and the target site enrichment of transcription factors that regulate AC subclasses. c, Heatmap showing the gene expression and the target site enrichment of transcription factors that regulate HC types. d, Box plot showing the AUC value distribution of the regulon modules identified in bipolar cell (BC) types. For each regulon module, the BC types with the average AUC value higher than 0.2 were labeled. Centerline represents the median AUC value, upper and lower hinges represent the upper and lower quartiles, respectively, and whiskers represent 1.5× the IQR.

Extended Data Fig. 10 Cell type enrichment analysis of GWAS traits.

a, Cell class enrichment analysis of GWAS loci based on open chromatin regions across different cell classes, using LDSC. b, Cell class enrichment analysis of GWAS loci based on differentially accessible regions across different cell classes, using LDSC. c, Cell class enrichment analysis of GWAS loci based on open chromatin regions across different cell classes and ancestral backgrounds, using LDSC. d, Cell class enrichment analysis of GWAS loci based on gene expression across different cell classes. The dot size indicates −log10P. Significant results (FDR < 0.05) are shown in blue in Fig. 10a–c and in red in Fig. 10d. Non-significant results (FDR ≥ 0.05) are shown in grey.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Note and Methods.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–22.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, J., Ibarra, I.L. et al. Single-cell atlas of the transcriptome and chromatin accessibility in the human retina. Nat Genet (2026). https://doi.org/10.1038/s41588-025-02454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41588-025-02454-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing