Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cholesterol-targeting Wnt–β-catenin signaling inhibitors for colorectal cancer

Abstract

Most persons with colorectal cancer (CRC) carry adenomatous polyposis coli (APC) truncation leading to aberrant Wnt–β-catenin signaling; however, effective targeted therapy for them is lacking as the mechanism by which APC truncation drives CRC remains elusive. Here, we report that the cholesterol level in the inner leaflet of the plasma membrane (IPM) is elevated in all tested APC-truncated CRC cells, driving Wnt-independent formation of Wnt signalosomes through Dishevelled (Dvl)–cholesterol interaction. Cholesterol–Dvl interaction inhibitors potently blocked β-catenin signaling in APC-truncated CRC cells and suppressed their viability. Because of low IPM cholesterol level and low Dvl expression and dependence, normal cells including primary colon epithelial cells were not sensitive to these inhibitors. In vivo testing with a xenograft mouse model showed that our inhibitors effectively suppressed truncated APC-driven tumors without causing intestinal toxicity. Collectively, these results suggest that the most common type of CRC could be effectively and safely treated by blocking the cholesterol–Dvl–β-catenin signaling axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cholesterol quantification in colon cells.
Fig. 2: Differential Wnt–β-catenin signaling activity of various colon cells.
Fig. 3: IPM cholesterol and β-catenin levels in unstimulated isogenic HCT15 cells.
Fig. 4: Cholesterol-mediated formation of Wnt signalosomes.
Fig. 5: Inhibition of Dvl-PDZ–cholesterol interaction by small molecules.
Fig. 6: In vivo antitumor activity of WC522 and WC593.

Similar content being viewed by others

Data availability

All described data, all the databases/datasets used in the study and accessible links and accession codes are contained within the paper and Supplementary Information. Source data are provided with this paper.

References

  1. Siegel, R. L., Wagle, N. S., Cercek, A., Smith, R. A. & Jemal, A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 73, 233–254 (2023).

    PubMed  Google Scholar 

  2. Kim, M. J., Huang, Y. & Park, J. I. Targeting Wnt signaling for gastrointestinal cancer therapy: present and evolving views. Cancers (Basel) 12, 3638 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. van Neerven, S. M. & Vermeulen, L. The interplay between intrinsic and extrinsic Wnt signaling in controlling intestinal transformation. Differentiation 108, 17–23 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nusse, R. & Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Bugter, J. M., Fenderico, N. & Maurice, M. M. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat. Rev. Cancer 21, 5–21 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Albrecht, L. V., Tejeda-Muñoz, N. & De Robertis, E. M. Cell biology of canonical Wnt signaling. Annu. Rev. Cell Dev. Biol. 37, 369–389 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, L. & Shay, J. W. Multiple roles of APC and its therapeutic implications in colorectal cancer. J. Natl Cancer Inst. 109, djw332 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang, L. S. & Lum, L. Chemical modulation of WNT signaling in cancer. Prog. Mol. Biol. Transl. Sci. 153, 245–269 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Zhong, Z. & Virshup, D. M. Wnt signaling and drug resistance in cancer. Mol. Pharmacol. 97, 72–89 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. de Sousa, E. M. F. & Vermeulen, L. Wnt signaling in cancer stem cell biology. Cancers (Basel) 8, 60 (2016).

    Article  Google Scholar 

  11. Kahn, M. Wnt signaling in stem cells and cancer stem cells: a tale of two coactivators. Prog. Mol. Biol. Transl. Sci. 153, 209–244 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Steinhart, Z. & Angers, S. Wnt signaling in development and tissue homeostasis. Development 145, dev146589 (2018).

    Article  PubMed  Google Scholar 

  13. Tan, S. H. & Barker, N. Wnt signaling in adult epithelial stem cells and cancer. Prog. Mol. Biol. Transl. Sci. 153, 21–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Kahn, M. Can we safely target the WNT pathway? Nat. Rev. Drug Discov. 13, 513–532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Theodoropoulos, P. C. et al. A medicinal chemistry-driven approach identified the sterol isomerase EBP as the molecular target of TASIN colorectal cancer toxins. J. Am. Chem. Soc. 142, 6128–6138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, L. et al. Selective targeting of mutant adenomatous polyposis coli (APC) in colorectal cancer. Sci. Transl. Med. 8, 361ra140 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Erazo-Oliveras, A. et al. Mutant APC reshapes Wnt signaling plasma membrane nanodomains by altering cholesterol levels via oncogenic β-catenin. Nat. Commun. 14, 4342 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, B., Song, B. L. & Xu, C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat. Metab. 2, 132–141 (2020).

    Article  PubMed  Google Scholar 

  19. Mullen, P. J., Yu, R., Longo, J., Archer, M. C. & Penn, L. Z. The interplay between cell signalling and the mevalonate pathway in cancer. Nat. Rev. Cancer 16, 718–731 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Juarez, D. & Fruman, D. A. Targeting the mevalonate pathway in cancer. Trends Cancer 7, 525–540 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sheng, R. et al. Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat. Commun. 5, 4393 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, S. L. et al. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat. Chem. Biol. 13, 268–274 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Pham, H. et al. Development of a novel spatiotemporal depletion system for cellular cholesterol. J. Lipid Res. 63, 100178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wallingford, J. B. & Habas, R. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132, 4421–4436 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Gao, C. & Chen, Y. G. Dishevelled: the hub of Wnt signaling. Cell. Signal. 22, 717–727 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Schwarz-Romond, T. et al. The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat. Struct. Mol. Biol. 14, 484–492 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Wong, H. C. et al. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol. Cell 12, 1251–1260 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wong, H. C. et al. Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. Nat. Struct. Biol. 7, 1178–1184 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Francis, K. R. et al. Modeling Smith–Lemli–Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes. Nat. Med. 22, 388–396 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Buwaneka, P., Ralko, A., Liu, S. L. & Cho, W. Evaluation of the available cholesterol concentration in the inner leaflet of the plasma membrane of mammalian cells. J. Lipid Res. 62, 100084 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Castellano, B. M. et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9–Niemann–Pick C1 signaling complex. Science 355, 1306–1311 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shin, H. R. et al. Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1. Science 377, 1290–1298 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Varma, M. & Deserno, M. Distribution of cholesterol in asymmetric membranes driven by composition and differential stress. Biophys. J. 121, 4001–4018 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Doktorova, M. et al. Cell membranes sustain phospholipid imbalance via cholesterol asymmetry. Preprint at bioRxiv https://doi.org/10.1101/2023.07.30.551157 (2023).

  35. Tao, X., Zhao, C. & MacKinnon, R. Membrane protein isolation and structure determination in cell-derived membrane vesicles. Proc. Natl. Acad. Sci. USA 120, e2302325120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chandra, S. H., Wacker, I., Appelt, U. K., Behrens, J. & Schneikert, J. A common role for various human truncated adenomatous polyposis coli isoforms in the control of β-catenin activity and cell proliferation. PLoS ONE 7, e34479 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Ogasawara, F. & Ueda, K. ABCA1 and cholesterol transfer protein Aster-A promote an asymmetric cholesterol distribution in the plasma membrane. J. Biol. Chem. 298, 102702 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McMurray, H. R. et al. Synergistic response to oncogenic mutations defines gene class critical to cancer phenotype. Nature 453, 1112–1116 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brown, M. S., Radhakrishnan, A. & Goldstein, J. L. Retrospective on cholesterol homeostasis: the central role of Scap. Annu. Rev. Biochem. 87, 783–807 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Luo, J., Yang, H. & Song, B. L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 21, 225–245 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Ahmed, D. et al. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2, e71 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Flanagan, D. J. et al. Frizzled-7 is required for Wnt signaling in gastric tumors with and without APC mutations. Cancer Res. 79, 970–981 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Saito-Diaz, K. et al. APC inhibits ligand-independent Wnt signaling by the clathrin endocytic pathway. Dev. Cell 44, 566–581(2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schaefer, K. N. & Peifer, M. Wnt/β-catenin signaling regulation and a role for biomolecular condensates. Dev. Cell 48, 429–444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bienz, M. Head-to-tail polymerization in the assembly of biomolecular condensates. Cell 182, 799–811 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Ohkubo, Y. Z., Pogorelov, T. V., Arcario, M. J., Christensen, G. A. & Tajkhorshid, E. Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model. Biophys. J. 102, 2130–2139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Soubias, O. et al. Membrane surface recognition by the ASAP1 PH domain and consequences for interactions with the small GTPase Arf1. Sci. Adv. 6, eabd1882 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Singaram, I. et al. Targeting lipid-protein interaction to treat Syk-mediated acute myeloid leukemia. Nat. Chem. Biol. 19, 239–250 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, Y. et al. Inhibition of Wnt signaling by Dishevelled PDZ peptides. Nat. Chem. Biol. 5, 217–219 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Cho, W. & Stahelin, R. V. Membrane–protein interactions in cell signaling and membrane trafficking. Annu. Rev. Biophys. Biomol. Struct. 34, 119–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, X. & Deng, Y.Simulations of a specific inhibitor of the dishevelled PDZ domain. J. Mol. Model. 15, 91–96 (2009).

    Article  PubMed  Google Scholar 

  52. Lau, T. et al. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 73, 3132–3144 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, J. et al. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc. Natl Acad. Sci. USA 110, 20224–20229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dow, L. E. et al. Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell 161, 1539–1552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Crespo, M. et al. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat. Med. 23, 878–884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhong, Y. et al. Tankyrase inhibition causes reversible intestinal toxicity in mice with a therapeutic index < 1. Toxicol. Pathol. 44, 267–278 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Voloshanenko, O. et al. Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nat. Commun. 4, 2610 (2013).

    Article  PubMed  Google Scholar 

  58. Madan, B. & Virshup, D. M. Targeting Wnts at the source—new mechanisms, new biomarkers, new drugs. Mol. Cancer Ther. 14, 1087–1094 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Clevers, H., Loh, K. M. & Nusse, R. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346, 1248012 (2014).

    Article  PubMed  Google Scholar 

  60. Schepers, A. & Clevers, H. Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harb. Perspect. Biol. 4, a007989 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang, C. et al. Overexpression of Dishevelled 2 is involved in tumor metastasis and is associated with poor prognosis in hepatocellular carcinoma. Clin. Transl. Oncol. 19, 1507–1517 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. He, T. Y. et al. DDX3 promotes tumor invasion in colorectal cancer via the CK1ε/Dvl2 axis. Sci. Rep. 6, 21483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pulvirenti, T. et al. Dishevelled 2 signaling promotes self-renewal and tumorigenicity in human gliomas. Cancer Res. 71, 7280–7290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Metcalfe, C. et al. Dvl2 promotes intestinal length and neoplasia in the ApcMin mouse model for colorectal cancer. Cancer Res. 70, 6629–6638 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tanaka, N. et al. APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer. Mol. Cancer Ther. 16, 752–762 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Kim, H., Afsari, H. S. & Cho, W. High-throughput fluorescence assay for membrane-protein interaction. J. Lipid Res. 54, 3531–3538 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Park, M. J. et al. SH2 domains serve as lipid-binding modules for pTyr-signaling proteins. Mol Cell 62, 7–20 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Buwaneka, P., Ralko, A., Gorai, S., Pham, H. & Cho, W. Phosphoinositide-binding activity of Smad2 is essential for its function in TGF-β signaling. J. Biol. Chem. 297, 101303 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Sharma, A. et al. Photostable and orthogonal solvatochromic fluorophores for simultaneous in situ quantification of multiple cellular signaling molecules. ACS Chem. Biol. 15, 1913–1920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cho, W., Yoon, Y., Liu, S. L., Baek, K. & Sheng, R. Fluorescence-based in situ quantitative imaging for cellular lipids. Methods Enzymol. 583, 19–33 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, J. H., Chung, T. D. & Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Koyama-Honda, I. et al. Fluorescence imaging for monitoring the colocalization of two single molecules in living cells. Biophys. J. 88, 2126–2136 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Vidana Gamage, H. E. et al. Development of NR0B2 as a therapeutic target for the re-education of tumor associated myeloid cells. Cancer Lett. 597, 217086 (2024).

    Article  CAS  PubMed  Google Scholar 

  75. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 27–28 (1996).

    Article  Google Scholar 

  76. Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Qi, Y. et al. CHARMM-GUI HMMM builder for membrane simulations with the highly mobile membrane-mimetic model. Biophys. J. 109, 2012–2022 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vermaas, J. V., Pogorelov, T. V. & Tajkhorshid, E. Extension of the highly mobile membrane mimetic to transmembrane systems through customized in silico solvents. J. Phys. Chem. B 121, 3764–3776 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Wells, D. B., Abramkina, V. & Aksimentiev, A. Exploring transmembrane transport through α-hemolysin with grid-steered molecular dynamics. J. Chem. Phys. 127, 125101 (2007).

    Article  PubMed  Google Scholar 

  82. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carnevale, L. N., Arango, A. S., Arnold, W. R., Tajkhorshid, E. & Das, A. Endocannabinoid virodhamine Is an endogenous inhibitor of human cardiovascular CYP2J2 epoxygenase. Biochemistry 57, 6489–6499 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Heyer, L. J., Kruglyak, S. & Yooseph, S. Exploring expression data: identification and analysis of coexpressed genes. Genome Res. 9, 1106–1115 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (R35 GM122530 to W.C.; R01 CA234025 to E.R.N., GM 120281 to V.G.; P41 GM104601 and R01 GM123455 to E.T.; R01 NS114413 to S.M.C.; DK114373 and DK128167 to B.W.) and Department of Defense Breast Cancer Research Program (Era of Hope Scholar Award BC200206 to E.R.N.). E.T. acknowledges computing resources provided by Blue Waters at National Center for Supercomputing Applications and Extreme Science and Engineering Discovery Environment (grant MCA06N060 to E.T.). E.T. is also grateful to the School of Chemical Sciences Scientific Software Program for access to the Schrödinger Suite. W.C. thanks F. Cong of Novartis for a generous gift of Dvl triple-KO MEF cells.

Author information

Authors and Affiliations

Authors

Contributions

A.S. performed the inhibitor synthesis, screening and optimization and the cellular assays. J.Z., S.K. and J.S. performed the quantitative imaging analyses. D.G.O., H.S.M. and E.T. performed the computational analysis. A.A. and C.F.D contributed to the inhibitor screening. K.B. and P.B. assisted in the cell studies. K.P., D.A.A., D.P.J., S.M. and S.M.C. performed the MS analyses. Y.W. and V.G. constructed the small-molecule library and participated in the early lead optimization. D.L. assisted in the lead optimization. S.V.B., E.W., R.S., B.W. and E.R.N. performed the in vivo inhibitor testing. W.C. conceptualized and supervised the work and wrote the paper.

Corresponding author

Correspondence to Wonhwa Cho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Gunnar Schulte and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Effects of APC and IPM cholesterol on β-catenin stability.

a. Western blot analysis of active β-catenin before and after APC knockdown and site-specific IPM cholesterol depletion, respectively, in APC-truncated CRC (HCT15 and Caco-2) cells. b. Quantification of active β-catenin/GAPDH is shown in a. Error bars are SD’s. n = 3 for all western blots. Statistical analysis was performed with one-way ANOVA. ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001. p = 0.0009 (HCT15; column1-2), 0.0008 (HCT15; column1-3), 0.41 (HCT15; column3-4), 0.00012 (Caco2; column1-2), 0.0037 (Caco2; column1-3), 0.43 (Caco2; column3-4). Displayed gel images are representative of similar images from three independent measurements.

Source data

Extended Data Fig. 2 Dvl2 specificity of WC522.

a. The structure of WC522B. b. Western blot analysis of WC522B-binding proteins captured by streptavidin beads pull-down. Biotin was used as a negative control. 1 μM WC522B (12 h) was used for pulldown experiments and GAPDH was used as a gel loading control for all immunoblotting. Displayed data are representative of similar images from three independent measurements.

Source data

Extended Data Fig. 3 Inhibition of β-catenin signaling by WC522 and WC593.

a. Inhibition of the active β-catenin level by WC522 and WC593 was measured in unstimulated APC-truncated CRC cells. GAPDH was employed as a gel loading control for all immunoblotting. Displayed gel images are representative of similar images from three independent measurements. b. Quantification of active β-catenin/GAPDH data shown in a. c. Inhibition of β-catenin transcriptional activity by WC522 and WC593 in unstimulated APC-truncated CRC cells measured by the TopFlash luciferase assay. Error bars are SD’s from three independent measurements (n = 3). Statistical analysis was performed with one-way ANOVA. ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001. For b, p = 0.021 (HCT15; column1-2), <0.0001 (HCT15; column1-3), <0.0001 (HCT15; column1-4), 0.014 (Caco2; column1-2), <0.0001 (Caco2; column1-3), <0.0001 (Caco2; column1-4), 0.021 (DLD1; column1-2), <0.0001 (DLD1; column1-3), <0.0001 (DLD1; column1-4)., 0.68 (LOVO; column1-2), <0.0001 (LOVO; column1-3), <0.0001 (LOVO; column1-4)., 0.073 (HT29; column1-2), <0.0001 (HT29; column1-3), <0.0001 (HT29; column1-4). For c, p = 0.47 (HCT15; column1-2), <0.0001 (HCT15; column1-3), <0.0001 (HCT15; column1-4), 0.27 (Caco2; column1-2), <0.0001 (Caco2; column1-3), <0.0001 (Caco2; column1-4), 0.26 (DLD1; column1-2), <0.0001 (DLD1; column1-3), <0.0001 (DLD1; column1-4)., 0468 (LOVO; column1-2), <0.0001 (LOVO; column1-3), <0.0001 (LOVO; column1-4)., 0.28 (HT29; column1-2), <0.0001 (HT29; column1-3), <0.0001 (HT29; column1-4).

Source data

Extended Data Fig. 4 Cellular inhibitory activity of WC522 and WC593.

a. Inhibition of the active β-catenin level by WC522 and WC593 in Wnt3a-stimulated colon cells. b. Quantification of the data shown in a. c. Inhibition of β-catenin transcriptional activity by WC522 and WC593 in Wnt3a-stimulated colon cells. Wnt3a was 50 ng/ml for HCT15, Caco-2 and DLD1 cells and 200 ng/ml for HCT116, RKO, NCI-H508, and CCD-18Co cells. d. Inhibition of the active β-catenin level by WC522 and WC593 in isogenic HCT15 cells. Western blot analysis of active β-catenin in unstimulated HCT15 cells harboring various APC truncations and FL APC was performed as described in Fig. 3a. e. Quantification of the data shown in d. 1 μM WC522 and WC593 (12 h) were used for all inhibition experiments. GAPDH was employed as a gel loading control for all immunoblotting. Error bars are SD’s. n = 3 for all measurements. Statistical analysis was performed with one-way ANOVA. ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001. For b, p = 0.00025 (HCT15; column1-2), 0.45 (HCT15; column2-3), <0.0001 (HCT15; column2-4), <0.0001 (HCT15; column2-5), 0.0096 (Caco2; column1-2), 0.34 (Caco2; column2-3), <0.0001 (Caco2; column2-4), <0.0001 (Caco2; column2-5), <0.0001 (DLD1; column1-2), 0.048 (DLD1; column2-3), <0.0001 (DLD1; column2-4), <0.0001 (DLD1; column2-5), 0.0009 (HCT116; column1-2), 0.86 (HCT116; column2-3), 0.039 (HCT116; column2-4), 0.0045 (HCT116; column2-5), 0.004 (RKO; column1-2), 0.79 (RKO; column2-3), 0.51 (RKO; column2-4), 0.086 (RKO; column2-5), 0.002 (NCI-H508; column1-2), 0.57 (NCI-H508; column2-3), 0.33 (NCI-H508; column2-4), 0.14 (NCI-H508; column2-5), <0.0001 (CCD-18Co; column1-2), 0.075 (CCD-18Co; column2-3), 0.037 (CCD-18Co; column2-4), 0.012 (CCD-18Co; column2-5). For c, p = <0.0001 (HCT15; column1-2), 0.43 (HCT15; column2-3), <0.0001 (HCT15; column2-4), <0.0001 (HCT15; column2-5), <0.0001 (Caco2; column1-2), 0.56 (Caco2; column2-3), <0.0001 (Caco2; column2-4), <0.0001 (Caco2; column2-5), <0.0001 (DLD1; column1-2), 0.23 (DLD1; column2-3), <0.0001 (DLD1; column2-4), <0.0001 (DLD1; column2-5), 0.0002 (CCD-18Co; column1-2), 0.27(CCD-18Co; column2-3), 0.066 (CCD-18Co; column2-4), 0.019 (CCD-18Co; column2-5). For e, p = <0.0001 (APC1-1941; column1-2), <0.0001 (APC1-1941; column1-3), <0.0001 (APC1-1941; column1-4), 0.11 (APC1-1309; column1-2), <0.0001 (APC1-1309; column1-3), <0.0001 (APC1-1309; column1-4), 0.68 (APC1-331; column1-2), <0.0001 (APC1-331; column1-3), <0.0001 (APC1-331; column1-4), 0.55 (APC1-2843; column1-2), 0.31 (APC1-2843; column1-3), 0.16 (APC1-2843; column1-4).

Source data

Extended Data Fig. 5 In vivo safety of WC522 and WC593.

a. The length of intestines in xenografted mice treated with placebo, WC593, and WC522 for 21 days. b. Representative histology and quantification of jejunum from mice as in a (~40 villi and 40 crypts per mouse, 6–9 mice/group). c. Representative images of EdU staining and quantification of EdU+ proliferating cells in mice (~25 crypts per mouse, 6–9 mice/group). Scale bars indicate 200 µm for b and 50 µm for c, respectively. For all data, values are means ± SEM with n = 10 for each group. Statistical analysis was performed with one-way ANOVA. ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001. For a, p = 0.79 (column1-2), 0.79 (column1-3). For b, p = 0.46 (villi; column1-2), 0.43 (villi; column1-3), 0.60 (crypt height; column1-2), 0.13 (crypt height; column1-3), 0.11 (crypt number; column1-2), 0.22 (crypt number; column1-3). For c, p = 0.29 (column1-2), 0.07 (column1-3).

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Tables 1–3, Notes 1 and 2 and Data 1–6.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Unprocessed western blots.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Unprocessed western blots.

Source Data Extended Data Fig. 3

Unprocessed western blots.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Unprocessed western blots.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Zalejski, J., Bendre, S.V. et al. Cholesterol-targeting Wnt–β-catenin signaling inhibitors for colorectal cancer. Nat Chem Biol 21, 1376–1386 (2025). https://doi.org/10.1038/s41589-025-01870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41589-025-01870-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer