Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Digital health for aging populations

Abstract

Growing life expectancy poses important societal challenges, placing an increasing burden on ever more strained health systems. Digital technologies offer tremendous potential for shifting from traditional medical routines to remote medicine and transforming our ability to manage health and independence in aging populations. In this Perspective, we summarize the current progress toward, and challenges and future opportunities of, harnessing digital technologies for effective geriatric care. Special attention is given to the role of wearables in assisting older adults to monitor their health and maintain independence at home. Challenges to the widespread future use of digital technologies in this population will be discussed, along with a vision for how such technologies will shape the future of healthy aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The landscape of current wearable devices for health monitoring in older adults.
Fig. 2: The future of geriatric healthcare in the home setting.

Similar content being viewed by others

References

  1. United Nations. World Population Prospects 2022: Summary of Results https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (2022).

  2. Al-khafajiy, M. et al. Remote health monitoring of elderly through wearable sensors. Multimed. Tools Appl. 78, 24681–24706 (2019).

    Google Scholar 

  3. Evangelista, L., Steinhubl, S. R. & Topol, E. J. Digital health care for older adults. Lancet 393, 1493 (2019).

    PubMed  PubMed Central  Google Scholar 

  4. Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    CAS  PubMed  Google Scholar 

  6. Sim, I. Mobile devices and health. N. Engl. J. Med. 381, 956–968 (2019).

    PubMed  Google Scholar 

  7. Khan, Y., Ostfeld, A. E., Lochner, C. M., Pierre, A. & Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28, 4373–4395 (2016).

    CAS  PubMed  Google Scholar 

  8. Swaroop, K. N., Chandu, K., Gorrepotu, R. & Deb, S. A health monitoring system for vital signs using IoT. Internet Things 5, 116–129 (2019).

    Google Scholar 

  9. Chen, S. et al. Flexible wearable sensors for cardiovascular health monitoring. Adv. Healthc. Mater. 10, 2100116 (2021).

    CAS  Google Scholar 

  10. Strauss, D. H. et al. The geriatric acute and post-acute fall prevention intervention (GAPcare) II to assess the use of the Apple watch in older emergency department patients with falls: protocol for a mixed methods study. JMIR Res. Protoc. 10, e24455 (2021).

    PubMed  PubMed Central  Google Scholar 

  11. Alavi, A. et al. Real-time alerting system for COVID-19 and other stress events using wearable data. Nat. Med. 28, 175–184 (2022).

    CAS  PubMed  Google Scholar 

  12. Teymourian, H., Barfidokht, A. & Wang, J. Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Soc. Rev. 49, 7671–7709 (2020).

    CAS  PubMed  Google Scholar 

  13. Sempionatto, J. R., Lasalde-Ramírez, J. A., Mahato, K., Wang, J. & Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6, 899–915 (2022).

    PubMed  PubMed Central  Google Scholar 

  14. Yang, D. S., Ghaffari, R. & Rogers, J. A. Sweat as a diagnostic biofluid. Science 379, 760–761 (2023).

    CAS  PubMed  Google Scholar 

  15. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).

    CAS  PubMed  Google Scholar 

  17. Imani, S. et al. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dunn, T. C., Xu, Y., Hayter, G. & Ajjan, R. A. Real-world flash glucose monitoring patterns and associations between self-monitoring frequency and glycaemic measures: a European analysis of over 60 million glucose tests. Diabetes Res. Clin. Pract. 137, 37–46 (2018).

    PubMed  Google Scholar 

  19. Patel, S., Park, H., Bonato, P., Chan, L. & Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9, 21 (2012).

    Google Scholar 

  20. Teymourian, H. et al. Closing the loop for patients with Parkinson disease: where are we? Nat. Rev. Neurol. 18, 497–507 (2022).

    CAS  PubMed  Google Scholar 

  21. Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022).

    PubMed  PubMed Central  Google Scholar 

  22. Song, J. et al. Electrochemical characteristics based on skin–electrode contact pressure for dry biomedical electrodes and the application to wearable ECG signal acquisition. J. Sens. 2021, 7741881 (2021).

    Google Scholar 

  23. Grifantini, K. Tracking sleep to optimize health. IEEE Pulse 11, 12–16 (2020).

    PubMed  Google Scholar 

  24. Tonino, R. P. B., Larimer, K., Eissen, O. & Schipperus, M. R. Remote patient monitoring in adults receiving transfusion or infusion for hematological disorders using the VitalPatch and accelerateIQ monitoring system: quantitative feasibility study. JMIR Hum. Factors 6, e15103 (2019).

    PubMed  PubMed Central  Google Scholar 

  25. Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687–695 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Ding, X. et al. Wearable sensing and telehealth technology with potential applications in the coronavirus pandemic. IEEE Rev. Biomed. Eng. 14, 48–70 (2021).

    PubMed  Google Scholar 

  27. Armstrong, D. G., Najafi, B. & Shahinpoor, M. Potential applications of smart multifunctional wearable materials to gerontology. Gerontology 63, 287–298 (2017).

    PubMed  Google Scholar 

  28. Pauley, M. E., Berget, C., Messer, L. H. & Forlenza, G. P. Barriers to uptake of insulin technologies and novel solutions. Med. Devices 14, 339–354 (2021).

    CAS  Google Scholar 

  29. Tehrani, F. et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6, 1214–1224 (2022).

    CAS  PubMed  Google Scholar 

  30. Bray, E., Everett, B., Mouawad, A., Harrop, A. R. & Brauer, C. Use of the SurroSense Rx system for sensory substitution of the insensate plantar foot resurfaced with latissimus dorsi muscle free flap and skin graft: a retrospective case study. Plast. Surg. Case Stud. 3, 2513826X17716456 (2017).

    Google Scholar 

  31. Rashkovska, A., Depolli, M., Tomašić, I., Avbelj, V. & Trobec, R. Medical-grade ECG sensor for long-term monitoring. Sensors 20, 1695 (2020).

    PubMed  PubMed Central  Google Scholar 

  32. Li, T. et al. A pilot study of respiratory rate derived from a wearable biosensor compared with capnography in emergency department patients. Open Access Emerg. Med. 11, 103–108 (2019).

    PubMed  PubMed Central  Google Scholar 

  33. Liu, Y. et al. Monitoring gait at home with radio waves in Parkinson’s disease: a marker of severity, progression, and medication response. Sci. Transl. Med. 14, eadc9669 (2022).

    PubMed  Google Scholar 

  34. Yang, Y. et al. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals. Nat. Med. 28, 2207–2215 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Paolillo, E. W. et al. Wearable use in an observational study among older adults: adherence, feasibility, and effects of clinicodemographic factors. Front. Digit. Health 4, 884208 (2022).

    PubMed  PubMed Central  Google Scholar 

  36. Kalicki, A. V., Moody, K. A., Franzosa, E., Gliatto, P. M. & Ornstein, K. A. Barriers to telehealth access among homebound older adults. J. Am. Geriatr. Soc. 69, 2404–2411 (2021).

    PubMed  PubMed Central  Google Scholar 

  37. Baig, M. M., Afifi, S., GholamHosseini, H. & Mirza, F. A systematic review of wearable sensors and IoT-based monitoring applications for older adults—a focus on ageing population and independent living. J. Med. Syst. 43, 233 (2019).

    PubMed  Google Scholar 

  38. Magdalena, M., Bujnowska, F. & Grata-Borkowska, U. Use of telemedicine-based care for the aging and elderly: promises and pitfalls. Smart Homecare Technol. TeleHealth 3, 91–105 (2015).

    Google Scholar 

  39. Greco, L., Percannella, G., Ritrovato, P., Tortorella, F. & Vento, M. Trends in IoT based solutions for health care: moving AI to the edge. Pattern Recognit. Lett. 135, 346–353 (2020).

    PubMed  PubMed Central  Google Scholar 

  40. Li, W. et al. A comprehensive survey on machine learning-based big data analytics for IoT-enabled smart healthcare system. Mob. Netw. Appl. 26, 234–252 (2021).

    Google Scholar 

  41. Dunn, J. et al. Wearable sensors enable personalized predictions of clinical laboratory measurements. Nat. Med. 27, 1105–1112 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Friedman, A. B. et al. Addressing online health privacy risks for older adults: a perspective on ethical considerations and recommendations. Gerontol. Geriatr. Med. 8, 23337214221095705 (2022).

    PubMed  PubMed Central  Google Scholar 

  43. Davis, G. M. et al. Accuracy of Dexcom G6 continuous glucose monitoring in non-critically ill hospitalized patients with diabetes. Diabetes Care 44, 1641–1646 (2021).

    Google Scholar 

  44. Zhang, Z. et al. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. npj Flex. Electron. 4, 29 (2020).

    CAS  Google Scholar 

  45. Miotto, R., Danieletto, M., Scelza, J. R., Kidd, B. A. & Dudley, J. T. Reflecting health: smart mirrors for personalized medicine. NPJ Digit. Med. 1, 62 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. O’Brien, K., Liggett, A., Ramirez-Zohfeld, V., Sunkara, P. & Lindquist, L. A. Voice-controlled intelligent personal assistants to support aging in place. J. Am. Geriatr. Soc. 68, 176–179 (2020).

    PubMed  Google Scholar 

  47. Park, S.-m et al. A mountable toilet system for personalized health monitoring via the analysis of excreta. Nat. Biomed. Eng. 4, 624–635 (2020).

    PubMed  PubMed Central  Google Scholar 

  48. Ge, T. J. et al. Passive monitoring by smart toilets for precision health. Sci. Transl. Med. 15, eabk3489 (2023).

    PubMed  PubMed Central  Google Scholar 

  49. Kuwik, P. et al. The smart medical refrigerator. IEEE Potentials 24, 42–45 (2005).

    Google Scholar 

  50. Chen, S.-C., Moyle, W., Jones, C. & Petsky, H. A social robot intervention on depression, loneliness, and quality of life for Taiwanese older adults in long-term care. Int. Psychogeriatr. 32, 981–991 (2020).

    PubMed  Google Scholar 

  51. Locsin, R. C. & Ito, H. Can humanoid nurse robots replace human nurses. J. Nurs. 5, 1 (2018).

    Google Scholar 

  52. Lin, M., Hu, H., Zhou, S. & Xu, S. Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022).

    Google Scholar 

  53. Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Teymourian, H. et al. Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens. 5, 2679–2700 (2020).

    CAS  PubMed  Google Scholar 

  55. Downs, A. M. & Plaxco, K. W. Real-time, in vivo molecular monitoring using electrochemical aptamer based sensors: opportunities and challenges. ACS Sens. 7, 2823–2832 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mahmoudpour, M. et al. Aptamer functionalized nanomaterials for biomedical applications: recent advances and new horizons. Nano Today 39, 101177 (2021).

    CAS  Google Scholar 

  57. Haupt, K. & Mosbach, K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 100, 2495–2504 (2000).

    CAS  PubMed  Google Scholar 

  58. Ding, S. et al. Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: a review. Biosens. Bioelectron. 149, 111830 (2020).

    CAS  PubMed  Google Scholar 

  59. Arroyo-Currás, N., Dauphin-Ducharme, P., Scida, K. & Chávez, J. L. From the beaker to the body: translational challenges for electrochemical, aptamer-based sensors. Anal. Methods 12, 1288–1310 (2020).

    Google Scholar 

  60. Fercher, C., Jones, M. L., Mahler, S. M. & Corrie, S. R. Recombinant antibody engineering enables reversible binding for continuous protein biosensing. ACS Sens. 6, 764–776 (2021).

    CAS  PubMed  Google Scholar 

  61. Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    CAS  PubMed  Google Scholar 

  62. Centers for Disease Control and Prevention. National Diabetes Statistics Report https://www.cdc.gov/diabetes/data/statistics-report/index.html (2022).

  63. Daly, A. B. et al. Fully automated closed-loop insulin delivery in adults with type 2 diabetes: an open-label, single-center, randomized crossover trial. Nat. Med. 29, 203–208 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the UCSD Center for Wearable Sensors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks Jay Pandit, Bijan Najafi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Ding, S. & Wang, J. Digital health for aging populations. Nat Med 29, 1623–1630 (2023). https://doi.org/10.1038/s41591-023-02391-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41591-023-02391-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research