Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Enhancing pediatric access to cell and gene therapies

Abstract

Increasing numbers of cell and gene therapies (CGTs) are emerging to treat and cure pediatric diseases. However, small market sizes limit the potential return on investment within the traditional biopharmaceutical drug development model, leading to a market failure. In this Perspective, we discuss major factors contributing to this failure, including high manufacturing costs, regulatory challenges, and licensing practices that do not incorporate pediatric development milestones, as well as potential solutions. We propose the creation of a new entity, the Pediatric Advanced Medicines Biotech, to lead late-stage development and commercialize pediatric CGTs outside the traditional biopharmaceutical model in the United States—where organized efforts to solve this problem have been lacking. The Pediatric Advanced Medicines Biotech would partner with the academic ecosystem, manufacture products in academic good manufacturing practice facilities and work closely with regulatory bodies, to ferry CGTs across the drug development ‘valley of death’ and, ultimately, increase access to lifesaving treatments for children in need.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Licensing models for pediatric CGTs.
Fig. 2: Life cycle of a pediatric CGT within the PAMB.

Similar content being viewed by others

References

  1. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schultz, L. M. et al. Disease burden affects outcomes in pediatric and young adult B-cell lymphoblastic leukemia after commercial tisagenlecleucel: a pediatric real-world chimeric antigen receptor consortium report. J. Clin. Oncol. 40, 945–955 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Maguire, A. M. et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med. 358, 2240–2248 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lorenz, B. et al. Real-world experience with Voretigene Neparvovec gene augmentation therapy in RPE65-mutation associated inherited retinal degeneration. Ophthalmology 131, 161–178 (2023).

    Article  PubMed  Google Scholar 

  5. Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Day, J. W. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 20, 284–293 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Kanter, J. et al. Biologic and clinical efficacy of lentiglobin for sickle cell disease. N. Engl. J. Med. 386, 617–628 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Sheridan, C. The world’s first CRISPR therapy is approved: who will receive it? Nat. Biotechnol. 42, 3–4 (2023).

    Article  Google Scholar 

  9. Majzner, R. G. et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603, 934–941 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Del Bufalo, F. et al. GD2-CART01 for relapsed or refractory high-risk neuroblastoma. N. Engl. J. Med. 388, 1284–1295 (2023).

    Article  PubMed  Google Scholar 

  11. Ferrari, G., Thrasher, A. J. & Aiuti, A. Gene therapy using haematopoietic stem and progenitor cells. Nat. Rev. Genet. 22, 216–234 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Ferrari, S. et al. Genetic engineering meets hematopoietic stem cell biology for next-generation gene therapy. Cell Stem Cell 30, 549–570 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. De Wolf, D., Singh, K., Chuah, M. K. & VandenDriessche, T. Hemophilia gene therapy: the end of the beginning? Hum. Gene Ther. 34, 782–792 (2023).

    Article  PubMed  Google Scholar 

  14. Ling, Q., Herstine, J. A., Bradbury, A. & Gray, S. J. AAV-based in vivo gene therapy for neurological disorders. Nat. Rev. Drug Discov. 22, 789–806 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Urnov, F. D. Imagine CRISPR cures. Mol. Ther. 29, 3103–3106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Labanieh, L. & Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Rossig, C. et al. Chimeric antigen receptor (CAR) T-cell products for pediatric cancers: why alternative development paths are needed. J. Clin. Oncol. 42, 253–257 (2023).

    Article  PubMed  Google Scholar 

  20. Aiuti, A., Pasinelli, F. & Naldini, L. Ensuring a future for gene therapy for rare diseases. Nat. Med. 28, 1985–1988 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Fox, T. et al. Access to gene therapy for rare diseases when commercialization is not fit for purpose. Nat. Med. 29, 518–519 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Castella, M. et al. Point-of-care CAR T-cell production (ARI-0001) using a closed semi-automatic bioreactor: experience from an academic phase I clinical trial. Front Immunol. 11, 482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Innovative Genomics Institute. Making genetic therapies affordable and accessible. https://innovativegenomics.org/atf-report/ (2023).

  24. Juan, M., Delgado, J., Calvo, G., Trias, E. & Urbano-Ispizua, A. Is hospital exemption an alternative or a bridge to European Medicines Agency for developing academic chimeric antigen receptor T-cell in Europe? Our experience with ARI-0001. Hum. Gene Ther. 32, 1004–1007 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Trias, E., Juan, M., Urbano-Ispizua, A. & Calvo, G. The hospital exemption pathway for the approval of advanced therapy medicinal products: an underused opportunity? The case of the CAR-T ARI-0001. Bone Marrow Transpl. 57, 156–159 (2022).

    Article  Google Scholar 

  26. Precedence Research. Cell and gene therapy market - global industry analysis, size, share, growth, trends, regional outlook, and forecast 2023–2032. https://www.precedenceresearch.com/cell-and-gene-therapy-market (2022).

  27. Smith, C. I. E., Bergman, P. & Hagey, D. W. Estimating the number of diseases - the concept of rare, ultra-rare, and hyper-rare. iScience 25, 104698 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Amorosi, D. Black race linked to inferior outcomes among younger patients receiving CAR-T for ALL. HemOnc Today https://www.healio.com/news/hematology-oncology/20210213/black-race-linked-to-inferior-outcomes-among-younger-patients-receiving-cart-for-all#:~:text=3%20min%20read-,Black%20race%20linked%20to%20inferior%20outcomes%20among,receiving%20CAR%2DT%20for%20ALL&text=Younger%20Black%20patients%20who%20received,at%20TCT%20Meetings%20Digital%20Experience (2021).

  29. Sabatini, M. T. & Chalmers, M. The cost of biotech innovation: exploring research and development costs of cell and gene therapies. Pharm. Med. 37, 365–375 (2023).

    Article  Google Scholar 

  30. Liu, A. J. & J, Legend tap Novartis to help make CAR-T drug Carvykti as they work through supply constraints. Fierce Pharma https://www.fiercepharma.com/manufacturing/jj-legend-tap-novartis-help-make-car-t-therapy-carvykti-amid-supply-constraint (2023).

  31. Liu, A. Johnson & Johnson shelves Carvykti’s UK launch amid manufacturing shortfalls. Fierce Pharma https://www.fiercepharma.com/pharma/johnson-johnson-scraps-carvykti-launch-plan-uk-car-t-manufacturing-remains-lacking (2023).

  32. Goodman, A. Patients with multiple myeloma may face CAR T-cell shortages. The ASCO Post https://ascopost.com/issues/september-25-2022/patients-with-multiple-myeloma-may-face-car-t-cell-shortages (2022).

  33. Aparicio, C., Acebal, C. & Gonzalez-Vallinas, M. Current approaches to develop “off-the-shelf” chimeric antigen receptor (CAR)-T cells for cancer treatment: a systematic review. Exp. Hematol. Oncol. 12, 73 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Spiegel, J. Y. et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat. Med. 27, 1419–1431 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shah, N. N. et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat. Med. 26, 1569–1575 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Maschan, M. et al. Multiple site place-of-care manufactured anti-CD19 CAR-T cells induce high remission rates in B-cell malignancy patients. Nat. Commun. 12, 7200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Palani, H. K. et al. Decentralized manufacturing of anti CD19 CAR-T cells using CliniMACS Prodigy: real-world experience and cost analysis in India. Bone Marrow Transpl. 58, 160–167 (2023).

    Article  Google Scholar 

  38. Hacein-Bey-Abina, S. et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Invest. 118, 3132–3142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Raper, S. E. et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 80, 148–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Tucci, F., Galimberti, S., Naldini, L., Valsecchi, M. G. & Aiuti, A. A systematic review and meta-analysis of gene therapy with hematopoietic stem and progenitor cells for monogenic disorders. Nat. Commun. 13, 1315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scholler, J. et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci. Transl. Med. 4, 132ra153 (2012).

    Article  Google Scholar 

  43. Verdun, N. & Marks, P. Secondary cancers after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 390, 584–586 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Levine, B. L. et al. Unanswered questions following reports of secondary malignancies after CAR-T cell therapy. Nat. Med. 30, 338–341 (2024).

    Article  CAS  PubMed  Google Scholar 

  45. US Food and Drug Administration. FDA approves first gene therapies to treat patients with sickle cell disease. FDA https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapies-treat-patients-sickle-cell-disease (8 December 2023).

  46. Crooke, S. T. A call to arms against ultra-rare diseases. Nat. Biotechnol. 39, 671–677 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Crooke, S. T. Addressing the needs of patients with ultra-rare mutations one patient at a time: the n-lorem approach. Nucleic Acid Ther. 32, 95–100 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, J. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381, 1644–1652 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aiuti, A., Roncarolo, M. G. & Naldini, L. Gene therapy for ADA-SCID, the first marketing approval of an ex vivo gene therapy in Europe: paving the road for the next generation of advanced therapy medicinal products. EMBO Mol. Med. 9, 737–740 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martinez-Cibrian, N. et al. The academic point-of-care anti-CD19 chimeric antigen receptor T-cell product varnimcabtagene autoleucel (ARI-0001 cells) shows efficacy and safety in the treatment of relapsed/refractory B-cell non-Hodgkin lymphoma. Br. J. Haematol. 204, 525–533 (2023).

  51. Elsallab, M., Bourgeois, F. & Maus, M. V. National survey of FACT-accredited cell processing facilities: assessing preparedness for local manufacturing of immune effector cells. Transplant Cell Ther. S2666-6367, 00289-6 (2024).

  52. Elsallab, M. & Maus, M. V. Expanding access to CAR T cell therapies through local manufacturing. Nat. Biotechnol. 41, 1698–1708 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Joseph, A. In the US, scientists see barriers to the development of CAR-T cell therapies. In Spain, a hospital brews its own. STAT News https://www.statnews.com/2023/12/19/car-t-therapy-spain-hospital/ (2023).

  54. Mast, J. Gene therapy is in crisis. For nine hours, the field’s leading minds looked for a solution. Stat News https://www.statnews.com/2023/07/31/gene-therapy-crisis-rare-disease-car-t/ (2023).

  55. Cicalese, M. P. et al. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood 128, 45–54 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Russell, S. et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390, 849–860 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Strauss, K. A. et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the phase III SPR1NT trial. Nat. Med. 28, 1381–1389 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Strauss, K. A. et al. Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: the phase III SPR1NT trial. Nat. Med. 28, 1390–1397 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shah, B. D. et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 398, 491–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Fumagalli, F. et al. Lentiviral haematopoietic stem-cell gene therapy for early-onset metachromatic leukodystrophy: long-term results from a non-randomised, open-label, phase 1/2 trial and expanded access. Lancet 399, 372–383 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Abramson, J. S. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396, 839–852 (2020).

    Article  PubMed  Google Scholar 

  64. Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Berdeja, J. G. et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 398, 314–324 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Thompson, A. A. et al. Gene therapy in patients with transfusion-dependent beta-thalassemia. N. Engl. J. Med. 378, 1479–1493 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Eichler, F. et al. Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N. Engl. J. Med. 377, 1630–1638 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pipe, S. W. et al. Gene therapy with etranacogene dezaparvovec for hemophilia B. N. Engl. J. Med. 388, 706–718 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Tai, C. H. et al. Long-term efficacy and safety of eladocagene exuparvovec in patients with AADC deficiency. Mol. Ther. 30, 509–518 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Zaidman, C. M. et al. Delandistrogene moxeparvovec gene therapy in ambulatory patients (aged >/=4 to <8 years) with Duchenne muscular dystrophy: 1-year interim results from study SRP-9001-103 (ENDEAVOR). Ann. Neurol. 94, 955–968 (2023).

    Article  CAS  PubMed  Google Scholar 

  71. Ozelo, M. C. et al. Valoctocogene roxaparvovec gene therapy for hemophilia A. N. Engl. J. Med. 386, 1013–1025 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Carbonaro, D. A. et al. Preclinical demonstration of lentiviral vector-mediated correction of immunological and metabolic abnormalities in models of adenosine deaminase deficiency. Mol. Ther. 22, 607–622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kohn, D. B. et al. Autologous ex vivo lentiviral gene therapy for adenosine deaminase deficiency. N. Engl. J. Med. 384, 2002–2013 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Aldoss, I. et al. Correlates of resistance and relapse during blinatumomab therapy for relapsed/refractory acute lymphoblastic leukemia. Am. J. Hematol. 92, 858–865 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Haso, W. et al. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 121, 1165–1174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Shah, N. N. et al. CD4/CD8 T-cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial. J. Clin. Oncol. 38, 1938–1950 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Baird, J. H. et al. CD22-directed CAR T-cell therapy induces complete remissions in CD19-directed CAR-refractory large B-cell lymphoma. Blood 137, 2321–2325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Frank, M. J. et al. CD22 CAR T cell therapy is safe and effective patients with large B cell lymphoma who have relapsed after CD19 CAR T cell therapy. Hemasphere 7, e3362169 (2023).

Download references

Acknowledgements

On 6 June 2023, approximately 80 CGT investigators representing more than 20 academic medical centers from the United States, Europe and Israel, alongside patient advocates, public officials representing the US FDA, the Advanced Research Projects Agency for Health and the California Institute for Regenerative Medicine and representatives from the private sector and non-profit foundations met in Washington, DC, for a think tank focused on the market failures we are witnessing for CGTs for pediatric diseases. The views discussed here germinated at this meeting54.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crystal L. Mackall.

Ethics declarations

Competing interests

C.L.M. holds multiple patents in the arena of CAR T cell therapeutics; receives royalties from CARGO through the US National Institutes of Health and Stanford; holds equity in CARGO Therapeutics, Link Cell Therapies, Ensoma and GBM NewCo, which are developing CAR-based therapies; consults for CARGO, Link, Immatics, Ensoma and GBM NewCo; and receives research funding from Lyell Immunopharma and Tune Therapeutics. C.M.B. has filed patents in the arena of cell therapies, including CAR-modified cell therapies; is a scientific cofounder of Mana Therapeutics and Catamaran Bio; is on the Board of Directors of Cabaletta Bio; and holds stock in Repertoire Immune Medicine and Neximmune, all of which are developing cell therapies (including CAR-based therapies) for cancer or immune-mediated disorders. In addition, C.M.B. serves on the drug safety monitoring board for SOBI and on the scientific advisory board of Minovia TX. C.M.B has also served as president of FACT since 2021. N.G. is a cofounder and holds equity in CARGO Therapeutics. R.A.G. has patents related to CAR therapy and receives royalty payments related to patents from Juno Therapeutics. R.H.R. has received consulting fees from Pfizer and honoraria from Novartis. R.M.S. holds multiple patents in the area of CRISPR bioinformatics and biomanufacturing technologies; is the founder of Exthymic, a cell manufacturing instrument company; sits on the board of Indee Labs; and holds equity in Exthymic, Resilience (a Contract Development and Manufacturing Organization) and Synthego (RNA reagent manufacturer). F.D.U. is a scientific cofounder of Tune Therapeutics; holds equity in, and is a compensated advisor to, Tune Therapeutics and Cimeio Therapeutics; is a paid advisor to Ionis Pharmaceuticals; is a paid consultant to Vertex Pharmaceuticals on the exa-cel program; and receives salary support from the Danaher Corporation. A.S.W. receives institutional research funding (Children’s Hospital Los Angeles) from Kite, A Gilead Company. In addition, A.S.W. has served on advisory boards for Wugen, Kite and Institut de Recherches Internationales Servier, all for cell therapy product development. D.B.K. is an inventor for the University of California Regents for a lentiviral vector to treat ADA-SCID.

Peer review

Peer review information

Nature Medicine thanks Olaf Bodamer, Zornitza Stark and Jessica Foster for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mackall, C.L., Bollard, C.M., Goodman, N. et al. Enhancing pediatric access to cell and gene therapies. Nat Med 30, 1836–1846 (2024). https://doi.org/10.1038/s41591-024-03035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41591-024-03035-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research