Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fratricide-resistant CD7-CAR T cells in T-ALL

Abstract

T cell acute lymphoblastic leukemia (T-ALL) is difficult to treat when it relapses after therapy or is chemoresistant; the prognosis of patients with relapsed or refractory T-ALL is generally poor. We report a case series of 17 such patients who received autologous chimeric antigen receptor (CAR) T cells expressing an anti-CD7 CAR and an anti-CD7 protein expression blocker (PEBL), which prevented CAR T cell fratricide. Despite high leukemic burden and low CAR T cell dosing, 16 of the 17 patients attained minimal residual disease-negative complete remission within 1 month. The remaining patient had CD7 T-ALL cells before infusion, which persisted after infusion. Toxicities were mild: cytokine release syndrome grade 1 in ten patients and grade 2 in three patients; immune effector cell-associated neurotoxicity syndrome grade 1 in two patients. Eleven patients remained relapse-free (median follow-up, 15 months), including all nine patients who received an allotransplant. The first patient is in remission 55 months after infusion without further chemotherapy or transplantation; circulating CAR T cells were detectable for 2 years. T cells regenerating after lymphodepletion lacked CD7 expression, were polyclonal and responded to SARS-CoV-2 vaccination; CD7+ immune cells reemerged concomitantly with CAR T cell disappearance. In conclusion, autologous anti-CD7 PEBL-CAR T cells have powerful antileukemic activity and are potentially an effective option for the treatment of T-ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Patient distribution.
Fig. 2: Characteristics of anti-CD7 PEBL-CAR T cells.
Fig. 3: Anti-CD7 PEBL-CAR T cell expansion in patients.
Fig. 4: Antileukemia activity of anti-CD7 PEBL-CAR T cells.
Fig. 5: Immune cell reconstitution after anti-CD7 PEBL-CAR T cell infusion.

Similar content being viewed by others

Data availability

The CARTALL trial is currently ongoing. All requests for data related to CARTALL will be considered at the end of the trial. All other requests for data will be considered within 4 weeks, responded to in the context of obligations to patient privacy and confidentiality, and will be subject to review by the study team. Requests can be made to the corresponding authors by email at paeyej@nus.edu.sg. and/or franco.locatelli@opbg.net.

References

  1. van Dongen, J. J. et al. T cell receptor–CD3 complex during early T cell differentiation. Analysis of immature T cell acute lymphoblastic leukemias (T-ALL) at DNA, RNA, and cell membrane level. J. Immunol. 138, 1260–1269 (1987).

    PubMed  Google Scholar 

  2. Campana, D., Thompson, J. S., Amlot, P., Brown, S. & Janossy, G. The cytoplasmic expression of CD3 antigens in normal and malignant cells of the T lymphoid lineage. J. Immunol. 138, 648–655 (1987).

    CAS  PubMed  Google Scholar 

  3. Teachey, D. T. & Pui, C.-H. Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia. Lancet Oncol. 20, e142–e154 (2019).

    PubMed  PubMed Central  Google Scholar 

  4. Raetz, E. A. et al. Outcome for children and young adults with T-cell ALL and induction failure in contemporary trials. J. Clin. Oncol. 41, 5025–5034 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Abaza, Y. et al. Hyper-CVAD plus nelarabine in newly diagnosed adult T-cell acute lymphoblastic leukemia and T-lymphoblastic lymphoma. Am. J. Hematol. 93, 91–99 (2018).

    CAS  PubMed  Google Scholar 

  6. Balduzzi, A. et al. Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukaemia in first complete remission: comparison by genetic randomisation in an international prospective study. Lancet 366, 635–642 (2005).

    PubMed  Google Scholar 

  7. Schrauder, A. et al. Superiority of allogeneic hematopoietic stem-cell transplantation compared with chemotherapy alone in high-risk childhood T-cell acute lymphoblastic leukemia: results from ALL-BFM 90 and 95. J. Clin. Oncol. 24, 5742–5749 (2006).

    PubMed  Google Scholar 

  8. Leung, W. et al. High success rate of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia. Blood 118, 223–230 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bader, P. et al. More precisely defining risk peri-HCT in pediatric ALL: pre- vs post-MRD measures, serial positivity, and risk modeling. Blood Adv. 3, 3393–3405 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. Eckert, C. et al. Risk factors and outcomes in children with high-risk B-cell precursor and T-cell relapsed acute lymphoblastic leukaemia: combined analysis of ALLR3 and ALL-REZ BFM 2002 clinical trials. Eur. J. Cancer 151, 175–189 (2021).

    CAS  PubMed  Google Scholar 

  11. Imai, C. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18, 676–684 (2004).

    CAS  PubMed  Google Scholar 

  12. Brentjens, R. J. et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin. Cancer Res. 13, 5426–5435 (2007).

    CAS  PubMed  Google Scholar 

  13. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra138 (2013).

    Google Scholar 

  15. Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra225 (2014).

    Google Scholar 

  16. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Park, J. H. et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449–459 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hay, K. A. et al. Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood 133, 1652–1663 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Shah, N. N. et al. Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL. J. Clin. Oncol. 39, 1650–1659 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wayne, A. S. et al. Three-year results from phase I of ZUMA-4: KTE-X19 in pediatric relapsed/refractory acute lymphoblastic leukemia. Haematologica 108, 747–760 (2023).

    CAS  PubMed  Google Scholar 

  22. Laetsch, T. W. et al. Three-year update of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory acute lymphoblastic leukemia in the ELIANA trial. J. Clin. Oncol. 41, 1664–1669 (2023).

    CAS  PubMed  Google Scholar 

  23. Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat. Rev. Clin. Oncol. 20, 359–371 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018).

    CAS  PubMed  Google Scholar 

  25. Wang, T. et al. Coadministration of CD19- and CD22-directed chimeric antigen receptor T-cell therapy in childhood B-cell acute lymphoblastic leukemia: a single-arm, multicenter, phase II trial. J. Clin. Oncol. 41, 1670–1683 (2023).

    CAS  PubMed  Google Scholar 

  26. Vodinelich, L. et al. A monoclonal antibody (WT1) for detecting leukemias of T-cell precursors (T-ALL). Blood 62, 1108–1113 (1983).

    CAS  PubMed  Google Scholar 

  27. Link, M. et al. A single monoclonal antibody identifies T-cell lineage of childhood lymphoid malignancies. Blood 62, 722–728 (1983).

    CAS  PubMed  Google Scholar 

  28. Janossy, G., Coustan-Smith, E. & Campana, D. The reliability of cytoplasmic CD3 and CD22 antigen expression in the immunodiagnosis of acute leukemia: a study of 500 cases. Leukemia 3, 170–181 (1989).

    CAS  PubMed  Google Scholar 

  29. Png, Y. T. et al. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies. Blood Adv. 1, 2348–2360 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gomes-Silva, D. et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood 130, 285–296 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Coustan-Smith, E. et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 10, 147–156 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jain, N. et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood 127, 1863–1869 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wood, B. L. et al. Prognostic significance of ETP phenotype and minimal residual disease in T-ALL: a Children’s Oncology Group study. Blood 142, 2069–2078 (2023).

    CAS  PubMed  Google Scholar 

  34. Pui, C.-H. et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N. Engl. J. Med. 360, 2730–2741 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Coustan-Smith, E. et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood 117, 6267–6276 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Haynes, B. F., Eisenbarth, G. S. & Fauci, A. S. Human lymphocyte antigens: production of a monoclonal antibody that defines functional thymus-derived lymphocyte subsets. Proc. Natl Acad. Sci. USA 76, 5829–5833 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sempowski, G. D., Lee, D. M., Kaufman, R. E. & Haynes, B. F. Structure and function of the CD7 molecule. Crit. Rev. Immunol. 19, 331–348 (1999).

    CAS  PubMed  Google Scholar 

  38. Oh, B. L. Z. et al. Enhanced BNT162b2 vaccine-induced cellular immunity in anti-CD19 CAR T cell-treated patients. Blood 140, 156–160 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Maciocia, P. M. et al. Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies. Nat. Med. 23, 1416–1423 (2017).

    CAS  PubMed  Google Scholar 

  40. Sánchez-Martínez, D. et al. Fratricide-resistant CD1a-specific CAR T cells for the treatment of cortical T-cell acute lymphoblastic leukemia. Blood 133, 2291–2304 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. Mamonkin, M., Rouce, R. H., Tashiro, H. & Brenner, M. K. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood 126, 983–992 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mamonkin, M. et al. Reversible transgene expression reduces fratricide and permits 4-1BB costimulation of CAR T cells directed to T-cell malignancies. Cancer Immunol. Res. 6, 47–58 (2018).

    CAS  PubMed  Google Scholar 

  43. Dai, Z. et al. The rational development of CD5-targeting biepitopic CARs with fully human heavy-chain-only antigen recognition domains. Mol. Ther. 29, 2707–2722 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pan, J. et al. Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial. J. Clin. Oncol. 39, 3340–3351 (2021).

    CAS  PubMed  Google Scholar 

  45. Tan, Y. et al. Long-term follow-up of donor-derived CD7 CAR T-cell therapy in patients with T-cell acute lymphoblastic leukemia. J. Hematol. Oncol. 16, 34 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, M. et al. Autologous nanobody-derived fratricide-resistant CD7-CAR T-cell therapy for patients with relapsed and refractory T-cell acute lymphoblastic leukemia/lymphoma. Clin. Cancer Res. 28, 2830–2843 (2022).

    CAS  PubMed  Google Scholar 

  47. Locatelli, F. et al. Incidence of CD19-negative relapse after CD19-targeted immunotherapy in R/R BCP acute lymphoblastic leukemia: a review. Leuk. Lymphoma 64, 1615–1633 (2023).

    CAS  PubMed  Google Scholar 

  48. Ruella, M. et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat. Med. 24, 1499–1503 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, S. et al. Eradication of T-ALL cells by CD7-targeted universal CAR-T cells and initial test of ruxolitinib-based CRS management. Clin. Cancer Res. 27, 1242–1246 (2021).

    CAS  PubMed  Google Scholar 

  50. Hu, Y. et al. Genetically modified CD7-targeting allogeneic CAR-T cell therapy with enhanced efficacy for relapsed/refractory CD7-positive hematological malignancies: a phase I clinical study. Cell Res. 32, 995–1007 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chiesa, R. et al. Base-edited CAR7 T cells for relapsed T-cell acute lymphoblastic leukemia. N. Engl. J. Med. 389, 899–910 (2023).

    CAS  PubMed  Google Scholar 

  52. Sadelain, M., Rivière, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

    PubMed  Google Scholar 

  54. Labanieh, L. & Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023).

    CAS  PubMed  Google Scholar 

  55. Lu, P. et al. Naturally selected CD7 CAR-T therapy without genetic manipulations for T-ALL/LBL: first-in-human phase 1 clinical trial. Blood 140, 321–334 (2022).

    CAS  PubMed  Google Scholar 

  56. Freiwan, A. et al. Engineering naturally occurring CD7 T cells for the immunotherapy of hematological malignancies. Blood 140, 2684–2696 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, X. et al. Analysis of 60 patients with relapsed or refractory T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma treated with CD7-targeted chimeric antigen receptor-T cell therapy. Am. J. Hematol. 98, 1898–1908 (2023).

    CAS  PubMed  Google Scholar 

  58. Shah, N. N. et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat. Med. 26, 1569–1575 (2020).

    CAS  PubMed  Google Scholar 

  59. Del Bufalo, F. et al. Allogeneic, donor-derived, second-generation, CD19-directed CAR-T cells for the treatment of pediatric relapsed/refractory BCP-ALL. Blood 142, 146–157 (2023).

    PubMed  Google Scholar 

  60. Yeoh, A. E. J. et al. Minimal residual disease-guided treatment deintensification for children with acute lymphoblastic leukemia: results from the Malaysia–Singapore acute lymphoblastic leukemia 2003 study. J. Clin. Oncol. 30, 2384–2392 (2012).

    CAS  PubMed  Google Scholar 

  61. Yeoh, A. E. J. et al. Intensifying treatment of childhood B-lymphoblastic leukemia with IKZF1 deletion reduces relapse and improves overall survival: results of Malaysia–Singapore ALL 2010 study. J. Clin. Oncol. 36, 2726–2735 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Medical Research Council (NMRC) Singapore Translational Research (STaR) Award MOH-000708 (to D.C.), NMRC Research Training Fellowship NMRC/RTF/MOH/000616 (to B.L.Z.O.), NMRC Clinician Scientist Investigator Awards NMRC/CSA/0053/2008 and NMRC/CSA/0053/2013 (to A.E.J.Y.); the Cancer Science Institute of Singapore, National University of Singapore Grant NMRC/CG/NCIS/2010; and the Goh Foundation, Children’s Cancer Foundation, Singapore Totalisator Board, and VIVA Foundation for Children with Cancer. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank X. H. Tan, A. Ummul, D. A. Bte. Roslee, B. S. Lee, D. Ng and T. Y. Whoo for CAR T cell manufacturing; T. G. Soh for cell processing; N. Bte. Hussen, S. Kiong, V. Foo, H. X. Ng, V. Bertaina and C. Quintarelli for flow cytometric studies; Z. Chen, E. K. H. Chiew and G. Liew for regulatory and data management; the Malaysia–Singapore (MASPORE) leukemia study group (A. M. Tan, H. Ariffin, H. P. Lin and L. L. Chan) for providing historical data; M. Kimpo, K. L. Francisco, referring physicians and nursing staff for patient care; and patients and families for participating in the study.

Author information

Authors and Affiliations

Authors

Contributions

B.L.Z.O. directed cell manufacturing, provided clinical care and performed data analysis. N.S. established cell manufacturing technologies. E.C.-S. analyzed MRD, CAR T cells and immune reconstitution. E.C., L.P., S.H.R.L., F.Y., L.K.T. and L.Y.A.C. provided clinical care. N.L.B., N.T. and A.B. analyzed T cell responses to vaccination. S.P.C. monitored CAR T cells by ddPCR and analyzed MRD. F.D.B. and M.B. provided clinical care and performed data analysis. F.L. provided clinical care and was responsible for the clinical studies in Rome. A.E.J.Y. provided clinical care and was responsible for the clinical studies in Singapore. D.C. initiated the study, directed the translation of the technologies to the clinic and performed data analysis. B.L.Z.O., E.C.-S. and D.C. drafted the manuscript, and all authors reviewed and revised the manuscript.

Corresponding authors

Correspondence to Franco Locatelli or Allen E. J. Yeoh.

Ethics declarations

Competing interests

B.L.Z.O., N.S., E.C., L.P., S.H.R.L., F.Y., L.K.T., L.Y.A.C., N.T., S.P.C., F.D.B. and M.B. declare no competing interests. E.C.-S.’s spouse receives royalties for patents related to the development of CAR T cell technologies and is a scientific founder and stockholder of Nkarta Therapeutics and Medisix Therapeutics. N.L.B. is a co-inventor in a pending patent for a method to monitor virus-specific T cells in biological samples. A.B. is a co-inventor in a pending patent for a method to monitor virus-specific T cells in biological samples and is a cofounder of Lion TCR. F.L. has been a consultant for Amgen, Bellicum, Novimmune and Vertex and a speaker for BluebirdBio and Amgen. A.E.J.Y. has been a consultant for Amgen. D.C. receives royalties for patents related to the development of CAR T cell technologies and is a scientific founder and stockholder of Nkarta Therapeutics and Medisix Therapeutics.

Peer review

Peer review information

Nature Medicine thanks Kara Davis, Nitin Jain and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Ulrike Harjes, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Demographics and clinical status of the 17 patients with T-ALL treated with anti-CD7 PEBL-CAR-T cells
Extended Data Table 2 Baseline demographics and disease characteristics of patients with B-cell ALL (n = 20) treated with anti-CD19 CAR-T cells
Extended Data Table 3 Demographics and clinical status of the 20 patients with B-cell ALL treated with anti-CD19 CAR-T cells
Extended Data Table 4 Characteristics of the anti-CD7 PEBL-CAR-T cell products
Extended Data Table 5 Lymphodepletion regimens of the patients prior to CAR-T cell infusion
Extended Data Table 6 Toxicities related to anti-CD7 PEBL-CAR-T cell infusion
Extended Data Table 7 Summary of toxicities following anti-CD7 PEBL-CAR-T cell therapy prior to HSCT or other therapy

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs. 1–11.

Reporting Summary

Supplementary Data

CARTALL study protocol.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, B.L.Z., Shimasaki, N., Coustan-Smith, E. et al. Fratricide-resistant CD7-CAR T cells in T-ALL. Nat Med 30, 3687–3696 (2024). https://doi.org/10.1038/s41591-024-03228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41591-024-03228-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research