Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stem cell therapies for diabetes

Abstract

Diabetes has long-term, potentially severe implications for healthspan and lifespan and imposes an immense burden on global healthcare, the economy and society. Although a repertoire of medications is available to treat diabetes, these do not properly address the eventual lack of functional pancreatic beta cells that are needed to secrete insulin and maintain glucose homeostasis. Human islet cell transplantation from deceased donors is an established treatment for insulin-requiring type 1 diabetes, but demand outstrips supply. Substantial scientific and clinical progress has occurred in the last decade toward deriving pancreatic islet-like cells from human pluripotent stem cells, suggesting a potentially limitless solution to the supply issue and a new era in cell therapy for diabetes. Here, we critically review the scientific advances, the clinical trials and the various regulatory considerations that will need to be overcome for human stem cell-derived pancreatic islet-like cells to become the next cell therapy breakthrough for diabetes treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recent protocol advancements to generate hPS cell-derived islet/beta-like cells.
Fig. 2: Recent innovations and lessons from clinical trials.
Fig. 3: Envisioned manufacturing process for hPS cell-derived islet/beta-like cell therapy.

Similar content being viewed by others

References

  1. Sun, H. et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022).

    Article  PubMed  Google Scholar 

  2. Reusch, J. E. & Manson, J. E. Management of type 2 diabetes in 2017: getting to goal. JAMA 317, 1015–1016 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. DiMeglio, L. A., Evans-Molina, C. & Oram, R. A. Type 1 diabetes. Lancet 391, 2449–2462 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Douros, A. et al. Pharmacologic differences of sulfonylureas and the risk of adverse cardiovascular and hypoglycemic events. Diabetes Care 40, 1506–1513 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Vantyghem, M. C., de Koning, E. J. P., Pattou, F. & Rickels, M. R. Advances in β-cell replacement therapy for the treatment of type 1 diabetes. Lancet 394, 1274–1285 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. US Food and Drug Administration. Considerations for allogeneic pancreatic islet cell products. https://www.fda.gov/files/vaccines%2C%20blood%20%26%20biologics/published/Guidance-for-Industry–Considerations-for-Allogeneic-Pancreatic-Islet-Cell-Products-PDF.pdf (2009).

  7. Jayachandra, S. Summary basis for regulatory action. https://www.fda.gov/media/170457/download (2023).

  8. Yamanaka, S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 27, 523–531 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Tan, L. S., Chen, J. T., Lim, L. Y. & Teo, A. K. K. Manufacturing clinical-grade human induced pluripotent stem cell-derived beta cells for diabetes treatment. Cell Prolif. 55, e13232 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Deinsberger, J., Reisinger, D. & Weber, B. Global trends in clinical trials involving pluripotent stem cells: a systematic multi-database analysis. NPJ Regen. Med. 5, 15 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Balboa, D. et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat. Biotechnol. 40, 1042–1055 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maxwell, K. G. et al. Gene-edited human stem cell-derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci. Transl. Med. 12, eaax9106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Veres, A. et al. Charting cellular identity during human in vitro β-cell differentiation. Nature 569, 368–373 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Velazco-Cruz, L. et al. Acquisition of dynamic function in human stem cell-derived β cells. Stem Cell Rep. 12, 351–365 (2019).

    Article  CAS  Google Scholar 

  16. Du, Y. et al. Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nat. Med. 28, 272–282 (2022).

    Article  PubMed  Google Scholar 

  17. Hogrebe, N. J., Maxwell, K. G., Augsornworawat, P. & Millman, J. R. Generation of insulin-producing pancreatic β cells from multiple human stem cell lines. Nat. Protoc. 16, 4109–4143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramzy, A. et al. Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell 28, 2047–2061 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Shapiro, A. M. J. et al. Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Rep. Med. 2, 100466 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Business Wire. Vertex announces positive day 90 data for the first patient in the phase 1/2 clinical trial dosed with VX-880, a novel investigational stem cell-derived therapy for the treatment of type 1 diabetes. https://www.businesswire.com/news/home/20211018005226/en/ (2021).

  21. Business Wire. Vertex presents positive VX-880 results from ongoing phase 1/2 study in type 1 diabetes at the American Diabetes Association 83rd Scientific Sessions. https://www.businesswire.com/news/home/20230623446641/en/ (2023).

  22. Nostro, M. C. et al. Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Rep. 4, 591–604 (2015).

    Article  CAS  Google Scholar 

  23. Russ, H. A. et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J. 34, 1759–1772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Loo, L. S. W., Lau, H. H., Jasmen, J. B., Lim, C. S. & Teo, A. K. K. An arduous journey from human pluripotent stem cells to functional pancreatic β cells. Diabetes Obes. Metab. 20, 3–13 (2018).

    Article  PubMed  Google Scholar 

  27. Santosa, M. M., Low, B. S., Pek, N. M. & Teo, A. K. Knowledge gaps in rodent pancreas biology: taking human pluripotent stem cell-derived pancreatic beta cells into our own hands. Front. Endocrinol. 6, 194 (2015).

    Google Scholar 

  28. Toyoda, T. et al. Rho-associated kinases and non-muscle myosin IIs inhibit the differentiation of human iPSCs to pancreatic endoderm. Stem Cell Rep. 9, 419–428 (2017).

    Article  CAS  Google Scholar 

  29. Toyoda, T. et al. Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Res. 14, 185–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Millman, J. R. et al. Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat. Commun. 7, 11463 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hogrebe, N. J., Augsornworawat, P., Maxwell, K. G., Velazco-Cruz, L. & Millman, J. R. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat. Biotechnol. 38, 460–470 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nair, G. G. et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat. Cell Biol. 21, 263–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sharon, N. et al. A peninsular structure coordinates asynchronous differentiation with morphogenesis to generate pancreatic islets. Cell 176, 790–804 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sharon, N. et al. Wnt signaling separates the progenitor and endocrine compartments during pancreas development. Cell Rep. 27, 2281–2291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maxwell, K. G., Kim, M. H., Gale, S. E. & Millman, J. R. Differential function and maturation of human stem cell-derived islets after transplantation. Stem Cells Transl. Med. 11, 322–331 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, C. et al. Cell identity dynamics and insight into insulin secretagogues when employing stem cell-derived islets for disease modeling. Front. Bioeng. Biotechnol. 12, 1392575 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhou, Q. et al. A multipotent progenitor domain guides pancreatic organogenesis. Dev. Cell 13, 103–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Barsby, T. et al. Differentiating functional human islet-like aggregates from pluripotent stem cells. STAR Protoc. 3, 101711 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ghazizadeh, Z. et al. ROCKII inhibition promotes the maturation of human pancreatic beta-like cells. Nat. Commun. 8, 298 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gouzi, M., Kim, Y. H., Katsumoto, K., Johansson, K. & Grapin-Botton, A. Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development. Dev. Dyn. 240, 589–604 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Mamidi, A. et al. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature 564, 114–118 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Gupta, S. K. et al. NKX6.1 induced pluripotent stem cell reporter lines for isolation and analysis of functionally relevant neuronal and pancreas populations. Stem Cell Res. 29, 220–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Nair, G. G., Tzanakakis, E. S. & Hebrok, M. Emerging routes to the generation of functional beta-cells for diabetes mellitus cell therapy. Nat. Rev. Endocrinol. 16, 506–518 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Melton, D. The promise of stem cell-derived islet replacement therapy. Diabetologia 64, 1030–1036 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Maxwell, K. G. & Millman, J. R. Applications of iPSC-derived beta cells from patients with diabetes. Cell Rep. Med. 2, 100238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vertex Pharmaceuticals. Vertex announces FDA clearance of investigational new drug application for VX-264, a novel encapsulated cell therapy for the treatment of type 1 diabetes. https://investors.vrtx.com/news-releases/news-release-details/vertex-announces-fda-clearance-investigational-new-drug (2023).

  47. Enosawa, S. Clinical trials of stem cell therapy in japan: the decade of progress under the national program. J. Clin. Med. 11, 7030 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, S. et al. Transplantation of chemically induced pluripotent stem-cell-derived islets under abdominal anterior rectus sheath in a type 1 diabetes patient. Cell 187, 6152–6164.e18 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26, 443–452 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Keymeulen, B. et al. Encapsulated stem cell-derived β cells exert glucose control in patients with type 1 diabetes. Nat. Biotechnol. 42, 1507–1514 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  51. American Diabetes Association. Expanded FORWARD trial demonstrates continued potential for stem cell-derived islet cell therapy to eliminate need for insulin for people with T1D. https://diabetes.org/newsroom/press-releases/expanded-forward-trial-demonstrates-continued-potential-stem-cell-derived (2024).

  52. Wu, J. et al. Treating a type 2 diabetic patient with impaired pancreatic islet function by personalized endoderm stem cell-derived islet tissue. Cell Discov. 10, 45 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shapiro, A. M., Pokrywczynska, M. & Ricordi, C. Clinical pancreatic islet transplantation. Nat. Rev. Endocrinol. 13, 268–277 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Naziruddin, B. et al. Evidence for instant blood-mediated inflammatory reaction in clinical autologous islet transplantation. Am. J. Transplant. 14, 428–437 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Liang, Z. et al. Implantation underneath the abdominal anterior rectus sheath enables effective and functional engraftment of stem-cell-derived islets. Nat. Metab. 5, 29–40 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Gaba, R. C., Garcia-Roca, R. & Oberholzer, J. Pancreatic islet cell transplantation: an update for interventional radiologists. J. Vasc. Inter. Radio. 23, 583–594 (2012).

    Article  Google Scholar 

  57. Vertex Pharmaceuticals Incorporated. Glucose-dependent insulin production and insulin-independence in type 1 diabetes from stem cell–derived, fully differentiated islet cells—updated data from the VX-880 clinical trial. https://diabetesjournals.org/diabetes/article/72/Supplement_1/836-P/149653/836-P-Glucose-Dependent-Insulin-Production-and (2023).

  58. Wang, Y. et al. A rapid chemical reprogramming system to generate human pluripotent stem cells. Nat. Chem. Biol. https://doi.org/10.1038/s41589-024-01799-8 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Abou-El-Enein, M., Bauer, G., Medcalf, N., Volk, H.-D. & Reinke, P. Putting a price tag on novel autologous cellular therapies. Cytotherapy 18, 1056–1061 (2016).

    Article  PubMed  Google Scholar 

  60. Lin, G. et al. HLA-matching potential of an established human embryonic stem cell bank in China. Cell Stem Cell 5, 461–465 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Yoshida, S. et al. A clinical-grade HLA haplobank of human induced pluripotent stem cells matching approximately 40% of the Japanese population. Med 4, 51–66 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Gourraud, P.-A., Gilson, L., Girard, M. & Peschanski, M. The role of human leukocyte antigen matching in the development of multiethnic “haplobank” of induced pluripotent stem cell lines. Stem Cells 30, 180–186 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Taylor, C. J., Peacock, S., Chaudhry, A. N., Bradley, J. A. & Bolton, E. M. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11, 147–152 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Vendrame, F. et al. Risk factors for type 1 diabetes recurrence in immunosuppressed recipients of simultaneous pancreas–kidney transplants. Am. J. Transplant. 16, 235–245 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Brooks, A. M. S. et al. De novo donor-specific HLA antibodies are associated with rapid loss of graft function following islet transplantation in type 1 diabetes. Am. J. Transplant. 15, 3239–3246 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Ballou, C. et al. Matching for HLA-DR excluding diabetogenic HLA-DR3 and HLA-DR4 predicts insulin independence after pancreatic islet transplantation. Front. Immunol. 14, 1110544 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Forbes, S. et al. Islet transplantation outcomes in type 1 diabetes and transplantation of HLA-DQ8/DR4: results of a single-centre retrospective cohort in Canada. EClinicalMedicine 67, 102333 (2024).

    Article  PubMed  Google Scholar 

  68. Erlich, H. et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes 57, 1084–1092 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Tran, M. T. et al. T cell receptor recognition of hybrid insulin peptides bound to HLA-DQ8. Nat. Commun. 12, 5110 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pathiraja, V. et al. Proinsulin-specific, HLA-DQ8, and HLA-DQ8-transdimer-restricted CD4+ T cells infiltrate islets in type 1 diabetes. Diabetes 64, 172–182 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Nejentsev, S. et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 450, 887–892 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Noble, J. A. Fifty years of HLA-associated type 1 diabetes risk: history, current knowledge, and future directions. Front. Immunol. 15, 1457213 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Henry, R. R. et al. Initial clinical evaluation of VC-01 combination product—a stem cell–derived islet replacement for type 1 diabetes. Diabetes https://doi.org/10.2337/db18-138-OR (2018).

  74. Odorico, J. et al. Report of the key opinion leaders meeting on stem cell-derived beta cells. Transplantation 102, 1223–1229 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Vertex. Vertex announces FDA clearance of investigational new drug application for VX-264, a novel encapsulated cell therapy for the treatment of type 1 diabetes. https://investors.vrtx.com/news-releases/news-release-details/vertex-announces-fda-clearance-investigational-new-drug (2023).

  76. Taylor, N. P. Vertex cuts ties to CRISPR Therapeutics’ type 1 diabetes stem cell therapy (2024).

  77. Sana Biotechnology. Uppsala University hospital and sana biotechnology announce authorization of the first-in-human clinical trial application for a primary islet cell treatment for patients with type 1 diabetes. https://ir.sana.com/news-releases/news-release-details/uppsala-university-hospital-and-sana-biotechnology-announce (2023).

  78. Philpott, J. Vertex halts development of diabetes cell therapy after trial failure. https://www.clinicaltrialsarena.com/news/vertex-halts-development-of-diabetes-cell-therapy-after-trial-failure/?cf-view (2025).

  79. van der Torren, C. R. et al. Immunogenicity of human embryonic stem cell-derived beta cells. Diabetologia 60, 126–133 (2017).

    Article  PubMed  Google Scholar 

  80. Hu, X. et al. Human hypoimmune primary pancreatic islets avoid rejection and autoimmunity and alleviate diabetes in allogeneic humanized mice. Sci. Transl. Med. 15, eadg5794 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Hu, X. et al. Hypoimmune islets achieve insulin independence after allogeneic transplantation in a fully immunocompetent non-human primate. Cell Stem Cell 31, 334–340 (2024).

    Article  CAS  PubMed  Google Scholar 

  82. Shapiro, A. M. J. & Verhoeff, K. A spectacular year for islet and stem cell transplantation. Nat. Rev. Endocrinol. 19, 68–69 (2023).

    Article  PubMed  Google Scholar 

  83. Schulz, T. C. et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS ONE 7, e37004 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Verhoeff, K. et al. Scalable bioreactor-based suspension approach to generate stem cell-derived islets from healthy donor-derived iPSCs. Transplantation 109, e22–e35 (2025).

    Article  CAS  PubMed  Google Scholar 

  85. Kropp, C. et al. Impact of feeding strategies on the scalable expansion of human pluripotent stem cells in single-use stirred tank bioreactors. Stem Cells Transl. Med. 5, 1289–1301 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ullmann, K. et al. Matrix-free human pluripotent stem cell manufacturing by seed train approach and intermediate cryopreservation. Stem Cell Res. Ther. 15, 89 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pollock, S. D., Galicia-Silva, I. M., Liu, M., Gruskin, Z. L. & Alvarez-Dominguez, J. R. Scalable generation of 3D pancreatic islet organoids from human pluripotent stem cells in suspension bioreactors. STAR Protoc. 4, 102580 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lei, Y. & Schaffer, D. V. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc. Natl Acad. Sci. USA 110, E5039–E5048 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Borys, B. S. et al. Overcoming bioprocess bottlenecks in the large-scale expansion of high-quality hiPSC aggregates in vertical-wheel stirred suspension bioreactors. Stem Cell Res. Ther. 12, 55 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tang, X. et al. The combination of dextran sulphate and polyvinyl alcohol prevents excess aggregation and promotes proliferation of pluripotent stem cells in suspension culture. Cell Prolif. 54, e13112 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sen, A., Kallos, M. S. & Behie, L. A. Effects of hydrodynamics on cultures of mammalian neural stem cell aggregates in suspension bioreactors. Ind. Eng. Chem. Res. 40, 5350–5357 (2001).

    Article  CAS  Google Scholar 

  92. Schulz, T. C. Concise review: manufacturing of pancreatic endoderm cells for clinical trials in type 1 diabetes. Stem Cells Transl. Med. 4, 927–931 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pepper, A. R. et al. Transplantation of human pancreatic endoderm cells reverses diabetes post transplantation in a prevascularized subcutaneous site. Stem Cell Rep. 8, 1689–1700 (2017).

    Article  CAS  Google Scholar 

  94. Iworima, D. G. et al. Metabolic switching, growth kinetics and cell yields in the scalable manufacture of stem cell-derived insulin-producing cells. Stem Cell Res. Ther. 15, 1 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhan, L. et al. Pancreatic islet cryopreservation by vitrification achieves high viability, function, recovery and clinical scalability for transplantation. Nat. Med. 28, 798–808 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kojayan, G. G., Alexander, M., Imagawa, D. K. & Lakey, J. R. T. Systematic review of islet cryopreservation. Islets 10, 40–49 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Barra, J. M. et al. Cryopreservation of stem cell–derived β-like cells enriches for insulin-producing cells with improved function. Diabetes 73, 1687–1696 (2024).

    Article  CAS  PubMed  Google Scholar 

  98. Agulnick, A., Martinson, L., Kroon, E, Scott, M. & Green, C. Cryopreservation, hibernation and room temperature storage of encapulated pancreatic endoderm cell aggregates. US patent application US10695380B2 (2017).

  99. Murray, K. A. & Gibson, M. I. Chemical approaches to cryopreservation. Nat. Rev. Chem. 6, 579–593 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Marquez-Curtis, L. A. et al. Cryopreservation and post-thaw characterization of dissociated human islet cells. PLoS ONE 17, e0263005 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. ViaCyte Incorporated. An open-label,phase 1/2 study to evaluate the safety, engraftment and efficacy of VC-01 combination product in subjects with type 1 diabetes mellitus. https://cdn.clinicaltrials.gov/large-docs/57/NCT04678557/Prot_000.pdf (2020).

  102. Fahy, G. M., MacFarlane, D. R., Angell, C. A. & Meryman, H. T. Vitrification as an approach to cryopreservation. Cryobiology 21, 407–426 (1984).

    Article  CAS  PubMed  Google Scholar 

  103. Tanaka, M. et al. Achievements and challenges of the Sakigake designation system in Japan. Br. J. Clin. Pharmacol. 87, 4027–4035 (2021).

    Article  PubMed  Google Scholar 

  104. Tanaka, M., Miyazawa, H., Terashima, R. & Ikuma, M. Conditional early approval for new drug applications in Japan: current and emerging issues. Clin. Transl. Sci. 16, 1289–1293 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  105. International Coalition of Medicines Regulatory Authorities. ICMRA-ICH-IPRP-PICS Joint Work Plan for Harmonisation and Convergence Work to Advance Development of a Regulatory Pharmaceutical Quality Knowledge Management Capability. https://www.icmra.info/drupal/en/strategicinitatives/pqkms/joint_work_plan (2023).

  106. World Health Organization. Considerations in developing a regulatory framework for human cells and tissues and for advance therapy medicinal products, Annex 3, TRS 1048. https://www.who.int/publications/m/item/considerations-in-developing-a-regulatory-framework-for-human-cells-and-tissues-and-for-advance-therapy-medicinal-products-annex-3-trs-1048 (2023).

  107. Madrid, M. et al. Considerations for the development of iPSC-derived cell therapies: a review of key challenges by the JSRM-ISCT iPSC Committee. Cytotherapy 26, 1382–1399 (2024).

    Article  CAS  PubMed  Google Scholar 

  108. Department of Health and Social Care. Donation of starting material for advanced cell-based therapies. https://www.gov.uk/government/publications/donation-of-starting-material-for-advanced-cell-based-therapies (2014).

  109. European Union. Commission Directive 2006/17/EC. https://eur-lex.europa.eu/eli/dir/2006/17/oj (2006).

  110. US Food and Drug Administration. Complete list of donor screening assays for infectious agents and HIV diagnostic assays. https://www.fda.gov/vaccines-blood-biologics/complete-list-donor-screening-assays-infectious-agents-and-hiv-diagnostic-assays (2024).

  111. US Food and Drug Administration. Use of serological tests to reduce the risk of transmission of Trypanosomacruzi infection in blood and blood components. https://www.fda.gov/media/101270/download (2017).

  112. Pamies, D. et al. Guidance document on Good Cell and Tissue Culture Practice 2.0 (GCCP 2.0). ALTEX 39, 30–70 (2022).

    PubMed  Google Scholar 

  113. O’Shea, O., Steeg, R., Chapman, C., Mackintosh, P. & Stacey, G. N. Development and implementation of large-scale quality control for the European bank for induced pluripotent stem cells. Stem Cell Res. 45, 101773 (2020).

    Article  PubMed  Google Scholar 

  114. Pamies, D. et al. Recommendations on fit-for-purpose criteria to establish quality management for microphysiological systems and for monitoring their reproducibility. Stem Cell Rep. 19, 604–617 (2024).

    Article  CAS  Google Scholar 

  115. Solomon, J. et al. Current perspectives on the use of ancillary materials for the manufacture of cellular therapies. Cytotherapy 18, 1–12 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Tanaka, T. et al. Comparison of guidelines for biological ancillary materials used for the manufacture of gene and cellular therapy products in Asia. Cytotherapy 25, 220–228 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Ball, O. & Zylberberg, C. Towards a common framework for defining ancillary material quality across the development spectrum. Cytotherapy 21, 1234–1245 (2019).

    Article  PubMed  Google Scholar 

  118. United States Pharmacopeia. 〈1043〉 Ancillary materials for cell, gene, and tissue-engineered products. https://doi.usp.org/USPNF/USPNF_M620_02_01.html (2024).

  119. Thom, R. L., Cronin, A. J. & Consortium, V. Legal and regulatory challenges for emerging regenerative medicine solutions for diabetes. Transplantation 108, 1072–1079 (2024).

    Article  PubMed  Google Scholar 

  120. Seet, W. T. et al. Current Good manufacturing practice (cGMP) facility and production of stem cell. In Stem Cell Production: Processes, Practices and Regulations (ed. F. A. Khan) 37–68 (Springer, 2022).

  121. Pharmaceutical Inspection Co-operation Scheme. Guide to good manufacturing practice for medicinal products annexes. https://picscheme.org/docview/8881 (2023).

  122. World Health Organization. Considerations in developing a regulatory framework for human cells and tissues and for advanced therapy medicinal products. https://cdn.who.int/media/docs/default-source/biologicals/annex-3-hcts-atmps-regulatory-considerations-clean-for-posting-12-may-2023.pdf?sfvrsn=cc1f9a8a_1&download=true (2023).

  123. World Health Organization. Executive Summary of WHO Implementation Workshop on ‘WHO considerations in developing a regulatory framework for human cells and tissues and for advanced therapy medicinal products’. https://www.who.int/publications/m/item/executive-summary-of-who-implementation-workshop-cgtp (2024).

  124. Hankey, K. G. et al. Eight-day point of care CAR T-cell manufacturing on clinimacs prodigy from healthy donors as a proof-of-concept study. Blood 138, 2851 (2021).

    Article  Google Scholar 

  125. Smith, T. A. CAR-T cell expansion in a Xuri cell expansion system W25. Methods Mol. Biol. 2086, 151–163 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Dias, J., Garcia, J., Agliardi, G. & Roddie, C. CAR-T cell manufacturing landscape—lessons from the past decade and considerations for early clinical development. Mol. Ther. Methods Clin. Dev. 32, 101250 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Grinstein, J. D. Cellares unveils clinically-compliant cell therapy manufacturing platform. GEN Edge 6, 209–211 (2024).

    Article  Google Scholar 

  128. Markarian, J. Automation aids cell and gene therapy production. https://www.biopharminternational.com/view/automation-aids-cell-and-gene-therapy-production (2023).

  129. European Medicines Agency. Guideline on human cell-based medicinal products. https://www.ema.europa.eu/en/human-cell-based-medicinal-products-scientific-guideline (2007).

  130. Food and Drug Administration. Safety testing of human allogeneic cells expanded for use in cell-based medical products. https://www.fda.gov/media/178113/download (2024).

  131. Lee, A. S. et al. Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle 8, 2608–2612 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Gropp, M. et al. Standardization of the teratoma assay for analysis of pluripotency of human ES cells and biosafety of their differentiated progeny. PLoS ONE 7, e45532 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, Z. et al. Ultrasensitive and rapid quantification of rare tumorigenic stem cells in hPSC-derived cardiomyocyte populations. Sci. Adv. 6, eaay7629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chong, E. A. et al. CAR T cell viability release testing and clinical outcomes: is there a lower limit? Blood 134, 1873–1875 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. US Food and Drug Administration. Potency tests for cellular and gene therapy products. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/potency-tests-cellular-and-gene-therapy-products (2011).

  136. Simon, C. G. et al. Mechanism of action, potency and efficacy: considerations for cell therapies. J. Transl. Med. 22, 416 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Kaestner, K. H. et al. What is a β cell? - Chapter I in the Human Islet Research Network (HIRN) review series. Mol. Metab. 53, 101323 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Barsby, T. & Otonkoski, T. Maturation of beta cells: lessons from in vivo and in vitro models. Diabetologia 65, 917–930 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Marchetti, P., Bugliani, M., De Tata, V., Suleiman, M. & Marselli, L. Pancreatic beta cell identity in humans and the role of type 2 diabetes. Front. Cell Dev. Biol. 5, 55 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. US Food and Drug Administration. Part 1271—human cells, tissues, and cellular and tissue-based products. https://www.ecfr.gov/current/title-21/chapter-I/subchapter-L/part-1271 (2001).

  141. US Food and Drug Administration. Part 600—biological products: general. https://www.ecfr.gov/current/title-21/part-600 (2020).

  142. US Food and Drug Administration. Part 312—Investigational new drug application. https://www.ecfr.gov/current/title-21/part-312 (1987).

  143. US Food and Drug Administration. Part 211—Current good manufacturing practice for finished pharmaceuticals. https://www.ecfr.gov/current/title-21/part-211 (1978).

  144. US Food and Drug Administration. Part 820—Quality system regulation. https://www.ecfr.gov/current/title-21/part-820 (1996).

  145. US Food and Drug Administration cellular & gene therapy guidances. https://www.fda.gov/vaccines-blood-biologics/biologics-guidances/cellular-gene-therapy-guidances

  146. US Food and Drug Administration. Guidance for human somatic cell therapy and gene therapy. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-human-somatic-cell-therapy-and-gene-therapy (1998).

  147. US Food and Drug Administration. Testing of retroviral vector-based human gene therapy products for replication competent retrovirus during product manufacture and patient follow-up. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/testing-retroviral-vector-based-human-gene-therapy-products-replication-competent-retrovirus-during (2020).

  148. The European Parliament and the Council of the European Union. Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the Community code relating to medicinal products for human use. http://data.europa.eu/eli/dir/2001/83/oj (2001).

  149. The European Parliament and the Council of the European Union. Commission Directive 2009/120/EC of 14 September 2009 amending Directive 2001/83/EC of the European Parliament and of the Council on the Community code relating to medicinal products for human use as regards advanced therapy medicinal products. http://data.europa.eu/eli/dir/2009/120/oj (2009).

  150. The European Parliament and the Council of the European Union Commission Directive 2003/94/EC of 8 October 2003 laying down the principles and guidelines of good manufacturing practice in respect of medicinal products for human use and investigational medicinal products for human use. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32003L0094&qid=1745758751723

  151. The European Parliament and the Council of the European Union Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence and amending Regulations (EC) No 300/2008, (EU) No 167/2013, (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1139 and (EU) 2019/2144 and Directives 2014/90/EU, (EU) 2016/797 and (EU) 2020/1828 (Artificial Intelligence Act). https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng

  152. European Commission Directorate-General for Health and Food Safety European Commission Directorate-General for Health and Food Safety. https://health.ec.europa.eu/medicinal-products/eudralex/eudralex-volume-4_en

  153. European Medicines Agency. Guideline on quality, non-clinical and clinical requirements for investigational advanced therapy medicinal products in clinical trials. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-non-clinical-clinical-requirements-investigational-advanced-therapy-medicinal-products-clinical-trials_en.pdf (2025).

  154. Therapeutic Goods Administration. Therapeutic Goods Act 1989. https://www.legislation.gov.au/C2004A03952/latest/text (1990).

  155. Therapeutic Goods Administration. Therapeutic Goods Regulations 1990. https://www.legislation.gov.au/F1996B00406/latest/text (1990).

  156. Therapeutic Goods Administration. Therapeutic Goods (Excluded Goods) Determination 2018. https://www.legislation.gov.au/F2018L01350/latest/text (2018).

  157. Therapeutic Goods Administration. Therapeutic Goods (Standard for Human Cell and Tissue Products—Donor Screening Requirements) (TGO 108) Order 2021. https://www.legislation.gov.au/F2021L01326/latest/text (2021).

  158. Therapeutic Goods Administration. Therapeutic Goods (Standards for Biologicals—General and Specific Requirements) (TGO 109) Order 2021. https://www.legislation.gov.au/F2021L01332/asmade/text (2021).

  159. Ministry of Health Labour and Welfare (MHLW) and the Pharmaceuticals and Medical Devices Agency (PMDA) Act on Pharmaceuticals and Medical Devices (PMD Act). https://www.jqa.jp/english/safety/service/mandatory/pharmaceutical/

  160. Ministry of the Environment Japan Biosafety Clearing House (J-BCH). https://www.biodic.go.jp/bch/english/law.html

  161. Tobita, M. et al. Japan’s challenges of translational regenerative medicine: Act on the safety of regenerative medicine. Regen. Ther. 4, 78–81 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Pharmaceuticals and Medical Devices Agency. Standards for Biological Raw Materials, Operational Guideline. https://www.pmda.go.jp/files/000268475.pdf (2014).

  163. National Medical Products Administration. 关于再次公开征求《临床试验期间生物制品药学变更和研究技术指导原则》和《已上市疫苗药学变更研究技术指导原则》意见的通知 (Translated title: Technical guidelines on the chemistry, manufacturing and controls change and research on biologics during clinical trial) (2023).

  164. National Medical Products Administration. 关于《腺相关病毒载体类体内基因治疗产品临床试验申请药学研究与评价技术指导原则 (征求意见稿)》征求意见的通知 (Translated title: Technical guidelines on chemistry, manufacturing and controls study and evaluation for clinical trials for in vivo gene therapy with adenoassociated virus as a vector). https://www.cde.org.cn/main/news/viewInfoCommon/c81e168ac50a3bc7cf325a71f7742568 (2023).

  165. National Medical Products Administration. 国家药监局药审中心关于发布《人源干细胞产品药学研究与评价技术指导原则 (试行)》的通告 (2023年第33号) (Translated title: Technical guidelines on chemistry, manufacturing, and controls study and evaluation of human stem cell products (Trial)). https://www.cde.org.cn/main/news/viewInfoCommon/1dfacaa7804aca84d648edb83b10c40b (2023).

  166. Health Sciences Authority. Health Products Act. https://sso.agc.gov.sg/Act/HPA2007/Uncommenced/20210228?DocDate=20210217&ValidDt=20210301#Sc1- (2007).

Download references

Acknowledgements

We thank members of the laboratory of A.K.K.T. for critical reading and feedback. J.T.C. is supported by the A*STAR Graduate Academy. A.K.K.T. is supported by IMCB, A*STAR, HLTRP/2022/NUS-IMCB-02, OFIRG21jun-0097, CSASI21jun-0006, MTCIRG21-0071, HLCA23Feb0031, SC36/19-000801-A044, H24G1a0015 and M24N2K0087.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, C.J.T. and A.K.K.T.; Writing—original draft, C.J.T., N.D. and E.H.P.T.; Writing—review and editing, C.J.T., N.D., E.H.P.T., N.H.J.N., M.B.C.K., J.S. and A.K.K.T.; Supervision, A.K.K.T.

Corresponding authors

Correspondence to James Shapiro or Adrian Kee Keong Teo.

Ethics declarations

Competing interests

N.H.J.N. and A.K.K.T. are cofounders and shareholders of BetaLife but are not employed by BetaLife. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks James Shaw and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J.T., Dadheech, N., Tan, E.H.P. et al. Stem cell therapies for diabetes. Nat Med 31, 2147–2160 (2025). https://doi.org/10.1038/s41591-025-03767-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41591-025-03767-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing