Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Air pollution interventions for health

Abstract

Air pollution, a leading environmental health risk, claims millions of lives yearly, impacting health across the lifespan. Despite widespread acknowledgement of air pollution-related disease burdens, eliminating air pollution remains challenging. Many regions are reliant on fossil fuels or biomass for basic survival, and developed economies striving to reduce air pollution face persistent barriers. Climate change complicates intervention efforts, as rising temperatures and extreme weather (for example, wildfires, dust storms) intensify air pollution. Traditional interventions may falter under worsening climate conditions, requiring integrated mitigation, adaptation and resilient infrastructure to yield environmental and health benefits. In this narrative Review, we evaluate multilevel interventions at the national, community and individual levels, discussing what works and does not work, with illustrative case examples. No single intervention suffices; efficacy depends on context, shaped by enforcement and equity. Integrated strategies are needed to address the root causes of air pollution and mitigate the devastating health impacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiology of air pollution exposure and its multisystem health effects.
Fig. 2: Air pollution interventions by pollutant type.

Similar content being viewed by others

References

  1. Health Effects Institute. State of Global Air Report 2024 www.stateofglobalair.org/resources/report/state-global-air-report-2024 (2024).

  2. World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide www.who.int/publications/i/item/9789240034228 (2021).

  3. Campbell-Lendrum, D., Neville, T., Schweizer, C. & Neira, M. Climate change and health: three grand challenges. Nat. Med. 29, 1631–1638 (2023).

    CAS  PubMed  Google Scholar 

  4. Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).

    PubMed  Google Scholar 

  5. Shen, G. et al. Emission of oxygenated polycyclic aromatic hydrocarbons from indoor solid fuel combustion. Environ. Sci. Technol. 45, 3459–3465 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, Z. et al. A population-based cohort study of respiratory disease and long-term exposure to iron and copper in fine particulate air pollution and their combined impact on reactive oxygen species generation in human lungs. Environ. Sci. Technol. 55, 3807–3818 (2021).

    CAS  PubMed  Google Scholar 

  7. de Bont, J. et al. Ambient air pollution and cardiovascular diseases: an umbrella review of systematic reviews and meta‐analyses. J. Intern. Med. 291, 779–800 (2022).

    PubMed  PubMed Central  Google Scholar 

  8. Sîrbu, C. A. et al. Air pollution and its devastating effects on the central nervous system. Healthcare 10, 1170 (2022).

  9. Ural, B. B. & Farber, D. L. Effect of air pollution on the human immune system. Nat. Med. 28, 2482–2483 (2022).

    Google Scholar 

  10. Ural, B. B. et al. Inhaled particulate accumulation with age impairs immune function and architecture in human lung lymph nodes. Nat. Med. 28, 2622–2632 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Markozannes, G. et al. Outdoor air quality and human health: an overview of reviews of observational studies. Environ. Pollut. 306, 119309 (2022).

    CAS  PubMed  Google Scholar 

  12. Eze, I. C. et al. Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis. Environ. Health Perspect. 123, 381–389 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Pedersen, M. et al. Ambient air pollution and low birthweight: a European cohort study (ESCAPE). Lancet Respir. Med. 1, 695–704 (2013).

    CAS  PubMed  Google Scholar 

  14. Pedersen, M. et al. Ambient air pollution and pregnancy-induced hypertensive disorders: a systematic review and meta-analysis. Hypertension 64, 494–500 (2014).

    CAS  PubMed  Google Scholar 

  15. Dadvand, P. et al. Ambient air pollution and preeclampsia: a spatiotemporal analysis. Environ. Health Perspect. 121, 1365–1371 (2013).

    PubMed  PubMed Central  Google Scholar 

  16. Stieb, D. M., Chen, L., Eshoul, M. & Judek, S. Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ. Res. 117, 100–111 (2012).

    CAS  PubMed  Google Scholar 

  17. Wu, J. et al. Association between local traffic-generated air pollution and preeclampsia and preterm delivery in the South Coast Air Basin of California. Environ. Health Perspect. 117, 1773–1779 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Shah, P. S., Balkhair, T. & Knowledge Synthesis Group on Determinants of Preterm/LBW births. Air pollution and birth outcomes: a systematic review. Environ. Int. 37, 498–516 (2011).

    CAS  PubMed  Google Scholar 

  19. Christiani, D. C. Ambient air pollution and lung cancer: nature and nurture. Am. J. Respir. Crit. Care Med. 204, 752–753 (2021).

    PubMed  PubMed Central  Google Scholar 

  20. Lanphear, B., Navas-Acien, A. & Bellinger, D. C. Lead poisoning. N. Engl. J. Med. 391, 1621–1631 (2024).

    CAS  PubMed  Google Scholar 

  21. Hansel, N. N. et al. Randomized clinical trial of air cleaners to improve indoor air quality and chronic obstructive pulmonary disease health: results of the CLEAN AIR Study. Am. J. Respir. Crit. Care Med. 205, 421–430 (2022).

    CAS  PubMed  Google Scholar 

  22. Lei, J. et al. Respiratory benefits of multisetting air purification in children: a cluster randomized crossover trial. JAMA Pediatr. 179, 122–128 (2025).

    PubMed  Google Scholar 

  23. Xu, R. et al. Global population exposure to landscape fire air pollution from 2000 to 2019. Nature 621, 521–529 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. United Nations Department of Economic and Social Affairs. 2018 Revision of World Urbanization Prospects www.un.org/en/desa/2018-revision-world-urbanization-prospects (2018).

  25. Khanh, D. N., Varquez, A. C. G. & Kanda, M. Impact of urbanization on exposure to extreme warming in megacities. Heliyon 9, e15511 (2023).

    PubMed  PubMed Central  Google Scholar 

  26. United States Environmental Protection Agency. Summary of the Clean Air Act www.epa.gov/laws-regulations/summary-clean-air-act (2025).

  27. Ministry of Ecology and Environment, the People’s Republic of China. The State Council Rolls Out a Three-Year Action Plan for Clean Air english.mee.gov.cn/News_service/news_release/201807/t20180713_446624.shtml (2018).

  28. European Commission. Air Quality environment.ec.europa.eu/topics/air/air-quality_en (2024).

  29. Commission for Air Quality Management in National Capital Region and Adjoining Areas. GRAP Schedule caqm.nic.in/index1.aspx?lsid=4217&lev=2&lid=4216&langid=1 (2024).

  30. Dominici, F. et al. Assessing adverse health effects of long-term exposure to low levels of ambient air pollution: phase 1. Res. Rep. 2019, 1–51 (2019).

    Google Scholar 

  31. United States Environmental Protection Agency. National Ambient Air Quality Standards (NAAQS) for PM www.epa.gov/pm-pollution/national-ambient-air-quality-standards-naaqs-pm (2024).

  32. American Lung Association. Clean Air Timeline www.lung.org/policy-advocacy/healthy-air-campaign/healthy-air-resources/clean-air-timeline (2024).

  33. United States Environmental Protection Agency. EPA Finalizes Stronger Standards For Harmful Soot Pollution, Significantly Increasing Health and Clean Air Protections for Families, Workers, and Communities www.epa.gov/newsreleases/epa-finalizes-stronger-standards-harmful-soot-pollution-significantly-increasing (2024).

  34. United States Environmental Protection Agency. NAAQS Table www.epa.gov/criteria-air-pollutants/naaqs-table (2024).

  35. Geldsetzer, P. et al. Disparities in air pollution attributable mortality in the US population by race/ethnicity and sociodemographic factors. Nat. Med. 30, 2821–2829 (2024).

    CAS  PubMed  Google Scholar 

  36. Henneman, L. et al. Mortality risk from United States coal electricity generation. Science 382, 941–946 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. United States Environmental Protection Agency. Biden–Harris Administration Finalizes Suite of Standards to Reduce Pollution from Fossil Fuel-Fired Power Plants www.epa.gov/newsreleases/biden-harris-administration-finalizes-suite-standards-reduce-pollution-fossil-fuel (2024).

  38. World Resources Institute. STATEMENT: U.S. EPA Issues Strong Pollution Standards for New and Existing Power Plants www.wri.org/news/statement-us-epa-issues-strong-pollution-standards-new-and-existing-power-plants (2024).

  39. Sanders, T., Liu, Y., Buchner, V. & Tchounwou, P. B. Neurotoxic effects and biomarkers of lead exposure: a review. Rev. Environ. Health 24, 15–45 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Collin, M. S. et al. Bioaccumulation of lead (Pb) and its effects on human: a review. J. Hazard. Mater. Adv. 7, 100094 (2022).

    CAS  Google Scholar 

  41. Ruckart, P. Z. et al. Update of the blood lead reference value — United States, 2021. MMWR Morb. Mortal. Wkly Rep. 70, 1509–1512 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ericson, B. et al. Blood lead levels in low-income and middle-income countries: a systematic review. Lancet Planet. Health 5, e145–e153 (2021).

    PubMed  Google Scholar 

  43. Lanphear, B. P. et al. Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ. Health Perspect. 113, 894–899 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hsieh, N.-H. et al. Anemia risk in relation to lead exposure in lead-related manufacturing. BMC Public Health 17, 389 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Bridbord, K. & Hanson, D. A personal perspective on the initial federal health-based regulation to remove lead from gasoline. Environ. Health Perspect. 117, 1195–1201 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. United Nations Environment Programme. A New Partnership For a Lead-Free Future www.unep.org/fr/node/38115 (2024).

  47. Angrand, R. C., Collins, G., Landrigan, P. J. & Thomas, V. M. Relation of blood lead levels and lead in gasoline: an updated systematic review. Environ. Health 21, 138 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang, X., Li, G. & Fu, W. Government environmental governance, structural adjustment and air quality: a quasi-natural experiment based on the Three-year Action Plan to Win the Blue Sky Defense War. J. Environ. Manage. 277, 111470 (2021).

    CAS  PubMed  Google Scholar 

  49. International Energy Agency. Three-year Action Plan for Cleaner Air (also Called the Blue Sky War) www.iea.org/policies/8508-three-year-action-plan-for-cleaner-air-also-called-the-blue-sky-war (2021).

  50. Force, E. C. T., Shi, X. & Duan, G. Recommendations of controlling and preventing acute health risks of fine particulate matter pollution—China, 2021. China CDC Wkly 4, 329–341 (2022).

    Google Scholar 

  51. Liu, C. et al. A severe fog–haze episode in Beijing–Tianjin–Hebei region: characteristics, sources and impacts of boundary layer structure. Atmos. Pollut. Res. 10, 1190–1202 (2019).

    CAS  Google Scholar 

  52. Zhai, S. et al. Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmos. Chem. Phys. 19, 11031–11041 (2019).

    CAS  Google Scholar 

  53. Cheng, J. et al. Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013–2017: a model-based decomposition analysis. Atmos. Chem. Phys. 19, 6125–6146 (2019).

    CAS  Google Scholar 

  54. Liu, L. & Ogunc, A. Beijing Blue: impact of the 2008 Olympic Games and 2014 APEC Summit on Air Quality. Atl. Econ. J. 51, 83–100 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rich, D. Q. et al. Association between changes in air pollution levels during the Beijing Olympics and biomarkers of inflammation and thrombosis in healthy young adults. JAMA 307, 2068–2078 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin, W. et al. Association between changes in exposure to air pollution and biomarkers of oxidative stress in children before and during the Beijing Olympics. Am. J. Epidemiol. 181, 575–583 (2015).

    PubMed  Google Scholar 

  57. Qi, W. et al. Short-term air pollution and greenness exposures on oxidative stress in urban and peri-urban residents in Beijing: a part of AIRLESS study. Sci. Total Environ. 951, 175148 (2024).

    CAS  PubMed  Google Scholar 

  58. Dai, H., Ji, J. S., Wang, S. & Zhao, B. Impact of climate change shocks on health risks attributed to urban residential PM2.5 in China. Sci. Bull. 70, 1230–1234 (2024).

  59. Liu, N. et al. The burden of disease attributable to indoor air pollutants in China from 2000 to 2017. Lancet Planet. Health 7, e900–e911 (2023).

    PubMed  Google Scholar 

  60. Zhang, A., Liu, Y., Ji, J. S. & Zhao, B. Air purifier intervention to remove indoor PM2.5 in urban China: a cost-effectiveness and health inequality impact study. Environ. Sci. Technol. 57, 4492–4503 (2023).

    CAS  PubMed  Google Scholar 

  61. Hu, Y., Ji, J. S. & Zhao, B. Deaths attributable to indoor PM2.5 in urban China when outdoor air meets 2021 WHO air quality guidelines. Environ. Sci. Technol. 56, 15882–15891 (2022).

    CAS  PubMed  Google Scholar 

  62. Liu, H. et al. Hospital admissions attributable to reduced air pollution due to clean-air policies in China. Nat. Med. 31, 1688–1697 (2025).

  63. Gulia, S., Goyal, S. K. & Kumar, R. Air pollution episode analysis and qualitative evaluation of proposed control measures in Delhi City. In Urban Air Quality Monitoring, Modelling and Human Exposure Assessment (eds Shiva Nagendra, S. M. et al.) 225–237 (Springer, 2021).

  64. Jaganathan, S. et al. Estimating the effect of annual PM2.5 exposure on mortality in India: a difference-in-differences approach. Lancet Planet. Health 8, e987–e996 (2024).

    PubMed  PubMed Central  Google Scholar 

  65. Greenstone, M., Ganguly, T., Hasenkopf, C., Sharma, N. & Gautam, H. Annual Update Air Quality Life Index aqli.epic.uchicago.edu/reports/?lang=zh-hans&l=zh-hans (2020).

  66. Pathak, G., Nichter, M., Hardon, A. & Moyer, E. The open burning of plastic wastes is an urgent global health issue. Ann. Glob. Health 90, 3 (2024).

    PubMed  PubMed Central  Google Scholar 

  67. Velis, C. A. & Cook, E. Mismanagement of plastic waste through open burning with emphasis on the Global South: a systematic review of risks to occupational and public health. Environ. Sci. Technol. 55, 7186–7207 (2021).

    CAS  PubMed  Google Scholar 

  68. Kaushal, L. A. Field crop residue burning induced particulate pollution in NW India — policy challenges & way forward. IOP Conf. Ser. Earth Environ. Sci. 1009, 012006 (2022).

    Google Scholar 

  69. Dipoppa, G. & Gulzar, S. Bureaucrat incentives reduce crop burning and child mortality in South Asia. Nature 634, 1125–1131 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bikkina, S. et al. Air quality in megacity Delhi affected by countryside biomass burning. Nat. Sustain. 2, 200–205 (2019).

    Google Scholar 

  71. Liu, T. et al. Crop residue burning practices across north India inferred from household survey data: bridging gaps in satellite observations. Atmos. Environ. X 8, 100091 (2020).

    CAS  Google Scholar 

  72. Lan, R., Eastham, S. D., Liu, T., Norford, L. K. & Barrett, S. R. H. Air quality impacts of crop residue burning in India and mitigation alternatives. Nat. Commun. 13, 6537 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hamilton, I. et al. The public health implications of the Paris Agreement: a modelling study. Lancet Planet. Health 5, e74–e83 (2021).

    PubMed  PubMed Central  Google Scholar 

  74. de Bont, J. et al. Synergistic associations of ambient air pollution and heat on daily mortality in India. Environ. Int. 199, 109426 (2025).

    PubMed  Google Scholar 

  75. Analitis, A. et al. Synergistic effects of ambient temperature and air pollution on health in Europe: results from the PHASE Project. Int. J. Environ. Res. Public Health 15, 1856 (2018).

  76. Stafoggia, M. et al. Joint effect of heat and air pollution on mortality in 620 cities of 36 countries. Environ. Int. 181, 108258 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. United Nations Economic Commission for Europe. Convention on Long-Range Transboundary Air Pollution: 40 Years of Air Quality Improvements in Europe and North America www.ccacoalition.org/news/40-years-cooperation-and-counting-unece-air-convention (2020).

  78. European Environment Agency. Europe’s Air Quality Status 2024 www.eea.europa.eu/publications/europes-air-quality-status-2024 (2024).

  79. World Health Organization. All for Health. Health for All: Investment Case 2025–2028 www.who.int/publications/i/item/9789240095403 (2024).

  80. Bell, M. L., Davis, D. L. & Fletcher, T. in Urban Ecology: an International Perspective on the Interaction Between Humans and Nature (eds Marzluff, J. M. et al.) 263–268 (Springer, 2008).

  81. Stone, R. Counting the cost of London’s killer smog. Science 298, 2106–2107 (2002).

  82. Berridge, V. & Taylor, S. (eds) Centre for History in Public Health 15 (London School of Hygiene and Tropical Medicine, 2005).

  83. Polivka, B. J. The Great London Smog of 1952. Am. J. Nurs. 118, 57–61 (2018).

    PubMed  Google Scholar 

  84. Bharadwaj, P., Zivin, J. G., Mullins, J. T. & Neidell, M. Early-life exposure to the Great Smog of 1952 and the development of asthma. Am. J. Respir. Crit. Care Med. 194, 1475–1482 (2016).

    PubMed  PubMed Central  Google Scholar 

  85. Kelly, F. J. & Zhu, T. Transport solutions for cleaner air. Science 352, 934–936 (2016).

    CAS  PubMed  Google Scholar 

  86. Kelly, F. J. & Kelly, J. London air quality: a real world experiment in progress. Biomarkers 14, 5–11 (2009).

    CAS  PubMed  Google Scholar 

  87. Mahase, E. London’s ULEZ is a good example for the world’s mayors, says WHO leader. BMJ 383, 2251 (2023).

  88. Smith, R. London mayor plans to take more action to reduce air pollution. BMJ 376, o678 (2022).

  89. Allam, Z., Nieuwenhuijsen, M. & Allam, Z. Paris’s parking policy for healthier cities. Lancet Planet. Health 8, e343–e344 (2024).

    PubMed  Google Scholar 

  90. Anenberg, S. C. et al. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature 545, 467–471 (2017).

    CAS  PubMed  Google Scholar 

  91. Smith, R. Doctors need to speak up in support of cleaner air in London and other cities. BMJ 381, 809 (2023).

  92. Subramanian, M. New Delhi car ban yields trove of pollution data. Nature 530, 266–267 (2016).

    CAS  PubMed  Google Scholar 

  93. McElroy, S. & Vaidyanathan, A. Understanding air quality changes after implementation of mitigation measures during a pandemic: a scoping review of literature in the United States. Aerosol Air Qual. Res. 22, 220047 (2022).

    CAS  Google Scholar 

  94. Morales-Betancourt, R. et al. Commuter’s personal exposure to air pollutants after the implementation of a cable car for public transport: results of the natural experiment TrUST. Sci. Total Environ. 865, 160880 (2023).

    CAS  PubMed  Google Scholar 

  95. Texcalac-Sangrador, J. L. et al. Speed limits and their effect on air pollution in Mexico City: a quasi-experimental study. Sci. Total Environ. 924, 171506 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Davis, L. W. The effect of driving restrictions on air quality in Mexico City. J. Political Econ. 116, 38–81 (2008).

    Google Scholar 

  97. Gallego, F., Montero, J.-P. & Salas, C. The effect of transport policies on car use: evidence from Latin American cities. J. Public Econ. 107, 47–62 (2013).

    Google Scholar 

  98. Kumar, P., Gulia, S., Harrison, R. M. & Khare, M. The influence of odd–even car trial on fine and coarse particles in Delhi. Environ. Pollut. 225, 20–30 (2017).

    CAS  PubMed  Google Scholar 

  99. Lin, J. & Wang, Q. Are street tree inequalities growing or diminishing over time? The inequity remediation potential of the MillionTreesNYC initiative. J. Environ. Manage. 285, 112207 (2021).

    PubMed  Google Scholar 

  100. Zhou, W. et al. Urban tree canopy has greater cooling effects in socially vulnerable communities in the US. One Earth 4, 1764–1775 (2021).

    Google Scholar 

  101. Ahrends, A. et al. China’s fight to halt tree cover loss. Proc. Biol. Sci. 284, 20162559 (2017).

  102. Xie, Y. et al. Credibility of the evidence on green space and human health: an overview of meta-analyses using evidence grading approaches. EBioMedicine 106, 105261 (2024).

    PubMed  PubMed Central  Google Scholar 

  103. Zhang, H. et al. Assessing the effects of ultraviolet radiation, residential greenness and air pollution on vitamin D levels: a longitudinal cohort study in China. Environ. Int. 169, 107523 (2022).

    CAS  PubMed  Google Scholar 

  104. Wan, S. et al. Greenspace and mortality in the U.K. Biobank: longitudinal cohort analysis of socio-economic, environmental, and biomarker pathways. SSM Popul. Health 19, 101194 (2022).

    PubMed  PubMed Central  Google Scholar 

  105. Ji, J. S., Zhu, A., Lv, Y. & Shi, X. Interaction between residential greenness and air pollution mortality: analysis of the Chinese Longitudinal Healthy Longevity Survey. Lancet Planet. Health 4, e107–e115 (2020).

    PubMed  PubMed Central  Google Scholar 

  106. Poulsen, A. H. et al. Concomitant exposure to air pollution, green space, and noise and risk of stroke: a cohort study from Denmark. Lancet Reg. Health Eur. 31, 100655 (2023).

    PubMed  PubMed Central  Google Scholar 

  107. Venter, Z. S., Hassani, A., Stange, E., Schneider, P. & Castell, N. Reassessing the role of urban green space in air pollution control. Proc. Natl Acad. Sci. USA 121, e2306200121 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ma, M. et al. Development and assessment of a high-resolution biogenic emission inventory from urban green spaces in China. Environ. Sci. Technol. 56, 175–184 (2022).

    CAS  PubMed  Google Scholar 

  109. Jamei, E., Chau, H. W., Seyedmahmoudian, M., Mekhilef, S. S. & Sami, F. A. Green roof and energy — role of climate and design elements in hot and temperate climates. Heliyon 9, e15917 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Jones, B. A. & Goodkind, A. L. Urban afforestation and infant health: evidence from MillionTreesNYC. J. Environ. Econ. Manag. 95, 26–44 (2019).

    Google Scholar 

  111. Liu, T. et al. Classification and sources of extremely severe sandstorms mixed with haze pollution in Beijing. Environ. Pollut. 322, 121154 (2023).

    CAS  PubMed  Google Scholar 

  112. Long, X. et al. Does afforestation deteriorate haze pollution in Beijing–Tianjin–Hebei (BTH), China? Atmos. Chem. Phys. 18, 10869–10879 (2018).

    CAS  Google Scholar 

  113. Iungman, T. et al. Cooling cities through urban green infrastructure: a health impact assessment of European cities. Lancet 401, 577–589 (2023).

    PubMed  Google Scholar 

  114. Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190120 (2020).

    PubMed  PubMed Central  Google Scholar 

  115. South, E. C., Hohl, B. C., Kondo, M. C., MacDonald, J. M. & Branas, C. C. Effect of greening vacant land on mental health of community-dwelling adults: a cluster randomized trial. JAMA Netw. Open 1, e180298 (2018).

    PubMed  PubMed Central  Google Scholar 

  116. Barton, J. & Pretty, J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ. Sci. Technol. 44, 3947–3955 (2010).

    CAS  PubMed  Google Scholar 

  117. Nieuwenhuijsen, M. J. Climate crisis, cities, and health. Lancet 404, 1693–1700 (2024).

    PubMed  Google Scholar 

  118. Yu, M. et al. Is urban greening an effective solution to enhance environmental comfort and improve air quality? Environ. Sci. Technol. 56, 5390–5397 (2022).

    CAS  PubMed  Google Scholar 

  119. Asian Infrastructure Investment Bank. Building Green Great Wall Against Sand Dust: Impact and Implementation of China’s Sanbei Reforestation Project www.aiib.org/en/news-events/media-center/blog/2023/Building-Green-Great-Wall-Against-Sand-Dust-Impact-and-Implementation-of-Chinas-Sanbei-Reforestation-Project.html (2023).

  120. Xinhua News Agency. Windbreaks, Sand Fixing and Less Grazing — China Fights Uphill Battle Against Desertification https://english.news.cn/20241025/ee84a11b8ac044d3afcd864b3e158258/c.html (2024)

  121. Wei, J. et al. Improved 1 km resolution PM2.5 estimates across China using enhanced space–time extremely randomized trees. Atmos. Chem. Phys. 20, 3273–3289 (2020).

    CAS  Google Scholar 

  122. Kelly, F. J. & Fussell, J. C. Air pollution and public health: emerging hazards and improved understanding of risk. Environ. Geochem. Health 37, 631–649 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Grineski, S. E., Clark-Reyna, S. E. & Collins, T. W. School-based exposure to hazardous air pollutants and grade point average: a multi-level study. Environ. Res. 147, 164–171 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Rappold, A. G. et al. Forecast-based interventions can reduce the health and economic burden of wildfires. Environ. Sci. Technol. 48, 10571–10579 (2014).

    CAS  PubMed  Google Scholar 

  125. Campbell, S. L. et al. Using digital technology to protect health in prolonged poor air quality episodes: a case study of the AirRater app during the Australian 2019–20 fires. Fire 3, 40 (2020).

    Google Scholar 

  126. Abera, A. et al. Air quality in Africa: public health implications. Annu. Rev. Public Health 42, 193–210 (2021).

    PubMed  Google Scholar 

  127. Lai, P. S. et al. Household air pollution interventions to improve health in low- and middle-income countries: an official American Thoracic Society research statement. Am. J. Respir. Crit. Care Med. 209, 909–927 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Smith, K. R. & Pillarisetti, A. in Injury Prevention and Environmental Health 3rd edn (eds Mock, C. N. et al.) Ch. 7 (International Bank for Reconstruction and Development/World Bank, 2018).

  129. Lai, P. S. et al. Household air pollution interventions to improve health in low-and middle-income countries: an official American Thoracic Society research statement. Am. J. Respir. Crit. Care Med. 209, 909–927 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lee, K. K. et al. Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study. Lancet Glob. Health 8, e1427–e1434 (2020).

    PubMed  PubMed Central  Google Scholar 

  131. Shi, S., Zhao, B. & Zhang, J. Effect of residential air cleaning interventions on risk of cancer associated with indoor semi-volatile organic compounds: a comprehensive simulation study. Lancet Planet. Health 2, e532–e539 (2018).

    PubMed  Google Scholar 

  132. Hertelendy, A. J. et al. Seasons of smoke and fire: preparing health systems for improved performance before, during, and after wildfires. Lancet Planet. Health 8, e588–e602 (2024).

    PubMed  Google Scholar 

  133. Janjua, S., Powell, P., Atkinson, R., Stovold, E. & Fortescue, R. Individual‐level interventions to reduce personal exposure to outdoor air pollution and their effects on people with long‐term respiratory conditions. Cochrane Database Syst. Rev. 8, CD013441 (2021).

  134. Laumbach, R. J. et al. Personal interventions for reducing exposure and risk for outdoor air pollution: an official American Thoracic Society workshop report. Ann. Am. Thorac. Soc. 18, 1435–1443 (2021).

    PubMed  PubMed Central  Google Scholar 

  135. Laumbach, R. J. & Cromar, K. R. Personal interventions to reduce exposure to outdoor air pollution. Annu. Rev. Public Health 43, 293–309 (2022).

    PubMed  Google Scholar 

  136. Bennitt, F. B. et al. Global, regional, and national burden of household air pollution, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 405, 1167–1181 (2025).

    Google Scholar 

  137. Checkley, W. et al. Effects of cooking with liquefied petroleum gas or biomass on stunting in infants. N. Engl. J. Med. 390, 44–54 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Chillrud, S. N. et al. The effect of clean cooking interventions on mother and child personal exposure to air pollution: results from the Ghana Randomized Air Pollution and Health Study (GRAPHS). J. Expo. Sci. Environ. Epidemiol. 31, 683–698 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Cepeda, M. et al. Levels of ambient air pollution according to mode of transport: a systematic review. Lancet Public Health 2, e23–e34 (2017).

    PubMed  Google Scholar 

  140. Lowe, M. et al. City planning policies to support health and sustainability: an international comparison of policy indicators for 25 cities. Lancet Glob. Health 10, e882–e894 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Giles-Corti, B. et al. What next? Expanding our view of city planning and global health, and implementing and monitoring evidence-informed policy. Lancet Glob. Health 10, e919–e926 (2022).

    CAS  PubMed  Google Scholar 

  142. Bonanni, L. J. & Newman, J. D. Personal strategies to reduce the cardiovascular impacts of environmental exposures. Circ. Res. 134, 1197–1217 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Lu, F. T. et al. Real-world effectiveness of portable air cleaners in reducing home particulate matter concentrations. Aerosol Air Qual. Res. 24, 230202 (2024).

  144. Morishita, M. et al. Effect of portable air filtration systems on personal exposure to fine particulate matter and blood pressure among residents in a low-income senior facility: a randomized clinical trial. JAMA Intern. Med. 178, 1350–1357 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Thottiyil Sultanmuhammed Abdul Khadar, B. et al. Air purifiers and acute respiratory infections in residential aged care: a randomized clinical trial. JAMA Netw. Open 7, e2443769 (2024).

    PubMed  PubMed Central  Google Scholar 

  146. Chen, R. et al. Cardiopulmonary benefits of reducing indoor particles of outdoor origin: a randomized, double-blind crossover trial of air purifiers. J. Am. Coll. Cardiol. 65, 2279–2287 (2015).

    PubMed  PubMed Central  Google Scholar 

  147. Walzer, D. et al. Effects of home particulate air filtration on blood pressure. Hypertension 76, 44–50 (2020).

    CAS  PubMed  Google Scholar 

  148. Xia, X. et al. Effectiveness of indoor air purification intervention in improving cardiovascular health: a systematic review and meta-analysis of randomized controlled trials. Sci. Total Environ. 789, 147882 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sparks, T. L. & Wagner, J. Composition of particulate matter during a wildfire smoke episode in an urban area. Aerosol Sci. Technol. 55, 734–747 (2021).

    CAS  Google Scholar 

  150. Konda, A. et al. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano 14, 6339–6347 (2020).

    CAS  PubMed  Google Scholar 

  151. Shakya, K. M., Noyes, A., Kallin, R. & Peltier, R. E. Evaluating the efficacy of cloth facemasks in reducing particulate matter exposure. J. Expo. Sci. Environ. Epidemiol. 27, 352–357 (2017).

    CAS  PubMed  Google Scholar 

  152. Khayan, K., Anwar, T., Wardoyo, S. & Lakshmi Puspita, W. Active carbon respiratory masks as the adsorbent of toxic gases in ambient air. J. Toxicol. 2019, 5283971 (2019).

    PubMed  PubMed Central  Google Scholar 

  153. Cherrie, J. W. et al. Effectiveness of face masks used to protect Beijing residents against particulate air pollution. Occup. Environ. Med. 75, 446–452 (2018).

    PubMed  Google Scholar 

  154. Burns, J. et al. Interventions to reduce ambient air pollution and their effects on health: an abridged Cochrane systematic review. Environ. Int. 135, 105400 (2020).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Z. Tao for formatting and drafting the figures, Y. H. Jia for organizing literature searches, N. L. Sieber for contributions to human physiology in Fig. 1 and J. J. Zhang and S. Wang for their expertise in the environmental chemistry of Fig. 2. J.S.J. is supported by the National Natural Science Foundation of China (NSFC) grant (82422064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks Petter Ljungman, Shaowei Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, J.S., Dominici, F., Gouveia, N. et al. Air pollution interventions for health. Nat Med 31, 2888–2900 (2025). https://doi.org/10.1038/s41591-025-03929-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41591-025-03929-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing