Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stepwise molecular specification of excitatory synapse diversity onto cerebellar Purkinje cells

Abstract

Brain function relies on the generation of a large variety of morphologically and functionally diverse, but specific, neuronal synapses. Here we show that, in mice, the initial formation of synapses on cerebellar Purkinje cells involves a presynaptic protein—CBLN1, a member of the C1q protein family—that is secreted by all types of excitatory inputs. The molecular program then evolves only in one of the Purkinje cell inputs, the inferior olivary neurons, with the additional expression of the presynaptic secreted proteins C1QL1, CRTAC1 and LGI2. These molecules work in concert to specify the mature connectivity pattern on the Purkinje cell target. These results show that some inputs actively and gradually specify their synaptic molecular identity, while others rely on the ‘original molecular code’. Thus, the molecular specification of excitatory synapses, crucial for proper circuit function, is acquired in a stepwise manner during mouse postnatal development and obeys input-specific rules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PC excitatory inputs are characterized by different surfaceome expression dynamics during postnatal development.
Fig. 2: Several cell surface proteins control the establishment of CF/PC connectivity.
Fig. 3: A combination of secreted proteins orchestrates CF/PC synaptogenesis.
Fig. 4: CBLN1 from IONs promotes CF/PC connectivity at early stages.
Fig. 5: ION activity shapes CF/PC connectivity and molecular identity.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information. Single-cell expression data in cerebellar GCs are available at https://apps.kaessmannlab.org/sc-cerebellum-transcriptome/. AlphaFold structure predictions are available on the database (https://alphafold.ebi.ac.uk/). Information on the Kir2.1 channel is available at https://channelpedia.epfl.ch/wikipages/42/. Source data are provided with this paper—statistical source data for figures and extended data figures, and raw image for Extended Data Fig. 5.

Code availability

Plugins are available on GitHub via the following links: custom-made plugin for unbiased 3D detection of individual RNA puncta and DAPI nucleus (https://github.com/orion-cirb/RNA_Scope); custom-made plugin developed based on the 3D Weka Segmentation plugin to allow semi-automatic detection of GFP+ CFs and to count and measure VGLUT2 clusters (https://github.com/orion-cirb/Vglut2_GFP_Weka_Maela.git). Gene clustering was performed using the open-source software Cluster 3.0 (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm).

References

  1. Sanes, J. R. & Zipursky, S. L. Synaptic specificity, recognition molecules, and assembly of neural circuits. Cell 181, 536–556 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Cizeron, M. et al. A brainwide atlas of synapses across the mouse life span. Science 369, 270–275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu, F. et al. Architecture of the mouse brain synaptome. Neuron 99, 781–799 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sanes, J. R. & Yamagata, M. Many paths to synaptic specificity. Annu. Rev. Cell Dev. Biol. 25, 161–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. De Wit, J. & Ghosh, A. Specification of synaptic connectivity by cell surface interactions. Nat. Rev. Neurosci. 17, 22–35 (2016).

    PubMed  Google Scholar 

  6. Hassan, B. A. & Hiesinger, P. R. Beyond molecular codes: simple rules to wire complex brains. Cell 163, 285–291 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Südhof, T. C. Towards an understanding of synapse formation. Neuron 100, 276–293 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Changeux, J.-P. & Danchin, A. Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature 264, 705–712 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Sperry, R. W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl Acad. Sci. USA 50, 703–710 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schroeder, A. et al. A modular organization of LRR protein-mediated synaptic adhesion defines synapse identity. Neuron 99, 329–344 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Sigoillot, S. M. et al. The secreted protein C1QL1 and its receptor BAI3 control the synaptic connectivity of excitatory inputs converging on cerebellar Purkinje cells. Cell Rep. 10, 820–832 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Uemura, T. et al. Trans-synaptic interaction of GluRδ2 and neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141, 1068–1079 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Früh, S. et al. Neuronal dystroglycan is necessary for formation and maintenance of functional CCK-positive basket cell terminals on pyramidal cells. J. Neurosci. 36, 10296–10313 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fossati, M. et al. Trans-synaptic signaling through the glutamate receptor δ-1 mediates inhibitory synapse formation in cortical pyramidal neurons. Neuron 104, 1081–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Heller, E. A. et al. The biochemical anatomy of cortical inhibitory synapses. PLoS ONE 7, e39572 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Selimi, F., Cristea, I. M., Heller, E., Chait, B. T. & Heintz, N. Proteomic studies of a single CNS synapse type: the parallel fiber/Purkinje cell synapse. PLoS Biol. 7, e1000083 (2009).

    Article  PubMed  Google Scholar 

  17. Matsuda, K. et al. Cbln1 is a ligand for an orphan glutamate receptor δ2, a bidirectional synapse organizer. Science 328, 363–368 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Favuzzi, E. et al. Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits. Science 363, 413–417 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Ito, M. Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 9, 304–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Buckner, R. L. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80, 807–815 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Konnerth, A., Llano, I. & Armstrong, C. M. Synaptic currents in cerebellar Purkinje cells. Proc. Natl Acad. Sci. USA 87, 2662–2665 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ito, M. & Kano, M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci. Lett. 33, 253–258 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. Ichikawa, R. et al. Territories of heterologous inputs onto Purkinje cell dendrites are segregated by mGluR1-dependent parallel fiber synapse elimination. Proc. Natl Acad. Sci. USA 113, 2282–2287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hirai, H. et al. Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat. Neurosci. 8, 1534–1541 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Elegheert, J. et al. Structural basis for integration of GluD receptors within synaptic organizer complexes. Science 353, 295–299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kakegawa, W. et al. Anterograde C1ql1 signaling is required in order to determine and maintain a single-winner climbing fiber in the mouse cerebellum. Neuron 85, 316–329 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Ito-Ishida, A. et al. Cbln1 regulates rapid formation and maintenance of excitatory synapses in mature cerebellar Purkinje cells in vitro and in vivo. J. Neurosci. 28, 5920–5930 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Veleanu, M. et al. Modified climbing fiber/Purkinje cell synaptic connectivity in the cerebellum of the neonatal phencyclidine model of schizophrenia. Proc. Natl Acad. Sci. USA 119, e2122544119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sotelo, C. Cellular and genetic regulation of the development of the cerebellar system. Prog. Neurobiol. 72, 295–339 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Kano, M., Watanabe, T., Uesaka, N. & Watanabe, M. Multiple phases of climbing fiber synapse elimination in the developing cerebellum. Cerebellum 17, 722–734 (2018).

    Article  PubMed  Google Scholar 

  31. Kita, Y., Tanaka, K. & Murakami, F. Specific labeling of climbing fibers shows early synaptic interactions with immature Purkinje cells in the prenatal cerebellum. Dev. Neurobiol. 75, 927–934 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Mason, C. A., Christakos, S. & Catalano, S. M. Early climbing fiber interactions with Purkinje cells in the postnatal mouse cerebellum. J. Comp. Neurol. 297, 77–90 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Altman, J. Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J. Comp. Neurol. 145, 353–397 (1972).

    Article  CAS  PubMed  Google Scholar 

  34. Stoeckli, E. T. Neural circuit formation in the cerebellum is controlled by cell adhesion molecules of the contactin family. Cell Adh. Migr. 4, 523–526 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mätlik, K., Govek, E.-E., Paul, M. R., Allis, C. D. & Hatten, M. E. Histone bivalency regulates the timing of cerebellar granule cell development. Genes Dev. 37, 570–589 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhu, X. et al. Role of Tet1/3 genes and chromatin remodeling genes in cerebellar circuit formation. Neuron 89, 100–112 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Edmondson, J., Liem, R., Kuster, J. & Hatten, M. Astrotactin: a novel neuronal cell surface antigen that mediates neuron-astroglial interactions in cerebellar microcultures. J. Cell Biol. 106, 505–517 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. Sepp, M. et al. Cellular development and evolution of the mammalian cerebellum. Nature 625, 788–796 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Luo, Y. et al. Neurogenic timing of the inferior olive subdivisions is related to the olivocerebellar projection topography. Sci. Rep. 13, 7114 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Apóstolo, N. et al. Synapse type-specific proteomic dissection identifies IgSF8 as a hippocampal CA3 microcircuit organizer. Nat. Commun. 11, 5171 (2020).

    Article  PubMed  Google Scholar 

  41. Noya, S. B. et al. The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 366, eaav2642 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Fremeau, R. T. et al. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31, 247–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Hioki, H. et al. Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex. Neuroscience 117, 1–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, X., Zhang, C., Szábo, G. & Sun, Q.-Q. Distribution of CaMKIIα expression in the brain in vivo, studied by CaMKIIα-GFP mice. Brain Res. 1518, 9–25 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Takano, T. et al. Chemico-genetic discovery of astrocytic control of inhibition in vivo. Nature 588, 296–302 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, L. Y., Jiang, M., Zhang, B., Gokce, O. & Südhof, T. C. Conditional deletion of all neurexins defines diversity of essential synaptic organizer functions for neurexins. Neuron 94, 611–625 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Backer, S., Sakurai, T., Grumet, M., Sotelo, C. & Bloch-Gallego, E. Nr-CAM and TAG-1 are expressed in distinct populations of developing precerebellar and cerebellar neurons. Neuroscience 113, 743–748 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Bolliger, M. F., Martinelli, D. C. & Südhof, T. C. The cell-adhesion G protein-coupled receptor BAI3 is a high-affinity receptor for C1q-like proteins. Proc. Natl Acad. Sci. USA 108, 2534–2539 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Seppälä, E. H. et al. Lgi2 truncation causes a remitting focal epilepsy in dogs. PLoS Genet. 7, e1002194 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bravin, M., Morando, L., Vercelli, A., Rossi, F. & Strata, P. Control of spine formation by electrical activity in the adult rat cerebellum. Proc. Natl Acad. Sci. USA 96, 1704–1709 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tyssowski, K. M. et al. Different neuronal activity patterns induce different gene expression programs. Neuron 98, 530–546 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martinelli, D. C. et al. Expression of C1ql3 in discrete neuronal populations controls efferent synapse numbers and diverse behaviors. Neuron 91, 1034–1051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aimi, T., Matsuda, K. & Yuzaki, M. C1ql1–Bai3 signaling is necessary for climbing fiber synapse formation in mature Purkinje cells in coordination with neuronal activity. Mol. Brain 16, 61 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xue, M., Atallah, B. V. & Scanziani, M. Equalizing excitation–inhibition ratios across visual cortical neurons. Nature 511, 596–600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gomez, A. M., Traunmüller, L. & Scheiffele, P. Neurexins: molecular codes for shaping neuronal synapses. Nat. Rev. Neurosci. 22, 137–151 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Demyanenko, G. P. et al. Neural cell adhesion molecule NrCAM regulates semaphorin 3F-induced dendritic spine remodeling. J. Neurosci. 34, 11274–11287 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Han, P. et al. Cbln1 regulates axon growth and guidance in multiple neural regions. PLoS Biol. 20, e3001853 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lanoue, V. et al. The adhesion-GPCR BAI3, a gene linked to psychiatric disorders, regulates dendrite morphogenesis in neurons. Mol. Psychiatry 18, 943–950 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Fukata, Y. et al. LGI1–ADAM22–MAGUK configures transsynaptic nanoalignment for synaptic transmission and epilepsy prevention. Proc. Natl Acad. Sci. USA 118, e2022580118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nishida, R. et al. LOTUS, an endogenous Nogo receptor antagonist, is involved in synapse and memory formation. Sci. Rep. 11, 5085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Petrinovic, M. M. et al. Neuronal Nogo-A negatively regulates dendritic morphology and synaptic transmission in the cerebellum. Proc. Natl Acad. Sci. USA 110, 1083–1088 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, J. et al. RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development. Cell 184, 5869–5885 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wills, Z. P. et al. The Nogo receptor family restricts synapse number in the developing hippocampus. Neuron 73, 466–481 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thomas, R. et al. LGI1 is a nogo receptor 1 ligand that antagonizes myelin-based growth inhibition. J. Neurosci. 30, 6607–6612 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sotelo, C. & Dusart, I. Intrinsic versus extrinsic determinants during the development of Purkinje cell dendrites. Neuroscience 162, 589–600 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Zhao, H. M., Wenthold, R. J. & Petralia, R. S. Glutamate receptor targeting to synaptic populations on Purkinje cells is developmentally regulated. J. Neurosci. 18, 5517–5528 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cesa, R., Morando, L. & Strata, P. Glutamate receptor δ2 subunit in activity-dependent heterologous synaptic competition. J. Neurosci. 23, 2363–2370 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Matsuda, K. et al. Transsynaptic modulation of kainate receptor functions by C1q-like proteins. Neuron 90, 752–767 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Jain, S. et al. A global timing mechanism regulates cell-type-specific wiring programmes. Nature 603, 112–118 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Stroud, H. et al. An activity-mediated transition in transcription in early postnatal neurons. Neuron 107, 874–890 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Moghimyfiroozabad, S., Paul, M. A., Sigoillot, S. M. & Selimi, F. Mapping and targeting of C1ql1-expressing cells in the mouse. Sci. Rep. 13, 17563 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hw, C. et al. Creation of a novel CRISPR-generated allele to express HA epitope-tagged C1QL1 and improved methods for its detection at synapses. FEBS Lett. 598, 2417–2437 (2024).

    Google Scholar 

  74. Saldanha, A. J. Java Treeview—extensible visualization of microarray data. Bioinformatics 20, 3246–3248 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Maddalo, D. et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516, 423–427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ubina, T. et al. ExBoX—a simple Boolean exclusion strategy to drive expression in neurons. J. Cell Sci. 134, jcs257212 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gao, Y. et al. Plug-and-play protein modification using homology-independent universal genome engineering. Neuron 103, 583–597 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tabata, T. et al. A reliable method for culture of dissociated mouse cerebellar cells enriched for Purkinje neurons. J. Neurosci. Methods 104, 45–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Konno, K., Yamasaki, M., Miyazaki, T. & Watanabe, M. Glyoxal fixation: an approach to solve immunohistochemical problem in neuroscience research. Sci. Adv. 9, eadf7084 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Richter, K. N. et al. Glyoxal as an alternative fixative to formaldehyde in immunostaining and super‐resolution microscopy. EMBO J. 37, 139–159 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Ollion, J., Cochennec, J., Loll, F., Escudé, C. & Boudier, T. TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29, 1840–1841 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. De Gruijl, J. R., Bazzigaluppi, P., de Jeu, M. T. & De Zeeuw, C. I. Climbing fiber burst size and olivary sub-threshold oscillations in a network setting. PLoS Comput. Biol. 8, e1002814 (2012).

    Article  PubMed  Google Scholar 

  85. Negrello, M. et al. Quasiperiodic rhythms of the inferior olive. PLoS Comput. Biol. 15, e1006475 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Schweighofer, N., Doya, K. & Kawato, M. Electrophysiological properties of inferior olive neurons: a compartmental model. J. Neurophysiol. 82, 804–817 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Schweighofer, N. et al. Chaos may enhance information transmission in the inferior olive. Proc. Natl Acad. Sci. USA 101, 4655–4660 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Makary, S. M., Claydon, T. W., Enkvetchakul, D., Nichols, C. G. & Boyett, M. R. A difference in inward rectification and polyamine block and permeation between the Kir2.1 and Kir3.1/Kir3.4 K+ channels. J. Physiol. 568, 749–766 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, G. X. et al. Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea-pig cardiomyocytes. J. Physiol. 532, 115–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Picones, A., Keung, E. & Timpe, L. C. Unitary conductance variation in Kir2.1 and in cardiac inward rectifier potassium channels. Biophys. J. 81, 2035–2049 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Campbell, M. J. (ed.) Statistics at Square One 165–182 (Wiley, 2021).

  92. Ressl, S. et al. Structures of C1q-like proteins reveal unique features among the C1q/TNF superfamily. Structure 23, 688–699 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Boyreau for her help with some of the experimental procedures at the beginning of the project, Y. Dupraz for the development of tools for stereotaxic injections in neonates, F. Maloumian for her help with infographics and the personnel from the Center for Interdisciplinary Research in Biology animal and imaging facilities. We thank H. Monnet for her help in updating the plugin for VGLUT2 quantification. High-throughput qPCR was carried out on the qPCR-HD-Genomic Paris Centre platform, supported by grants from Région Ile-de-France. This work was supported by funding from Fondation pour la Recherche Médicale (Equipe FRM DEQ20150331748 to F.S.), European Research Council ERC consolidator grant (SynID 724601 to F.S.), Q-life (ANR-17-CONV-0005 to F.S. and V.H.), ANR-10-LABX-54 MEMO LIFE (to F.S.) and Sorbonne Université (ED158 to M.A.P.), Collège de France (to M.A.P.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

F.S., M.A.P. and S.M.S. conceptualized the project, developed the methodology and handled visualization. M.A.P., S.M.S., L.M., F.J.U.Q., M.D., P.M., H.W.C., E.O. and V.H. conducted the investigation. F.S. and M.A.P. secured funding. F.S. and S.M.S. provided supervision. F.S. managed project administration. F.S. wrote the original draft with contributions from S.M.S., M.A.P. and V.H. F.S., S.M.S., M.A.P., V.H. and D.C.M. reviewed and edited the final manuscript.

Corresponding author

Correspondence to Fekrije Selimi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Mary Hatten and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Developmental expression pattern of GC candidate genes in the cerebellar cortex.

a, The expression pattern of Cbln1 and the 15 selected GC candidate genes was assessed using high-throughput RT-qPCR on RNA extracts from the cerebellum taken at different stages of development (embryonic day, E17, postnatal days, P0, P3, P7, P14 and P21) and in adult mice. Expression levels were normalized to the Rpl13a gene and to their E17 value to capture their variation during postnatal development regardless of the individual gene’s expression level; data are presented as mean ± SEM. n = 4 animals per developmental stage and 3 animals for the adult. The data are separated into two graphs depending on the scale of dynamics of expression for clarity. b, Data from ref. 35 showing the stage of peak expression of the selected candidate genes depending on GC differentiation: GC precursors (GCPs) at P7, in newly differentiated GCs at P7, in migrating GCs at P12 and, finally, in mature GCs at P21. c, Single-cell expression data in cerebellar GCs from https://apps.kaessmannlab.org/sc-cerebellum-transcriptome/. Left: uniform manifold approximation and projection (UMAP) of mouse cerebellar cell types colored by cell differentiation state. GCP, granule cell precursor; UBCP, unipolar brush cell precursor; GC diff 1 and 2, differentiated GC1 and 2. Right: expression of Cbln1 and eleven GC DEGs candidates at different stages of GC differentiation. Dot size indicates the fraction of cells expressing a gene, color shows the mean expression level scaled by gene. d, smFISH of selected GC candidates (red) in cerebellar sections of P14 and adult mice co-stained with the nuclear stain DAPI. EGL, external granular layer; ML, molecular layer; IGL, internal granular layer. Each image corresponds to a projection of 15 images (z-stack step: 0.5 µm). Two independent experiments. Scale bars, 20 µm.

Source data

Extended Data Fig. 2 Developmental expression pattern of ION candidate genes in the inferior olive.

a, Expression patterns of C1ql1 and the 15 ION DEGs selected as candidates were assessed using high-throughput RT-qPCR on RNA extracts of the brainstem taken at different stages of development (embryonic day, E17, postnatal days, P0, P3, P7, P14 and P21) and in the adult. Expression levels were normalized to the Rpl13a gene and to their E17 value to capture their variation during postnatal development regardless of the individual gene’s expression level; data are presented as mean ± SEM. n = 4 animals per developmental stage and 3 animals for the adult. The data are separated into two graphs depending on the scale of dynamics of expression for clarity. bd, Left: representative images from duplex smFISH experiments for C1ql1 and candidate mRNAs in coronal sections from the brainstem at P4, P14 and in adult mice. Scale bars, 150 µm. Right: the degree of correlation of expression between C1ql1 and candidate mRNAs in the brainstem was determined by computing the Pearson correlation coefficient on the whole image (coefficient >0.6 corresponding to high correlation91). Data are presented as mean ± SEM. b, Candidates highly correlated with C1ql1 at all developmental stages. Nrcam, n = 4 animals for each stage; Lgi2, adult: n = 5 animals, P14: n = 4, P4: n = 3; Crtac1, adult and P14: n = 4 animals, P4: n = 5; Sema4f, adult and P14: n = 3 animals, P4: n = 4; 2–4 independent experiments. c, Candidates highly correlated with C1ql1 from P14 to adult. Shisal1, n = 3 animals for each stage; Thy1, adult and P4: n = 3, P14: n = 4; Adam11, n = 3 for each stage; Crh: n = 3 for each stage; Gpr123, adult: n = 5 animals, P14 and P4: n = 4; 2–3 independent experiments. d, Candidates not highly correlated with C1ql1 at any stage. Tmem184b: n = 4 animals at each stage; Fstl1: n = 3 animals at each stage; Cx3cl1, adult and P14: n = 4 animals, P4: n = 3; Adam23: n = 4 animals at each stage; Cd151: n = 4 animals at each stage; Tmem179: n = 4 animals at each stage; 2–4 independent experiments.

Source data

Extended Data Fig. 3 Predicted structure and localization of C1QL1, NRCAM, LGI2 and CRTAC1 in the cerebellar cortex.

a, AlphaFold structure prediction (left; database: https://alphafold.ebi.ac.uk/) and domain architecture (right) of C1QL1, NRCAM, LGI2 and CRTAC1. See also ref. 92 for the structure of the C1QL1 gC1q domain. Ig, immunoglobulin; FN, fibronectin; TMD, transmembrane domain; LRR, leucin reach repeat; EGF, epidermal growth factor; FG-GAP, phenylalanyl-glycyl-glycyl-alanyl-prolyl. b, Localization of C1QL1, NRCAM, LGI2 and CRTAC1 proteins (green) in the cerebellar cortex at P13 was obtained using several strategies: C1QL1, anti-HA immunolabeling in cerebellar sections from a C1ql1HA knockin mouse; NRCAM, anti-HA after CRISPR–Cas9-mediated HA-tagging of endogenous NRCAM; LGI2 and CRTAC1, immunolocalization after antigen retrieval. The CF presynaptic boutons and the dendritic trees of PCs were immunostained with anti-VGLUT2 (magenta) and anti-calbindin (CaBP, blue), respectively. Each image corresponds to a projection of 5 images (z-stack step: 0.2 µm). Arrowheads show candidates labeling colocalizing with VGLUT2 clusters. 3–4 independent experiments. Scale bars, 20 µm.

Extended Data Fig. 4 CRISPR–Cas9 knockdown for C1ql1, Nrcam, Lgi2 and Crtac1.

a, Top: illustrations of the genomic regions of mouse Nrcam, Lgi2, Crtac1 and C1ql1 with the location of the sequences targeted by the CRISPR–Cas9 gRNAs. Bottom: the knockdown efficiency for Nrcam, Lgi2 and Crtac1 was measured using quantitative RT-PCR on RNA extracts from cortical cell cultures from Cas9/GFP-KI mice (Nrcam, Lgi2 and Crtac1 are detected in these cultures at DIV14). The efficiency for C1ql1 was measured using mixed cerebellar cultures from Cas9/GFP-KI-NeuroD1Cre mice expressing the CAS9 specifically in GCs precursors (C1ql1 is transiently expressed in these cultures with a peak at DIV8). Cultures were transduced at 3 or 2 days in vitro (DIV3 or 2), respectively, with AAVs driving the expression of each gRNA directed against the candidate genes or non-targeting control gRNA (CTL). Expression levels were normalized to values for the Rpl13a gene. Data are presented as mean ± SEM. n represents the independent experiments: CTL, n = 5; Crtac1 KD g1, n = 3; Crtac1 KD g2, n = 4; Lgi2 KD g1, n = 7; Lgi2 KD g2, n = 3; Nrcam KD, n = 4; C1ql1 in all conditions, n = 4. Statistics: Kruskal–Wallis and uncorrected Dunn’s test. b, Duplex smFISH experiments for GFP and each candidate gene (C1ql1, Lgi2 and Crtac1), and nuclear DAPI staining, in coronal sections from the brainstem. Top: high magnification of IONs from P21 animals with C1ql1, Lgi2 or Crtac1 KD, or non-targeting controls (CTL). Scale bars, 10 µm. Bottom: relative frequency distribution and mean integrated intensity of each candidate gene mRNA per ION under KD and CTL conditions are shown. The dashed lines represent the first quartile and second quartile (median) of the mRNA levels for each gene in CTL condition. n > 55 cells, 7–8 animals per condition, 2–3 independent experiments. Insets: data are presented as violin plots with the median and quartiles. Statistics: two-tailed nested t test. c, Distribution and mean volume of the VGLUT2 clusters quantified in GFP+ CFs after Nrcam, Lgi2 or Crtac1 KD as well as in CTL. Data are presented as violin plots with the median and quartiles. n ≥ 33 images per condition, 9–10 animals; 3–5 independent experiments. Statistics: two-tailed nested t test.

Source data

Extended Data Fig. 5 Cbln1 expression and function in IONs in the brainstem.

a, Heatmap showing the clustering of 324 DEGs according to the dynamics of their expression pattern in the brainstem between E17 and adult. Four clusters are highlighted by orange rectangles. Cbln1 is detected as an early-expressed gene. b, Top: illustration of the genomic region of mouse Cbln1 with the location of the sequence targeted by the CRISPR–Cas9 KD guide RNAs (Cbln1 KD g1 and g2) in Cbln1 exon 1 and exon 3, respectively. The location of forward (Fw) and reverse (Rev) primers used to assess deletion of the entire coding region is shown. Bottom left: efficiency of the CRISPR–Cas9 driven deletion was assessed by PCR on purified genomic DNA from DIV16 mixed cerebellar cultures (transduced at DIV2) or DIV14 neuronal cultures from the neocortex (transduced at DIV3). Wild-type fragment is expected at 2663 bp; recombined fragment at 380 bp. Right: duplex smFISH for GFP and Cbln1 mRNAs, and nuclear DAPI staining, in IONs from coronal brainstem sections of P7 mice expressing Cbln1 KD gRNAs or non-targeting CTL gRNA (GFP+). Scale bars, 10 µm. Relative frequency distribution and mean integrated intensity of Cbln1 mRNA per ION under KD and CTL conditions are shown. The dashed lines represent the first quartile and second quartile (median) of Cbln1 mRNA level in CTL condition. n ≥ 30 images per condition; 8–9 animals per condition, 2 independent experiments. Insets: data are presented as violin plots with the median and quartiles. Statistics: two-tailed nested t test. c, Distribution and mean volume of the VGLUT2 clusters were quantified in GFP+ CFs at P7 and P14 in CTL and Cbln1 KD. Data are presented as violin plots with the median and quartiles. P7 VGLUT2 cluster volume: n ≥ 29 images per condition; 8 animals, 4 independent experiments. P14 VGLUT2 cluster volume: n ≥ 33 images per condition; 8–9 animals, 3 independent experiments. Statistics: two-tailed nested t test.

Source data

Extended Data Fig. 6 Modulation of neuronal excitability by Kir2.1 expression.

a, Neuronal cultures from the neocortex were transduced at DIV3 with a retrograde rAAV driving the expression of the Myc-tagged Kir2.1 (or nonfunctional Kir2.1 mutant as a control) and soluble eGFP under the CamKII promoter. Left: neurons were immunolabeled at DIV17 for Myc (blue) and GFP (green). Scale bars, 13 µm. Right: RNA extracts obtained from DIV14 cultures from neocortex were analyzed by quantitative RT-PCR. Gene expression levels relative to Rpl13a were normalized to the levels in Kir2.1 mutant control. Data are presented as mean ± SEM. Four independent experiments. Statistics: two-tailed Student’s t test with a null hypothesis of 1. b, In silico modeling of the effect of Kir2.1 channel expression on the activity of neurons from the inferior olive (IO). Left: representations of the discharge in neurons of the IO depending on the magnitude of the Kir2.1 conductance. Example of 10 s somatic voltage traces for different gKir conductances, ranging from gKir = 0 mS/cm2 to 0.5 mS/cm2, where, with a conservative unitary Kir2.1 channel conductance of 20 pS, 1 mS/cm2 corresponds to approximately 50 Kir2.1 channel per 100 μm2 of membrane. Right: mean firing rates and their standard deviations (for each value of gKir, n = 5 simulations of 100 s each). This modeling showed that a minimal level of Kir2.1 is needed for effective inhibition of ION activity. We selected a minimum threshold of approximately 40 Kir2.1 mRNA molecules per nucleus (as estimated by GFP mRNA intensity) to select IONs included for smFISH quantification.

Source data

Extended Data Fig. 7 Localization of GluD2 and ADGRB3/BAI3 receptors in cerebellar Purkinje cells during postnatal development.

a,b, Immunostaining of GluD2 or ADGRB3/BAI3 receptors (green), CF presynaptic boutons (anti-VGLUT2, magenta) and PCs dendritic tree (anti-CaBP, blue) in parasagittal cerebellar sections from P4 and P13 mice. Left: low magnification images correspond to the projection of 5 planes (z-stack step: 0.2 µm). Scale bars, 20 µm. Right: airyscan images corresponding to single planes. Arrowheads show receptor labeling partially colocalizing with VGLUT2 clusters. Note that at P13, some GluD2 puncta are still detectable at CF/PC synapses. Three independent experiments. Scale bars, 4 µm.

Supplementary information

Reporting Summary

Supplementary Data

Supplementary Data 1–5.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data and uncropped gel image.

Source Data Extended Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, M.A., Sigoillot, S.M., Marti, L. et al. Stepwise molecular specification of excitatory synapse diversity onto cerebellar Purkinje cells. Nat Neurosci 28, 308–319 (2025). https://doi.org/10.1038/s41593-024-01826-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41593-024-01826-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing