Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aberrant splicing exonizes C9orf72 repeat expansion in ALS/FTD

Abstract

A nucleotide repeat expansion (NRE) (GGGGCC)n within the first annotated intron of the C9orf72 (C9) gene is a common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). While previous studies have shown that C9 NRE produces several toxic dipeptide repeat (DPR) proteins, the mechanism by which an intronic RNA segment can access the cytoplasmic translation machinery remains unclear. By selectively capturing and sequencing NRE-containing RNAs (NRE-capture-seq) from patient-derived fibroblasts and neurons, we found that, in contrast to previous models, C9 NRE is retained as part of an extended exon 1 due to the usage of various downstream alternative 5′ splice sites. These aberrant splice isoforms accumulate in C9-ALS/FTD brains, and their production is promoted by serine/arginine-rich splicing factor 1 (SRSF1). Antisense oligonucleotides targeting either SRSF1 or the aberrant C9 splice isoforms reduced the levels of DPR. Together, our findings revealed a crucial role of aberrant splicing in the biogenesis of NRE-containing RNAs and demonstrated potential therapeutic strategies to target these pathogenic transcripts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ASO-based capture of NRE-containing transcripts.
Fig. 2: Exonization of C9 NRE by downstream 5′ splice site usage.
Fig. 3: Nucleocytoplasmic distribution of C9 NRE-exonized RNAs.
Fig. 4: C9 aberrant splicing in patient-derived MNs.
Fig. 5: C9 aberrant splicing in ALS/FTD brains.
Fig. 6: Repeat-length-dependent activation of cryptic splice sites by C9 NRE.
Fig. 7: SRSF1 promotes C9 aberrant splicing and nuclear export.

Similar content being viewed by others

Data availability

Total RNA-seq and NRE-capture-seq data are available in Gene Expression Omnibus (GEO) under accession number GSE247790. Raw data (FASTQ) and aligned BAM files of postmortem tissue RNA-seq data are available through Target ALS (https://dataengine.targetals.org/). RNA-seq data from neuronal nuclei with and without TDP-43 are available in GEO under accession number GSE126543. Source data are provided with this paper.

Code availability

Custom codes used in this study are available upon request.

References

  1. Depienne, C. & Mandel, J. L. 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am. J. Hum. Genet. 108, 764–785 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paulson, H. Repeat expansion diseases. Handb. Clin. Neurol. 147, 105–123 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Malik, I., Kelley, C. P., Wang, E. T. & Todd, P. K. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat. Rev. Mol. Cell Biol. 22, 589–607 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bunting, E. L., Hamilton, J. & Tabrizi, S. J. Polyglutamine diseases. Curr. Opin. Neurobiol. 72, 39–47 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Mohan, A., Goodwin, M. & Swanson, M. S. RNA–protein interactions in unstable microsatellite diseases. Brain Res. 1584, 3–14 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Wojciechowska, M. & Krzyzosiak, W. J. Cellular toxicity of expanded RNA repeats: focus on RNA foci. Hum. Mol. Genet. 20, 3811–3821 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nguyen, L., Cleary, J. D. & Ranum, L. P. W. Repeat-associated non-ATG translation: molecular mechanisms and contribution to neurological disease. Annu. Rev. Neurosci. 42, 227–247 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zu, T. et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl Acad. Sci. USA 108, 260–265 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Banez-Coronel, M. et al. RAN translation in Huntington disease. Neuron 88, 667–677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Todd, P. K. et al. CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron 78, 440–455 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Zu, T. et al. RAN translation regulated by muscleblind proteins in myotonic dystrophy type 2. Neuron 95, 1292–1305 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zu, T. et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc. Natl Acad. Sci. USA 110, E4968–E4977 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mori, K. et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335–1338 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Gendron, T. F. et al. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol. 126, 829–844 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kwon, I. et al. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345, 1139–1145 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jovicic, A. et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat. Neurosci. 18, 1226–1229 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lopez-Gonzalez, R. et al. Poly(GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons. Neuron 92, 383–391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shi, K. Y. et al. Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export. Proc. Natl Acad. Sci. USA 114, E1111–E1117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moens, T. G. et al. C9orf72 arginine-rich dipeptide proteins interact with ribosomal proteins in vivo to induce a toxic translational arrest that is rescued by eIF1A. Acta Neuropathol. 137, 487–500 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. White, M. R. et al. C9orf72 poly(PR) dipeptide repeats disturb biomolecular phase separation and disrupt nucleolar function. Mol. Cell 74, 713–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun, Y., Eshov, A., Zhou, J., Isiktas, A. U. & Guo, J. U. C9orf72 arginine-rich dipeptide repeats inhibit UPF1-mediated RNA decay via translational repression. Nat. Commun. 11, 3354 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mizielinska, S. et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 345, 1192–1194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gitler, A. D. & Tsuiji, H. There has been an awakening: emerging mechanisms of C9orf72 mutations in FTD/ALS. Brain Res. 1647, 19–29 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gendron, T. F. & Petrucelli, L. Disease mechanisms of C9ORF72 repeat expansions. Cold Spring Harb. Perspect. Med. 8, a024224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Conlon, E. G. et al. The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains. eLife 5, e17820 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Loveland, A. B. et al. Ribosome inhibition by C9ORF72-ALS/FTD-associated poly-PR and poly-GR proteins revealed by cryo-EM. Nat. Commun. 13, 2776 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, P. J., Yang, S., Sun, Y. & Guo, J. U. Regulation of nonsense-mediated mRNA decay in neural development and disease. J. Mol. Cell. Biol. 13, 269–281 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, W. et al. Reactivation of nonsense-mediated mRNA decay protects against C9orf72 dipeptide-repeat neurotoxicity. Brain 142, 1349–1364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Freibaum, B. D. et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525, 129–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Van ‘t Spijker, H. M. et al. Ribosome profiling reveals novel regulation of C9ORF72 GGGGCC repeat-containing RNA translation. RNA 28, 123–138 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Niblock, M. et al. Retention of hexanucleotide repeat-containing intron in C9orf72 mRNA: implications for the pathogenesis of ALS/FTD. Acta Neuropathol. Commun. 4, 18 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Van Blitterswijk, M. et al. Novel clinical associations with specific C9ORF72 transcripts in patients with repeat expansions in C9ORF72. Acta Neuropathol. 130, 863–876 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang, S. et al. Nuclear export and translation of circular repeat-containing intronic RNA in C9orF72-ALS/FTD. Nat. Commun. 12, 4908 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Engreitz, J. M. et al. RNA–RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. Cell 159, 188–199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gilbert, J. W. et al. Identification of selective and non-selective C9ORF72 targeting in vivo active siRNAs. Mol. Ther. Nucleic Acids 35, 102291 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cabrera, G. T. et al. Artificial microRNA suppresses C9ORF72 variants and decreases toxic dipeptide repeat proteins in vivo. Gene Ther. 31, 105–118 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Andrade, N. S. et al. Dipeptide repeat proteins inhibit homology-directed DNA double strand break repair in C9ORF72 ALS/FTD. Mol. Neurodegener. 15, 13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Valencia, P., Dias, A. P. & Reed, R. Splicing promotes rapid and efficient mRNA export in mammalian cells. Proc. Natl Acad. Sci. USA 105, 3386–3391 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maury, Y. et al. Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat. Biotechnol. 33, 89–96 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Tam, O. H. et al. Postmortem cortex samples identify distinct molecular subtypes of ALS: retrotransposon activation, oxidative stress, and activated glia. Cell Rep. 29, 1164–1177 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, E. Y. et al. Loss of nuclear TDP-43 is associated with decondensation of LINE retrotransposons. Cell Rep. 27, 1409–1421 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Younis, I. et al. Rapid-response splicing reporter screens identify differential regulators of constitutive and alternative splicing. Mol. Cell. Biol. 30, 1718–1728 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Isiktas, A. U., Eshov, A., Yang, S. & Guo, J. U. Systematic generation and imaging of tandem repeats reveal base-pairing properties that promote RNA aggregation. Cell Rep. Methods 2, 100334 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Conlon, E. G. et al. Unexpected similarities between C9ORF72 and sporadic forms of ALS/FTD suggest a common disease mechanism. eLife 7, e37754 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Prudencio, M. et al. Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat. Neurosci. 18, 1175–1182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu, Z. et al. Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc. Natl Acad. Sci. USA 110, 7778–7783 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Donnelly, C. J. et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cooper-Knock, J. et al. Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. Brain 137, 2040–2051 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mori, K. et al. hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol. 125, 413–423 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Celona, B. et al. Suppression of C9orf72 RNA repeat-induced neurotoxicity by the ALS-associated RNA-binding protein Zfp106. eLife 6, e19032 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Haeusler, A. R. et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507, 195–200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bajc Cesnik, A. et al. Nuclear RNA foci from C9ORF72 expansion mutation form paraspeckle-like bodies. J. Cell Sci. 132, jcs224303 (2019).

    Article  PubMed  Google Scholar 

  55. Denichenko, P. et al. Specific inhibition of splicing factor activity by decoy RNA oligonucleotides. Nat. Commun. 10, 1590 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hautbergue, G. M. et al. SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nat. Commun. 8, 16063 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Castelli, L. M. et al. SRSF1-dependent inhibition of C9ORF72-repeat RNA nuclear export: genome-wide mechanisms for neuroprotection in amyotrophic lateral sclerosis. Mol. Neurodegener. 16, 53 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ben-Dor, I., Pacut, C., Nevo, Y., Feldman, E. L. & Reubinoff, B. E. Characterization of C9orf72 haplotypes to evaluate the effects of normal and pathological variations on its expression and splicing. PLoS Genet. 17, e1009445 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Green, K. M. et al. RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat. Commun. 8, 2005 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rothstein, J. D. et al. G2C4 targeting antisense oligonucleotides potently mitigate TDP-43 dysfunction in human C9orf72 ALS/FTD induced pluripotent stem cell derived neurons. Acta Neuropathol. 147, 1 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Anderson, R. et al. CAG repeat expansions create splicing acceptor sites and produce aberrant repeat-containing RNAs. Mol. Cell 84, 702–714 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sathasivam, K. et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc. Natl Acad. Sci. USA 110, 2366–2370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shah, S. et al. Antisense oligonucleotide rescue of CGG expansion-dependent FMR1 mis-splicing in fragile X syndrome restores FMRP. Proc. Natl Acad. Sci. USA 120, e2302534120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sznajder, L. J. et al. Intron retention induced by microsatellite expansions as a disease biomarker. Proc. Natl Acad. Sci. USA 115, 4234–4239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McEachin, Z. T. et al. Chimeric peptide species contribute to divergent dipeptide repeat pathology in c9ALS/FTD and SCA36. Neuron 107, 292–305 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Ferguson, W. Gilbert, P. Gopal, A. Horwich, J. Humphrey, A. Isaacs, Z. McEachin, P. Miura, K. Neugebauer, J. Steitz, S. Strittmatter, C. Thoreen, P. Todd and members of the Guo lab for helpful discussions and comments on the manuscript. Postmortem tissue bulk RNA-seq data were generated and shared by the New York Genome Center for Genomics of Neurodegenerative Diseases and the Target ALS Human Postmortem Tissue Core. This work was supported by the National Institutes of Health (NIH grants DP2 GM132930, R35 GM152208) and a McKnight Neurobiology of Brain Disorders Award (all to J.U.G.). High-performance computing at the Yale Center for Genome Analysis is supported by NIH (grant S10OD030363-01A1). S.Y. and D.W. were supported by training grant T32 NS041228 from the National Institute of Neurological Disorders and Stroke. J.M.S.S., M.A., T.A. and J.D.P. were supported by the Yale Alzheimer’s Disease Research Center (NIH grant P30 AG066508). J.U.G. is a New York Stem Cell Foundation-Robertson Investigator.

Author information

Authors and Affiliations

Authors

Contributions

S.Y. and J.U.G. conceived the study and wrote the manuscript with input from all authors. S.Y. conducted most experiments and analyzed the results. D.W. conducted RT-qPCR analysis in iPSCs and MNs. U.S. and A.M.V. performed DPR immunoassays under the supervision of T.G. J.M.S.S., M.A., T.A. and J.D.P. performed iPSC culture and MN differentiation. J.Z. assisted in reporter experiments.

Corresponding author

Correspondence to Junjie U. Guo.

Ethics declarations

Competing interests

Yale University has filed a patent application based on this work. J.U.G. is a consultant for Corsalex, which was not involved in this project. The other authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Reproducibility of cytoplasmic NRE-capture-seq between biological replicates.

Quantification of normalized read counts per gene from NRE-capture-seq. Left, comparison between two C9 NRE fibroblast cell lines. Right, comparison between two C9 NRE+ fibroblast cell lines. C9orF72 is indicated in red. Pearson’s correlation coefficients (r) are shown.

Extended Data Fig. 2 Replication and validation of cytoplasmic NRE-capture-seq.

(a) Read coverages of FB503 and FB506 cytoplasmic RNA inputs (top two tracks) and NRE-captured RNAs (bottom two tracks). (b) Schematics of RT-qPCR primers used in (c) and (d). (c) RT-qPCR quantification of the enrichment of aberrant Ex1c-Ex2 splice junction by NRE-capture, comparing C9 NRE+ and NRE samples. (d) RT-qPCR quantification of siRNA knockdown efficiency in C9 NRE+ fibroblasts. siNT, non-targeting siRNA. siEx2 1 and 2, two siRNAs targeting C9orF72 exon 2. Data represent mean ± s.d. n = 2 biological replicates.

Extended Data Fig. 3 Replication of nuclear NRE-RAP-seq in FB506 fibroblasts.

Read coverage of FB506 nuclear RNA input (top) and NRE-captured RNAs (bottom). Top 10 splice junctions within and near intron 1 detected in NRE-capture-seq results are drawn. RPM, reads per million.

Extended Data Fig. 4 C9 aberrant splicing in C9 NRE+ iPSCs and MNs.

(a) Representative image of neuronal marker immunofluorescence. Scale bars, 20 µm. (b) RT-qPCR quantification of the Ex1c–Ex2 splice junction (left) and the Ex2–Ex3 splice junction (right), comparing C9 NRE+ and C9 NRE iPSCs. (c) RT-qPCR quantification of the NRE-flanking region (left) and the Ex1c–Ex2 splice junction (right) in NRE-captured RNAs, comparing C9 NRE+ and C9 NRE MNs, normalized to the value of C9 NRE MN sample. (d) RT-qPCR quantification of ASO knockdown efficiency in C9 NRE+ fibroblasts. NT, nontargeting ASO. Ex1c–Ex2, ASO targeting Ex1c–Ex2 splice junction. Data represent mean ± s.d. n = 2 biological replicates.

Extended Data Fig. 5 C9 aberrant splicing in C9 NRE+ neuronal nuclei with and without TDP-43.

Normalized counts of reads containing Ex1b–Ex2, Ex1c–Ex2, and Ex1d–Ex2 splice junctions, comparing neuronal nuclei samples with and without loss of TDP-43. RNA-seq data (GSE126543) of ref. 43. The lower hinge, midline, and upper hinge of each box correspond to the first quartile, median, and third quartile, respectively. Upper and lower whiskers extend from the hinge to the maximal or minimal values, respectively, no further than 1.5 times the inter-quartile range. P values, two-tailed ratio t tests.

Extended Data Fig. 6 Impact of cryptic splicing on luciferase activities of repeat-containing reporters.

(a) Normalized activities of dual-luciferase from in vitro transcribed reporters with no NRE and (GGGGCC)33 insert. Data represent mean ± s.d. n = 7 biological replicates. P value, two-tailed ratio t test. (b) Normalized activities of dual-luciferase from original reporter and J1-mutated reporter (top, mutation shown in orange) with no NRE and (GGGGCC)33 insert. n = 3 biological replicates. P values, two-tailed ratio t tests.

Extended Data Fig. 7 Validation of SRSF1 knockdown.

(a) Western blot of SRSF1 in C9 NRE+ fibroblasts transfected with non-targeting (NT) siRNAs and a pool of four siRNAs targeting SRSF1 (S1). (b) RT-PCR quantification of known SRSF1 splicing targets in C9 NRE+ fibroblasts transfected with non-targeting (NT) siRNAs and a pool of four siRNAs targeting SRSF1 (S1). Data represent mean ± s.d. n = 3 biological replicates. P values, two-tailed ratio t tests.

Source data

Extended Data Fig. 8 Effect of SRSF1 knockdown on endogenous C9 NRE and repeat-containing reporter mRNAs.

(a) RT-qPCR quantification of the relative abundance of NRE-flanking region and Ex1c–Ex2 isoform after SRSF1 knockdown in C9 NRE fibroblasts. Data represent mean ± s.d. n = 3 biological replicates. P values, two-tailed ratio t tests. (b) RT-qPCR quantification of the nucleocytoplasmic distribution of J1-mutated (GGGGCC)33 reporter transcripts (top, mutation shown in orange) in siRNA-treated HEK293T cells. S1, a pool of siRNAs targeting SRSF1 transcripts. Data represent mean ± s.d. n = 3 biological replicates. P values, two-tailed ratio t tests.

Supplementary information

Source data

Source Data Extended Data Fig. 7

Unprocessed western blot and agarose gel images.

Rights and permissions

Springer Nature or its licensor (e.g., a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Wijegunawardana, D., Sheth, U. et al. Aberrant splicing exonizes C9orf72 repeat expansion in ALS/FTD. Nat Neurosci 28, 2034–2043 (2025). https://doi.org/10.1038/s41593-025-02039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41593-025-02039-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing