Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

‘Back-to-base’ combined hypothermic and normothermic machine perfusion of human donor livers

This article has been updated

Abstract

The shortage of suitable donor organs has resulted in the use of suboptimal, high-risk, extended-criteria donor (ECD) livers, which are at an increased risk of failure after transplantation. Compared with traditional static cold storage, dynamic preservation by ex situ machine perfusion reduces the risks associated with the transplantation of ECD organs. Ex situ machine perfusion strategies differ in timing (that is, speed of procurement and transport), perfusion duration and perfusion temperature. For ‘back-to-base’ protocols, the donor liver is statically cold stored during transportation to the recipient hospital (the ‘base’) and then perfused, instead of transporting the liver using a portable perfusion system. While dual hypothermic (8–12 °C) oxygenated machine perfusion (DHOPE) allows safe prolongation of preservation duration and reduces ischemia–reperfusion injury-related complications, including post-transplant cholangiopathy, normothermic machine perfusion (NMP) at 35–37 °C facilitates ex situ viability testing of both liver parenchyma and bile ducts. Here, we describe a clinical protocol for ‘back-to-base’ combined DHOPE and NMP, linked by a period of controlled oxygenated rewarming (COR), which we call the DHOPE–COR–NMP protocol. This protocol enables restoration of mitochondrial function after static ischemic preservation and minimizes both ischemia–reperfusion and temperature-shift-induced injury during the start of NMP. The NMP phase allows viability assessment before final donor liver acceptance for transplantation. Sequential DHOPE and COR–NMP may reduce the risks associated with transplantation of ECD livers and facilitate enhanced utilization, thereby helping to alleviate the organ shortage.

Key points

  • Here, the authors describe a clinical protocol for ‘back-to-base’ combined dual hypothermic oxygenated machine preservation and normothermic machine perfusion, linked by a period of controlled oxygenated rewarming.

  • This protocol minimizes both ischemia–reperfusion and temperature-shift-induced injury during the start of normothermic machine perfusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Positioning of the liver during machine perfusion.
Fig. 2: Machine settings for DHOPE and COR–NMP.
Fig. 3: Essential steps of the DHOPE–COR–NMP procedure.
Fig. 4: Protocol workflow.
Fig. 5: Viability criteria during normothermic machine perfusion.

Similar content being viewed by others

Change history

  • 10 March 2025

    In the version of this article initially published, "(ml/min" was missing after "Target flow" in Fig. 2, while in the bottom row of Table 3, the order of values was shown incorrectly, from "–0.3 to –0.5." The figure and table are amended in the HTML and PDF versions of the article.

References

  1. Tullius, S. G. & Rabb, H. Improving the supply and quality of deceased-donor organs for transplantation. N. Engl. J. Med. 379, 693–694 (2018).

    PubMed  Google Scholar 

  2. Orman, E. S. et al. Declining liver graft quality threatens the future of liver transplantation in the United States. Liver Transpl. 21, 1040–1050 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. den Dulk, A. C. et al. High peak alanine aminotransferase determines extra risk for nonanastomotic biliary strictures after liver transplantation with donation after circulatory death. Transpl. Int. 28, 492–501 (2015).

    Article  Google Scholar 

  4. Dubbeld, J. et al. Similar liver transplantation survival with selected cardiac death donors and brain death donors. Br. J. Surg. 97, 744–753 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. O’Neill, S., Roebuck, A., Khoo, E., Wigmore, S. J. & Harrison, E. M. A meta-analysis and meta-regression of outcomes including biliary complications in donation after cardiac death liver transplantation. Transpl. Int. 27, 1159–1174 (2014).

    Article  PubMed  Google Scholar 

  6. Blok, J. J. et al. Longterm results of liver transplantation from donation after circulatory death. Liver Transpl. 22, 1107–1114 (2016).

    Article  PubMed  Google Scholar 

  7. Callaghan, C. J. et al. Outcomes of transplantation of livers from donation after circulatory death donors in the UK: a cohort study. BMJ Open 3, e003287 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guarrera, J. V. et al. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am. J. Transpl. 10, 372–381 (2010).

    Article  CAS  Google Scholar 

  9. Dutkowski, P. et al. HOPE for human liver grafts obtained from donors after cardiac death. J. Hepatol. 60, 765–772 (2014).

    Article  PubMed  Google Scholar 

  10. van Rijn, R. et al. Dual hypothermic oxygenated machine perfusion in liver transplants donated after circulatory death. Br. J. Surg. 104, 907–917 (2017).

    Article  PubMed  Google Scholar 

  11. Patrono, D. et al. Hypothermic oxygenated machine perfusion for liver transplantation: an initial experience. Exp. Clin. Transplant. 16, 172–176 (2018).

    PubMed  Google Scholar 

  12. Schlegel, A. et al. Hypothermic oxygenated perfusion protects from mitochondrial injury before liver transplantation. EBioMedicine 60, 103014 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. van Rijn, R. et al. Hypothermic machine perfusion in liver transplantation—a randomized trial. N. Engl. J. Med. 384, 1391–1401 (2021).

    Article  PubMed  Google Scholar 

  14. van Leeuwen, O. B. et al. Transplantation of high-risk donor livers after ex situ resuscitation and assessment using combined hypo- and normothermic machine perfusion: a prospective clinical trial. Ann. Surg. 270, 906–914 (2019).

    Article  PubMed  Google Scholar 

  15. Mergental, H. et al. Transplantation of discarded livers following viability testing with normothermic machine perfusion. Nat. Commun. 11, 2939 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Watson, C. J. E. et al. Observations on the ex situ perfusion of livers for transplantation. Am. J. Transplant. 18, 2005–2020 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nasralla, D. et al. A randomized trial of normothermic preservation in liver transplantation. Nature 557, 50–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Chapman, W. C. et al. Normothermic machine perfusion of donor livers for transplantation in the United States—a randomized controlled trial. Ann. Surg. 278, e912–e921 (2023).

    Article  PubMed  Google Scholar 

  19. Markmann, J. F. et al. Impact of portable normothermic blood-based machine perfusion on outcomes of liver transplant: the OCS liver PROTECT randomized clinical trial. JAMA Surg. 157, 189–198 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Watson, C. J. E. et al. Normothermic perfusion in the assessment and preservation of declined livers before transplantation: hyperoxia and vasoplegia-important lessons from the first 12 cases. Transplantation 101, 1084–1098 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schlegel, A., Kron, P., Graf, R., Dutkowski, P. & Clavien, P.-A. Warm vs. cold perfusion techniques to rescue rodent liver grafts. J. Hepatol. 61, 1267–1275 (2014).

    Article  PubMed  Google Scholar 

  22. Westerkamp, A. C. et al. Oxygenated hypothermic machine perfusion after static cold storage improves hepatobiliary function of extended criteria donor livers. Transplantation 100, 825–835 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Burlage, L. C. et al. Oxygenated hypothermic machine perfusion after static cold storage improves endothelial function of extended criteria donor livers. HPB 19, 538–546 (2017).

    Article  PubMed  Google Scholar 

  24. Boteon, Y. L. et al. Combined hypothermic and normothermic machine perfusion improves functional recovery of extended criteria donor livers. Liver Transpl. 24, 1699–1715 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Minor, T., Efferz, P., Fox, M., Wohlschlaeger, J. & Lüer, B. Controlled oxygenated rewarming of cold stored liver grafts by thermally graduated machine perfusion prior to reperfusion. Am. J. Transpl. 13, 1450–1460 (2013).

    Article  CAS  Google Scholar 

  26. van Leeuwen, O. B. et al. Sequential hypothermic and normothermic machine perfusion enables safe transplantation of high-risk donor livers. Am. J. Transpl. 22, 1658–1670 (2022).

    Article  Google Scholar 

  27. Hessheimer, A. J. et al. Normothermic regional perfusion vs. super-rapid recovery in controlled donation after circulatory death liver transplantation. J. Hepatol. 70, 658–665 (2019).

    Article  PubMed  Google Scholar 

  28. De Carlis, R. et al. How to preserve liver grafts from circulatory death with long warm ischemia? A retrospective italian cohort study with normothermic regional perfusion and hypothermic oxygenated perfusion. Transplantation 105, 2385–2396 (2021).

    Article  PubMed  Google Scholar 

  29. Sutton, M. E. et al. Criteria for viability assessment of discarded human donor livers during ex vivo normothermic machine perfusion. PLoS ONE 9, e110642 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Op Den Dries, S. et al. Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers. Am. J. Transpl. 13, 1327–1335 (2013).

    Article  CAS  Google Scholar 

  31. Matton, A. P. M. et al. Biliary bicarbonate, pH, and glucose are suitable biomarkers of biliary viability during ex situ normothermic machine perfusion of human donor livers. Transplantation 103, 1405–1413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Leeuwen, O. B. et al. Donor hepatectomy time influences ischemia-reperfusion injury of the biliary tree in donation after circulatory death liver transplantation. Surgery 168, 160–166 (2020).

    Article  PubMed  Google Scholar 

  33. Watson, C. J. E. et al. In situ normothermic perfusion of livers in controlled circulatory death donation may prevent ischemic cholangiopathy and improve graft survival. Am. J. Transpl. 19, 1745–1758 (2019).

    Article  Google Scholar 

  34. Lantinga, V. A., Buis, C. I., Porte, R. J., de Meijer, V. E. & van Leeuwen, O. B. Reducing cold ischemia time by donor liver ‘back-table’ preparation under continuous oxygenated machine perfusion of the portal vein. Clin. Transpl. 36, e14762 (2022).

    Article  CAS  Google Scholar 

  35. Czigany, Z. et al. Hypothermic oxygenated machine perfusion reduces early allograft injury and improves post-transplant outcomes in extended criteria donation liver transplantation from donation after brain death: results from a multicenter randomized controlled trial (HOPE ECD-DBD). Ann. Surg. 274, 705–712 (2021).

    Article  PubMed  Google Scholar 

  36. Brüggenwirth, I. M. A. et al. Prolonged preservation by hypothermic machine perfusion facilitates logistics in liver transplantation: a European observational cohort study. Am. J. Transpl. 22, 1842–1851 (2022).

    Article  Google Scholar 

  37. Brüggenwirth, I. M. A. et al. Prolonged hypothermic machine perfusion enables daytime liver transplantation—an IDEAL stage 2 prospective clinical trial. EClinicalMedicine 68, 102411 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schlegel, A., de Rougemont, O., Graf, R., Clavien, P.-A. & Dutkowski, P. Protective mechanisms of end-ischemic cold machine perfusion in DCD liver grafts. J. Hepatol. 58, 278–286 (2013).

    Article  PubMed  Google Scholar 

  39. Brüggenwirth, I. M. A. et al. The importance of adequate oxygenation during hypothermic machine perfusion. JHEP Rep. 3, 100194 (2021).

    Article  PubMed  Google Scholar 

  40. Rettich, T. R., Handa, Y. P., Battino, R. & Wilhelm, E. Solubility of gases in liquids. 13. High-precision determination of Henry’s constants for methane and ethane in liquid water at 275 to 328 K. J. Phys. Chem. 85, 3230–3237 (1981).

    Article  CAS  Google Scholar 

  41. van Leeuwen, O. B., de Vries, Y., de Meijer, V. E. & Porte, R. J. Hypothermic machine perfusion before viability testing of previously discarded human livers. Nat. Commun. 12, 1008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. De Vries, Y. et al. Transplantation of high-risk donor livers after resuscitation and viability assessment using a combined protocol of oxygenated hypothermic, rewarming and normothermic machine perfusion: study protocol for a prospective, single-arm study (DHOPE–COR–NMP trial). BMJ Open 9, e028596 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. de Vries, Y. et al. Pretransplant sequential hypo- and normothermic machine perfusion of suboptimal livers donated after circulatory death using a hemoglobin-based oxygen carrier perfusion solution. Am. J. Transpl. 19, 1202–1211 (2019).

    Article  Google Scholar 

  44. Brüggenwirth, I. M. A., de Meijer, V. E., Porte, R. J. & Martins, P. N. Viability criteria assessment during liver machine perfusion. Nat. Biotechnol. 38, 1260–1262 (2020).

    Article  PubMed  Google Scholar 

  45. van Leeuwen, O. B., de Meijer, V. E. & Porte, R. J. Viability criteria for functional assessment of donor livers during normothermic machine perfusion. Liver Transpl. 24, 1333–1335 (2018).

    Article  PubMed  Google Scholar 

  46. Gaurav, R. et al. Bile biochemistry following liver reperfusion in the recipient and its association with cholangiopathy. Liver Transpl. 26, 1000–1009 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. University Medical Center Groningen. Organ Perfusionist Educational Program. https://onderwijs.umcg.nl/-/educational-program-organ-perfusionist (2025).

  48. Matsushima, H. et al. Too much, too little, or just right? The importance of allograft portal flow in deceased donor liver transplantation. Transplantation 104, 770–778 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Nair, A. et al. The prognostic utility of intraoperative allograft vascular inflow measurements in donation after circulatory death liver transplantation. Liver Transpl. 28, 65–74 (2021).

    Article  PubMed  Google Scholar 

  50. van Leeuwen, O. B., Bodewes, S. B., Porte, R. J. & de Meijer, V. E. Excellent long-term outcomes after sequential hypothermic and normothermic machine perfusion challenges the importance of functional donor warm ischemia time in DCD liver transplantation. J. Hepatol. 79, e244–e245 (2023).

    Article  PubMed  Google Scholar 

  51. Schlegel, A. et al. A multicentre outcome analysis to define global benchmarks for donation after circulatory death liver transplantation. J. Hepatol. 76, 371–382 (2021).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

O.B.v.L., V.A.L., V.E.d.M. and R.J.P. designed the protocol, wrote and critically revised the manuscript. B.L., A.M.T., S.B.B. and M.W.N. designed the protocol and critically revised the manuscript.

Corresponding authors

Correspondence to Vincent E. de Meijer or Robert J. Porte.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Damiano Patrono and Renato Romagnoli for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

van Leeuwen, O. et al. Ann. Surg. 270, 906–914 (2019): https://doi.org/10.1097/SLA.0000000000003540

van Leeuwen, O. et al. Am. J. Transplant. 22, 1658–1670 (2022): https://doi.org/10.1111/ajt.17022

Supplementary information

Supplementary Information

Supplementary Material.

Supplementary Video 1

Supplementary Video 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Leeuwen, O.B., Lantinga, V.A., Lascaris, B. et al. ‘Back-to-base’ combined hypothermic and normothermic machine perfusion of human donor livers. Nat Protoc 20, 2151–2170 (2025). https://doi.org/10.1038/s41596-024-01130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-024-01130-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research