Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

NIR-II aggregation-induced emission nanoparticles camouflaged with preactivated macrophage membranes for phototheranostics of pulmonary tuberculosis

Abstract

Phototheranostics, which allows simultaneous diagnosis and therapy, offers notable advantages in terms of noninvasiveness, controllability and negligible drug resistance, presenting a promising approach for disease treatment. By integrating second near-infrared (NIR-II, 1,000–1,700 nm) phototheranostic agents characterized by aggregation-induced emission (AIE) and cell membranes with specific targeting capacity, we have developed a versatile type of biomimetic nanoparticle (NP) for precise phototheranostics of pulmonary tuberculosis (TB). Coating the phototheranostic agents with preactivated macrophage membranes results in the formation of biomimetic NPs, which exhibit specific binding to TB through a lesion–pathogen dual-targeting strategy, allowing the accurate detection of Mycobacterium tuberculosis via NIR-II fluorescence imaging and precise photothermal therapy using the irradiation of a 1,064 nm laser. In comparison with traditional treatments, small individual granulomas (0.2 mm in diameter) in TB-infected mice are visualized, and improved antibacterial effects are achieved upon NP administration. Here we present a standardized workflow for the synthesis of the NIR-II AIE agents, their use for the fabrication of the biomimetic NPs and their in vitro and in vivo applications as phototheranostics against M. tuberculosis. The preparation and characterization of the NIR-II AIE agents requires ~8 d, the synthesis and characterization of the phototheranostic NPs requires ~8 d, the validation of in vitro targeting capacity and photothermal eradication requires ~26 d, and the in vivo NIR-II fluorescence imaging and imaging-guided photothermal therapy requires ~74 d. All procedures are straightforward and suitable for clinicians or researchers with prior training in organic synthesis and biomedical engineering.

Key points

  • The procedure covers the synthesis of the photothermal agents, the preactivation of macrophages, membrane extraction and coextrusion to create the final biomimetic nanoparticles, as well as validation of the in vitro and in vivo image-guided photothermal therapy of pulmonary TB.

  • Alternative clinical approaches include chemotherapy, immunotherapy, photodynamic therapy and vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A precise theranostic strategy for TB based on Mycobacterium preactivated macrophage membrane-coated photothermal NPs.
Fig. 2: Fabrication of macrophage-like BBTD@PM NPs.
Fig. 3: Overview of using BBTD@PM NPs for pulmonary TB phototheranostics.
Fig. 4: Characterization of BBTD@PM NPs.
Fig. 5: In vitro validation of targeting and photothermal sterilization activity of BBTD@PM NPs.
Fig. 6: In vivo NIR-IIb FLI of tuberculous granulomas and PTT against tuberculous granulomas.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research paper45. The raw datasets are provided in the Source Data file. The online version also contains a Supplementary Information PDF file. All other data are available for research purposes from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Dheda, K., Barry, C. E. & Maartens, G. Tuberculosis. Lancet 387, 1211–1226 (2016).

    Article  PubMed  Google Scholar 

  2. Pai, M. et al. Tuberculosis. Nat. Rev. Dis. Primers 2, 16076 (2016).

    Article  PubMed  Google Scholar 

  3. Getahun, H., Matteelli, A., Chaisson Richard, E. & Raviglione, M. Latent Mycobacterium tuberculosis infection. N. Engl. J. Med. 372, 2127–2135 (2015).

    Article  PubMed  CAS  Google Scholar 

  4. Global Tuberculosis Report 2022 https://www.who.int/publications/i/item/9789240061729 (World Health Organization, 2022).

  5. Fenaroli, F. et al. Enhanced permeability and retention-like extravasation of nanoparticles from the vasculature into tuberculosis granulomas in zebrafish and mouse models. ACS Nano 12, 8646–8661 (2018).

    Article  PubMed  CAS  Google Scholar 

  6. Prabhu, P. et al. Mannose-conjugated chitosan nanoparticles for delivery of rifampicin to Osteoarticular tuberculosis. Drug Deliv. Transl. Res. 11, 1509–1519 (2021).

    Article  PubMed  CAS  Google Scholar 

  7. Khawbung, J. L., Nath, D. & Chakraborty, S. Drug resistant tuberculosis: a review. Comp. Immunol. Microb. 74, 101574 (2021).

    Article  CAS  Google Scholar 

  8. Hoagland, D. T., Liu, J., Lee, R. B. & Lee, R. E. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv. Drug Deliv. Rev. 102, 55–72 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Diacon Andreas, H. et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N. Engl. J. Med. 371, 723–732 (2014).

    Article  PubMed  CAS  Google Scholar 

  10. Conradie, F. et al. Treatment of highly drug-resistant pulmonary tuberculosis. N. Engl. J. Med. 382, 893–902 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhang, Z. et al. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem. Soc. Rev. 51, 1983–2030 (2022).

    Article  PubMed  CAS  Google Scholar 

  12. Feng, G., Zhang, G. Q. & Ding, D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem. Soc. Rev. 49, 8179–8234 (2020).

    Article  PubMed  CAS  Google Scholar 

  13. Li, X., Lovell, J. F., Yoon, J. & Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).

    Article  PubMed  Google Scholar 

  14. Hu, W., Prasad, P. N. & Huang, W. Manipulating the dynamics of dark excited states in organic materials for phototheranostics. Acc. Chem. Res. 54, 697–706 (2021).

    Article  PubMed  CAS  Google Scholar 

  15. Yang, Z. & Chen, X. Semiconducting perylene diimide nanostructure: multifunctional phototheranostic nanoplatform. Acc. Chem. Res. 52, 1245–1254 (2019).

    Article  PubMed  CAS  Google Scholar 

  16. Li, H., Kim, Y., Jung, H., Hyun, J. Y. & Shin, I. Near-infrared (NIR) fluorescence-emitting small organic molecules for cancer imaging and therapy. Chem. Soc. Rev. 51, 8957–9008 (2022).

    Article  PubMed  CAS  Google Scholar 

  17. Cheng, P. & Pu, K. Molecular imaging and disease theranostics with renal-clearable optical agents. Nat. Rev. Mater. 6, 1095–1113 (2021).

    Article  CAS  Google Scholar 

  18. Zhen, X. et al. Macrotheranostic probe with disease-activated near-infrared fluorescence, photoacoustic, and photothermal signals for imaging-guided therapy. Angew. Chem. Int. Ed. 57, 7804–7808 (2018).

    Article  CAS  Google Scholar 

  19. Cai, Y. et al. Organic dye based nanoparticles for cancer phototheranostics. Small 14, 1704247 (2018).

    Article  Google Scholar 

  20. Wang, F., Zhong, Y., Bruns, O., Liang, Y. & Dai, H. In vivo NIR-II fluorescence imaging for biology and medicine. Nat. Photonics 18, 535–547 (2024).

    Article  CAS  Google Scholar 

  21. Wang, F. et al. In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nat. Nanotechnol. 17, 653–660 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chen, Y., Wang, S. & Zhang, F. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat. Rev. Bioeng. 1, 60–78 (2023).

    Article  CAS  Google Scholar 

  23. Zhao, H. et al. Near-infrared II fluorescence-guided glioblastoma surgery targeting monocarboxylate transporter 4 combined with photothermal therapy. eBioMedicine 106, 10524 (2024).

    Article  Google Scholar 

  24. Yan, D. et al. An all-rounder for NIR-II phototheranostics: well-tailored 1064 nm-excitable molecule for photothermal combating of orthotopic breast cancer. Angew. Chem. Int. Ed. 63, e202401877 (2024).

    Article  CAS  Google Scholar 

  25. Chen, Y., Yang, Y. & Zhang, F. Noninvasive in vivo microscopy of single neutrophils in the mouse brain via NIR-II fluorescent nanomaterials. Nat. Protoc. 19, 2386–2407 (2024).

    Article  PubMed  CAS  Google Scholar 

  26. Caspar, J. V. & Meyer, T. J. Application of the energy gap law to nonradiative, excited-state decay. J. Phys. Chem. 87, 952–957 (1983).

    Article  CAS  Google Scholar 

  27. Wei, Y.-C. et al. Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nat. Photonics 14, 570–577 (2020).

    Article  CAS  Google Scholar 

  28. Ding, Q. et al. Diverse interactions between AIEgens and biomolecules/organisms: advancing from strategic design to precision theranostics. Chem 10, 2031–2073 (2024).

    Article  CAS  Google Scholar 

  29. Wang, H. et al. Aggregation-induced emission (AIE), life and health. ACS Nano 17, 14347–14405 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kenry & Liu, B. Enhancing the theranostic performance of organic photosensitizers with aggregation-induced emission. Acc. Mater. Res. 3, 721–734 (2022).

    Article  CAS  Google Scholar 

  31. Kang, M. et al. Aggregation‐enhanced theranostics: AIE sparkles in biomedical field. Aggregate 1, 80–106 (2020).

    Article  Google Scholar 

  32. Mei, J., Leung, N. L., Kwok, R. T., Lam, J. W. & Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015).

    Article  PubMed  CAS  Google Scholar 

  33. Gui, Y. et al. Thiophene π-bridge manipulation of NIR-II AIEgens for multimodal tumor phototheranostics. Angew. Chem. Int. Ed. 63, e202318609 (2024).

    Article  CAS  Google Scholar 

  34. Xu, C. et al. Molecular motion and nonradiative decay: towards efficient photothermal and photoacoustic systems. Angew. Chem. Int. Ed. 61, e202204604 (2022).

    Article  CAS  Google Scholar 

  35. Yan, D. et al. Adding flying wings: butterfly-shaped NIR-II AIEgens with multiple molecular rotors for photothermal combating of bacterial biofilms. J. Am. Chem. Soc. 145, 25705–25715 (2023).

    Article  PubMed  CAS  Google Scholar 

  36. Gao, H. et al. Boosting photoacoustic effect via intramolecular motions amplifying thermal-to-acoustic conversion efficiency for adaptive image-guided cancer surgery. Angew. Chem. Int. Ed. 60, 21047–21055 (2021).

    Article  CAS  Google Scholar 

  37. Fang, R. H., Kroll, A. V., Gao, W. & Zhang, L. Cell membrane coating nanotechnology. Adv. Mater. 30, 1706759 (2018).

    Article  Google Scholar 

  38. Hu, C.-M. J. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zeng, Z. & Pu, K. Improving cancer immunotherapy by cell membrane-camouflaged nanoparticles. Adv. Funct. Mater. 30, 2004397 (2020).

    Article  CAS  Google Scholar 

  40. Li, J. et al. Cell membrane coated semiconducting polymer nanoparticles for enhanced multimodal cancer phototheranostics. ACS Nano 12, 8520–8530 (2018).

    Article  PubMed  CAS  Google Scholar 

  41. Krishnan, N. et al. A modular approach to enhancing cell membrane-coated nanoparticle functionality using genetic engineering. Nat. Nanotechnol. 19, 345–353 (2024).

    Article  PubMed  CAS  Google Scholar 

  42. Li, Z., Tang, B. Z. & Wang, D. Bioinspired AIE nanomedicine: a burgeoning technology for fluorescence bioimaging and phototheranostics. Adv. Mater. 36, 2406047 (2024).

    Article  CAS  Google Scholar 

  43. Dai, J. et al. Red blood cell membrane-camouflaged nanoparticles loaded with AIEgen and Poly(I : C) for enhanced tumoral photodynamic-immunotherapy. Natl Sci. Rev. 8, nwab03 (2021).

    Article  Google Scholar 

  44. Cui, J. et al. ‘Trojan horse’ phototheranostics: fine-engineering NIR-II AIEgen camouflaged by cancer cell membrane for homologous-targeting multimodal imaging-guided phototherapy. Adv. Mater. 35, 2302639 (2023).

    Article  CAS  Google Scholar 

  45. Li, B. et al. Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles. Nat. Nanotechnol. 19, 834–845 (2024).

    Article  PubMed  CAS  Google Scholar 

  46. Jiang, Z. M. et al. Development of genetically engineered iNKT cells expressing TCRs specific for the M. tuberculosis 38-kDa antigen. J. Transl. Med. 13, 141 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shi, C. et al. Lipophilic AIEgens as the ‘trojan horse’ with discrepant efficacy in tracking and treatment of mycobacterial infection. Adv. Healthc. Mater. 13, 2301746 (2023).

    Article  Google Scholar 

  48. Fan, S. et al. Photothermal and host immune activated therapy of cutaneous tuberculosis using macrophage targeted mesoporous polydopamine nanoparticles. Mater. Today Bio 28, 101232 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Coler, R. N. et al. The TLR-4 agonist adjuvant, GLA-SE, improves magnitude and quality of immune responses elicited by the ID93 tuberculosis vaccine: first-in-human trial. npj Vaccines 3, 34 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang, H. et al. NIR-II AIE luminogen-based erythrocyte-like nanoparticles with granuloma-targeting and self-oxygenation characteristics for combined phototherapy of tuberculosis. Adv. Mater. 36, 2406143 (2024).

    Article  CAS  Google Scholar 

  51. Xu, Z. et al. Nanofiber-mediated sequential photothermal antibacteria and macrophage polarization for healing MRSA-infected diabetic wounds. J. Nanobiotechnol. 19, 404 (2021).

    Article  CAS  Google Scholar 

  52. Faa, G., Gerosa, C., Fanni, D., Lachowicz, J. I. & Nurchi, V. M. Gold-old drug with new potentials. Curr. Med. Chem. 25, 75–84 (2018).

    Article  PubMed  CAS  Google Scholar 

  53. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    Article  PubMed  CAS  Google Scholar 

  55. Wang, W. et al. Macrophage-derived biomimetic nanoparticles for light-driven theranostics toward Mpox. Matter 7, 1187–1206 (2024).

    Article  CAS  Google Scholar 

  56. Gawne, P. J., Ferreira, M., Papaluca, M., Grimm, J. & Decuzzi, P. New opportunities and old challenges in the clinical translation of nanotheranostics. Nat. Rev. Mater. 8, 783–798 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Okuda, Y., Lakshmikantham, M. V. & Cava, M. P. A new route to 1,3-disubstituted benzo[c]thiophenes. J. Org. Chem. 56, 6024–6026 (1991).

    Article  CAS  Google Scholar 

  58. Yan, D. et al. Multimodal imaging-guided photothermal immunotherapy based on a versatile NIR-II aggregation-induced emission luminogen. Angew. Chem. Int. Ed. 61, e202202614 (2022).

    Article  CAS  Google Scholar 

  59. Wang, M. et al. A versatile 980 nm absorbing aggregation-induced emission luminogen for NIR-II imaging-guided synergistic photo-immunotherapy against advanced pancreatic cancer. Adv. Funct. Mater. 32, 2205371 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (52122317, 22175120, 22307080), the Developmental Fund for Science and Technology of Shenzhen Government (RCYX20200714114525101), The Shenzhen Science and Technology Program (RCBS20221008093224016, JCYJ20220531101201003, 20220809130438001), the Guangdong Basic and Applied Basic Research Fund (2023A1515010558), the Pearl River Talent Recruitment Program (2019QN01Y103), the Research Team Cultivation Program of Shenzhen University (2023QNT003), the Medical-Engineering Interdisciplinary Research Foundation of Shenzhen University (2023YG021) and the Medicine Plus Program of Shenzhen University (2024YG004). The authors also acknowledge the Instrumental Analysis Center of Shenzhen University.

Author information

Authors and Affiliations

Authors

Contributions

D.Y., D.W. and B.Z.T. conceived and initiated the project. D.Y., H.W. and B.L. contributed to the experimental work displayed in this protocol. D.Y., X.L., H.W., Y.L., W.W. and D.W. wrote the protocol. D.W. and B.Z.T. supervised the study and the manuscript preparation. All authors reviewed and edited the manuscript and approved the final draft. Lab links: https://www.kmmc.cn/Pages_2592_53259.aspx; https://tangbenz.people.ust.hk/; https://cmse.szu.edu.cn/szdw1/jsml/gfzclygc/j_s/wd.htm.

Corresponding authors

Correspondence to Yuhui Liao, Ben Zhong Tang or Dong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Kanyi Pu and Fan Zhang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Li, B. et al. Nat. Nanotechnol. 19, 834–845 (2024): https://doi.org/10.1038/s41565-024-01618-0

Wang, W. et al. Matter 7, 1187–1206 (2024): https://doi.org/10.1016/j.matt.2024.01.004

Li, B. et al. Adv. Sci. 8, 2003556 (2021): https://doi.org/10.1002/advs.202003556

Wang, M. et al. Adv. Funct. Mater. 32, 2205371 (2022): https://doi.org/10.1002/adfm.202205371

Yan, D. et al. Angew. Chem. Int. Ed. 60, 26769–26776 (2021): https://doi.org/10.1002/anie.202111767

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and procedures for characterizing the intermediates and TPE-BT-BBTD, NIR-II imaging and biotoxicity evaluation.

Source data

Source Data Figs. 4 and 5

Statistical Source Data.

Source Data Fig. 4

Parent Figure.

Source Data Supplementary Fig. 11

Statistical Source Data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, D., Li, X., Wang, H. et al. NIR-II aggregation-induced emission nanoparticles camouflaged with preactivated macrophage membranes for phototheranostics of pulmonary tuberculosis. Nat Protoc 20, 2560–2585 (2025). https://doi.org/10.1038/s41596-025-01146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-025-01146-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing