Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Construction of complex bacteriogenic protocells from living material assembly

Abstract

Protocell research offers diverse opportunities to understand cellular processes and the foundations of life and holds attractive potential applications across various fields. However, it is still a formidable task to construct a true-to-life synthetic cell with high organizational and functional complexity. Here we present a protocol for constructing bacteriogenic protocells by employing prokaryotes as on-site repositories of compositional, functional and structural building blocks to address this challenge. This approach is based on the capture and processing of two spatially segregated bacterial colonies within individual coacervate microdroplets to produce membrane-bounded, molecularly crowded, compositionally, structurally and functionally complex synthetic cells. The bacteriogenic protocells inherit sufficient biological components from their bacterial building units to exhibit highly integrated life-like properties, including biocatalysis, glycolysis and gene expression. The protocells can be endogenously remodeled to acquire diverse proto-organelles including a spatially partitioned nucleus-like DNA/histone-based condensate to store genetic material, membrane-bounded water vacuoles to adjust cellular osmotic pressure, a three-dimensional network of F-actin proto-cytoskeleton to support structural stability and proto-mitochondria to generate endogenous ATP as source of energy. The protocells ultimately develop a nonspherical morphology due to the continuous biogeneration of metabolic products by implanted living bacteria cells. This protocol provides a novel living material assembly strategy for the construction of functional protoliving microdevices and offers opportunities for potential applications in engineered synthetic biology and biomedicine. The protocol takes ~27 d to complete and requires expertise in microbiology, phase separation, biochemistry and molecular biology related techniques.

Key points

  • Membrane-bounded, molecularly crowded, compositionally, structurally and morphologically complex bacteriogenic protocells are constructed on the basis of the capture and on-site processing of spatially segregated bacterial colonies within individual coacervate microdroplets.

  • Bacteriogenic protocells are endogenously remodeled to acquire diverse proto-organelles and ultimately develop an amoeba-like nonspherical morphology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic view of the construction process of bacteriogenic protocells.
Fig. 2: Overview of the bacteriogenic protocell construction procedure (Steps 1–115).
Fig. 3: Overview of the bacteriogenic protocell construction procedure (Steps 116–144).
Fig. 4: Overview of the bacteriogenic protocell construction procedure (Steps 145–152).
Fig. 5: Construction of bacteriogenic protocells and evaluation of their cytomimetic functions.
Fig. 6: On-site augmentation and live cell energization of bacteriogenic protocells.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research paper17. All other data are available for research purposes from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Dzieciol, A. J. & Mann, S. Designs for life: protocell models in the laboratory. Chem. Soc. Rev. 41, 79–85 (2012).

    Article  PubMed  CAS  Google Scholar 

  2. van Stevendaal, M. H. M. E., van Hest, J. C. M. & Mason, A. F. Functional interactions between bottom-up synthetic cells and living matter for biomedical applications. ChemSystemsChem 3, e2100009 (2021).

    Article  Google Scholar 

  3. Jeong, S., Nguyen, H. T., Kim, C. H., Ly, M. N. & Shin, K. Toward artificial cells: novel advances in energy conversion and cellular motility. Adv. Funct. Mater. 30, 1907182 (2020).

    Article  CAS  Google Scholar 

  4. Toparlak, O. D. & Mansy, S. S. Progress in synthesizing protocells. Exp. Biol. Med. 244, 304–313 (2018).

    Article  Google Scholar 

  5. Yewdall, N. A., Mason, A. F. & van Hest, J. C. M. The hallmarks of living systems: towards creating artificial cells. Interface Focus 8, 20180023 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kurihara, K. et al. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat. Chem. 3, 775–781 (2011).

    Article  PubMed  CAS  Google Scholar 

  7. Dora Tang, T. Y. et al. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 6, 527–533 (2014).

    Article  PubMed  Google Scholar 

  8. Li, M., Harbron, R. L., Weaver, J. V. M., Binks, B. P. & Mann, S. Electrostatically gated membrane permeability in inorganic protocells. Nat. Chem. 5, 529–536 (2013).

    Article  PubMed  Google Scholar 

  9. Rodríguez-Arco, L., Li, M. & Mann, S. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects. Nat. Mater. 17, 857–863 (2017).

    Google Scholar 

  10. Qiao, Y., Li, M., Booth, R. & Mann, S. Predatory behaviour in synthetic protocell communities. Nat. Chem. 9, 110–119 (2016).

    PubMed  Google Scholar 

  11. Koga, S., Williams, D. S., Perriman, A. W. & Mann, S. Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model. Nat. Chem. 3, 720–724 (2011).

    Article  PubMed  CAS  Google Scholar 

  12. Huang, X. et al. Interfacial assembly of protein–polymer nano-conjugates into stimulus-responsive biomimetic protocells. Nat. Commun. 4, 2239 (2013).

    Article  PubMed  Google Scholar 

  13. Dora Tang, T. Y., van Swaay, D., deMello, A., Ross Anderson, J. L. & Mann, S. In vitro gene expression within membrane-free coacervate protocells. Chem. Commun. 51, 11429–11432 (2015).

    Article  CAS  Google Scholar 

  14. Li, M., Green, D. C., Anderson, J. L. R., Binks, B. P. & Mann, S. In vitro gene expression and enzyme catalysis in bio-inorganic protocells. Chem. Sci. 2, 1739–1745 (2011).

    Article  CAS  Google Scholar 

  15. Walde, P. & Ichikawa, S. Enzymes inside lipid vesicles: preparation, reactivity and applications. Biomol. Eng. 18, 143–177 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. Walde, P., Goto, A., Monnard, P.-A., Wessicken, M. & Luisi, P. L. Oparin’s reactions revisited: Enzymic synthesis of Poly(adenylic acid) in micelles and self-reproducing vesicles. J Am. Chem. Soc. 116, 7541–7547 (1994).

    Article  CAS  Google Scholar 

  17. Xu, C., Martin, N., Li, M. & Mann, S. Living material assembly of bacteriogenic protocells. Nature 609, 1029–1037 (2022).

    Article  PubMed  CAS  Google Scholar 

  18. Mann, S. Systems of creation: the emergence of life from nonliving matter. Acc. Chem. Res. 45, 2131–2141 (2012).

    Article  PubMed  CAS  Google Scholar 

  19. Xu, C., Hu, S. & Chen, X. Artificial cells: from basic science to applications. Mater. Today 19, 516–532 (2016).

    Article  CAS  Google Scholar 

  20. Martino, C. & deMello, A. J. Droplet-based microfluidics for artificial cell generation: a brief review. Interface Focus 6, 20160011 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Solé, R. V., Munteanu, A., Rodriguez-Caso, C. & Macía, J. Synthetic protocell biology: from reproduction to computation. Philos. Trans. R. Soc. Lond. B 362, 1727–1739 (2007).

    Article  Google Scholar 

  22. Jaffe, J. D. et al. The complete genome and proteome of Mycoplasma mobile. Genome Res. 14, 1447–1461 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Thornburg, Z. R. et al. Fundamental behaviors emerge from simulations of a living minimal cell. Cell 185, 345–360.e328 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Williams, D. S. et al. Polymer/nucleotide droplets as bio-inspired functional micro-compartments. Soft Matter 8, 6004–6014 (2012).

    Article  CAS  Google Scholar 

  25. Weibull, C. The isolation of protoplasts from Bacillus megaterium by controlled treatment with lysozyme. J. Bacteriol. 66, 688–695 (1953).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Birdsell, D. C. & Cota-Robles, E. H. Production and ultrastructure of lysozyme and ethylenediaminetetraacetate-lysozyme spheroplasts of Escherichia coli. J. Bacteriol. 93, 427–437 (1967).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. van den Bogaart, G., Guzman, J. V., Mika, J. T. & Poolman, B. On the mechanism of pore formation by melittin. J. Biol. Chem. 283, 33854–33857 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pandidan, S. & Mechler, A. Nano-viscosimetry analysis of the membrane disrupting action of the bee venom peptide melittin. Sci. Rep. 9, ARTN 10841 (2019).

    Article  Google Scholar 

  29. Oberholzer, T., Wick, R., Luisi, P. L. & Biebricher, C. K. Enzymatic RNA replication in self-reproducing vesicles—an approach to a minimal cell. Biochem. Bioph. Res. Co. 207, 250–257 (1995).

    Article  CAS  Google Scholar 

  30. Oberholzer, T., Albrizio, M. & Luisi, P. L. Polymerase chain-reaction in liposomes. Chem. Biol. 2, 677–682 (1995).

    Article  PubMed  CAS  Google Scholar 

  31. Ishikawa, K., Sato, K., Shima, Y., Urabe, I. & Yomo, T. Expression of a cascading genetic network within liposomes. Febs. Lett. 576, 387–390 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. Carlson, E. D., Gan, R., Hodgman, C. E. & Jewett, M. C. Cell-free protein synthesis: applications come of age. Biotechnol. Adv. 30, 1185–1194 (2012).

    Article  PubMed  CAS  Google Scholar 

  33. Khosla, C. & Keasling, J. D. Metabolic engineering for drug discovery and development. Nat. Rev. Drug Discov. 2, 1019–1025 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. Skruzny, M. et al. Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin-mediated endocytosis. Proc. Natl Acad. Sci. USA 109, E2533–E2542 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Emelyanov, V. V. Mitochondrial connection to the origin of the eukaryotic cell. Eur. J. Biochem. 270, 1599–1618 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. Vellai, T. & Vida, G. The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells. Proc. R. Soc. Lond. B 266, 1571–1577 (1999).

    Article  CAS  Google Scholar 

  37. Drew, B. & Leeuwenburgh, C. Method for measuring ATP production in isolated mitochondria: ATP production in brain and liver mitochondria of Fischer-344 rats with age and caloric restriction. Am. J. Physiol. 285, R1259–R1267 (2003).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Takebayashi and J. Spencer for help with bacterial cultures; H. Sun, C. Berger-Schaffitzel and E. Bragginton for help with gel electrophoresis and western blot analysis; A. Coutable and J. L. R. Anderson for providing the plasmid pEXP5-NT/deGFP; A. Leard from the Wolfson Bioimaging Facility for help with confocal imaging; and K. Heesom from the Proteomics Facility for proteomics analysis. Special thanks to Wolfson Bioimaging Facility for providing the microscopes. C.X. was funded by China 2024 Excellent Young Scientists Fund Program (Overseas) (20241B4435) and Shanghai Pujiang Program (23PJ1406000). N.M. and S.M. were funded by the ERC Advanced Grant Scheme (EC-2016-674 ADG 740235).

Author information

Authors and Affiliations

Authors

Contributions

C.X., M.L. and S.M. conceived the protocol design. C.X. and N.M. performed the experimental procedures. C.X. and M.L. prepared the figures. C.X. and S.M. wrote the manuscript. M.L. and N.M. performed the revision. S.M. supervised the work.

Corresponding authors

Correspondence to Can Xu or Stephen Mann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Yan Qiao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key reference

Xu, C. et al. Nature 609, 1029–1037 (2022): https://doi.org/10.1038/s41586-022-05223-w

Supplementary information

Source data

Source Data Fig. 5

Statistical Source Data.

Source Data Fig. 6

Statistical Source Data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Li, M., Martin, N. et al. Construction of complex bacteriogenic protocells from living material assembly. Nat Protoc 20, 2586–2617 (2025). https://doi.org/10.1038/s41596-025-01148-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-025-01148-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing