Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Fibrous polyisocyanide hydrogels for 3D cell culture applications

Abstract

Three-dimensional (3D) cell culture models based on hydrogels are rapidly evolving into a prominent tool for tissue engineering, mechanobiology, disease modeling and drug screening. While a vast variety of synthetic gels have emerged in recent years, they fail to penetrate the market substantially for two major reasons: they poorly mimic the extracellular matrix or they are difficult to use in gel formation and cell extraction. Mimicking the complexity of nature is challenging: the extracellular matrix plays a crucial role in cell development and function, which goes well beyond simple mechanical support. Recently, we introduced polyisocyanide (PIC) hydrogels for 3D cell culture applications. The fibrous architecture and associated (non)linear mechanical behavior closely mimic the physical properties of biogels such as collagen and fibrin. As fully synthetic materials, PIC gels benefit from high tailorability and reproducibility. Moreover, the thermoresponsive properties of PIC gels make them easy to handle in the lab; the gels form instantly at 37 °C and cells are easily extracted after cooling to 5 °C. The potential of PIC gels has been demonstrated in a quickly expanding library of papers discussing different cell lines, primary cells and organoids, as well as in vivo experiments. This manuscript provides protocols on how to handle PIC gels in the chemistry and cell biology laboratories. Material preparation requires 72 h. Cell encapsulation takes 1 h and the time for downstream analysis depends on the (commercial) methods used. The protocols described are suitable for researchers with expertise in cell culture and molecular biology.

Key points

  • Protocol describing the use of polyisocyanide (PIC) as a model matrix for 3D cell culture. PIC hydrogels closely mimic the physical properties of biogels such as collagen and fibrin and, as fully synthetic materials, benefit from a high reproducibility.

  • The linear and nonlinear mechanics of PIC hydrogel can be controlled by tuning the polymer length or concentration, and the polymer can be biofunctionalized through azide-based click chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of PIC hydrogel features.
Fig. 2: PIC design parameters.
Fig. 3: Expected physical properties of the PIC gel.
Fig. 4: Representative cell culture results using PIC.
Fig. 5: Representative results of organoid culture using PIC.

Similar content being viewed by others

Data availability

The authors declare that the data in this protocol are available through the supporting papers17,18,19,23,27,34,43,47,65. Reasonable requests for materials can be addressed to P.H.J.K. at Radboud University.

References

  1. Sun, M. et al. 3D Cell culture—can it be as popular as 2D cell culture? Adv. NanoBiomed. Res. 1, 2000066 (2021).

    Article  CAS  Google Scholar 

  2. Shamir, E. R. & Ewald, A. J. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat. Rev. Mol. Cell Biol. 15, 647–664 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. FDA no longer needs to require animal tests before human drug trials. ScienceInsider https://doi.org/10.1126/science.adg6264 (2023).

  4. 3D Cell Culture Market (Reports and Data, 2022).

  5. Kozlowski, M. T., Crook, C. J. & Ku, H. T. Towards organoid culture without Matrigel. Commun. Biol. 4, 1387 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen, Z., Sugimura, R., Zhang, Y. S., Ruan, C. & Wen, C. Organoids in concert: engineering in vitro models toward enhanced fidelity. Aggregate 5, e478 (2024).

    Article  CAS  Google Scholar 

  7. Gan, Z., Qin, X., Liu, H., Liu, J. & Qin, J. Recent advances in defined hydrogels in organoid research. Bioact. Mater. 28, 386–401 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Aisenbrey, E. A. & Murphy, W. L. Synthetic alternatives to Matrigel. Nat. Rev. Mater. 5, 539–551 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, K., Wiendels, M., Yuan, H., Ruan, C. & Kouwer, P. Cell–matrix reciprocity in 3D culture models with nonlinear elasticity. Bioact. Mater. 9, 316–331 (2022).

    PubMed  Google Scholar 

  11. Frantz, C., Stewart, K. M. & Weaver, V. M. The extracellular matrix at a glance. J. Cell Sci. 123, 4195–4200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Piechocka, I. K., Bacabac, R. G., Potters, M., MacKintosh, F. C. & Koenderink, G. H. Structural hierarchy governs fibrin gel mechanics. Biophys. J. 98, 2281–2289 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kouwer, P. H. J. et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 493, 651–655 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, K., Mihaila, S. M., Rowan, A., Oosterwijk, E. & Kouwer, P. H. J. Synthetic extracellular matrices with nonlinear elasticity regulate cellular organization. Biomacromolecules 20, 826–834 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Das, R. K., Gocheva, V., Hammink, R., Zouani, O. F. & Rowan, A. E. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat. Mater. 15, 318–325 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, K. et al. Synthetic extracellular matrices as a toolbox to tune stem cell secretome. ACS Appl. Mater. Interfaces 12, 56723–56730 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuan, H. et al. Synthetic fibrous hydrogels as a platform to decipher cell–matrix mechanical interactions. Proc. Natl. Acad. Sci. USA 120, e2216934120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, Y. et al. Polyisocyanide hydrogels as a tunable platform for mammary gland organoid formation. Adv. Sci. 7, 2001797 (2020).

    Article  CAS  Google Scholar 

  19. Schaafsma, P., Kracht, L., Baanstra, M., Jellema-de Bruin, A. L. & Coppes, R. P. Role of immediate early genes in the development of salivary gland organoids in polyisocyanopeptide hydrogels. Front. Mol. Biosci. 10, 1100541 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, K. et al. Structure and applications of PIC-based polymers and hydrogels. Cell Rep. Phys. Sci. 5, 101834 (2024).

    Article  CAS  Google Scholar 

  21. Zimoch, J. et al. Polyisocyanopeptide hydrogels: a novel thermo-responsive hydrogel supporting pre-vascularization and the development of organotypic structures. Acta Biomater. 70, 129–139 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Van Velthoven, M. J. J. et al. Potential of estradiol‐functionalized polyisocyanide hydrogels for stimulating tissue regeneration of the pelvic floor. Adv. Ther. 7, 2300199 (2024).

    Article  Google Scholar 

  23. Kumari, J., Wagener, F. A. D. T. G. & Kouwer, P. H. J. Novel synthetic polymer-based 3D contraction assay: a versatile preclinical research platform for fibrosis. ACS Appl. Mater. Interfaces 14, 19212–19225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumari, J., Hammink, R., Baaij, J., Wagener, F. A. D. T. G. & Kouwer, P. H. J. Antifibrotic properties of hyaluronic acid crosslinked polyisocyanide hydrogels. Biomater. Adv. 156, 213705 (2024).

    Article  CAS  PubMed  Google Scholar 

  25. Van Velthoven, M. J. J. et al. An improved understanding of the pathophysiology of pelvic organ prolapse: a 3D in vitro model under static and mechanical loading conditions. Adv. Healthc. Mater. 13, 2302905 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sun, R. et al. Microenvironment with NIR-controlled ROS and mechanical tensions for manipulating cell activities in wound healing. Nano Lett. 24, 3257–3266 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, Y. et al. Tunable hybrid matrices drive epithelial morphogenesis and YAP translocation. Adv. Sci. 8, 2003380 (2021).

    Article  CAS  Google Scholar 

  28. Ma, C. et al. Synthetic extracellular matrices for 3D culture of Schwann cells, hepatocytes, and HUVECs. Bioengineering 9, 453 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weiden, J. et al. Injectable biomimetic hydrogels as tools for efficient T cell expansion and delivery. Front. Immunol. 9, 2798 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tiemeijer, B. M. et al. Probing single-cell macrophage polarization and heterogeneity using thermo-reversible hydrogels in droplet-based microfluidics. Front. Bioeng. Biotechnol. 9, 715408 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vandaele, J. et al. Structural characterization of fibrous synthetic hydrogels using fluorescence microscopy. Soft Matter 16, 4210–4219 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, Z. et al. Polyisocyanide hydrogels with tunable nonlinear elasticity mediate liver carcinoma cell functional response. Acta Biomater. 148, 152–162 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Cao, Z. et al. The preparation of biomineralized PIC/HA hybrid composites with strain‐stiffening and the effect on MC3T3‐E1 cells. Macromol. Rapid Commun. 43, 2200135 (2022).

    Article  CAS  Google Scholar 

  34. Ye, S. et al. A chemically defined hydrogel for human liver organoid culture. Adv. Funct. Mater. 30, 2000893 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jansen, K. A., Bacabac, R. G., Piechocka, I. K. & Koenderink, G. H. Cells actively stiffen fibrin networks by generating contractile stress. Biophys. J. 105, 2240–2251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumari, J. et al. A Novel in vitro disease model for systemic sclerosis using polyisocyanide hydrogels. Adv. Ther. 6, 2200180 (2023).

    Article  CAS  Google Scholar 

  37. Op ‘T Veld, R. C. et al. Thermosensitive biomimetic polyisocyanopeptide hydrogels may facilitate wound repair. Biomaterials 181, 392–401 (2018).

    Article  PubMed  Google Scholar 

  38. Yegappan, R. et al. Snake venom hydrogels as a rapid hemostatic agent for uncontrolled bleeding. Adv. Healthc. Mater. 11, 2200574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, B. et al. A tunable and injectable local drug delivery system for personalized periodontal application. J. Control. Release 324, 134–145 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Lou, J. & Mooney, D. J. Chemical strategies to engineer hydrogels for cell culture. Nat. Rev. Chem. 6, 726–744 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Kratochvil, M. J. et al. Engineered materials for organoid systems. Nat. Rev. Mater. 4, 606–622 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koepf, M. et al. Preparation and characterization of non-linear poly(ethylene glycol) analogs from oligo(ethylene glycol) functionalized polyisocyanopeptides. Eur. Polym. J. 49, 1510–1522 (2013).

    Article  CAS  Google Scholar 

  43. Jaspers, M. et al. Ultra-responsive soft matter from strain-stiffening hydrogels. Nat. Commun. 5, 5808 (2014).

    Article  PubMed  Google Scholar 

  44. Zhang, Z., Chen, W., Tiemessen, D. M., Oosterwijk, E. & Kouwer, P. H. J. A. Temperature‐based easy‐separable (TempEasy) 3D hydrogel coculture system. Adv. Healthc. Mater. 11, 2102389 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jaspers, M., Rowan, A. E. & Kouwer, P. H. J. Tuning hydrogel mechanics using the hofmeister effect. Adv. Funct. Mater. 25, 6503–6510 (2015).

    Article  CAS  Google Scholar 

  46. Kouwer, P. H. J. et al. Controlling the gelation temperature of biomimetic polyisocyanides. Chin. Chem. Lett. 29, 281–284 (2018).

    Article  CAS  Google Scholar 

  47. Van Velthoven, M. J. J. et al. Growth factor immobilization to synthetic hydrogels: bioactive bFGF‐functionalized polyisocyanide hydrogels. Adv. Healthc. Mater. 12, 2301109 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mandal, S. et al. Therapeutic nanoworms: towards novel synthetic dendritic cells for immunotherapy. Chem. Sci. 4, 4168 (2013).

    Article  CAS  Google Scholar 

  49. Voerman, D. et al. Synthetic semiflexible and bioactive brushes. Biomacromolecules 20, 2587–2597 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Op’T Veld, R. et al. Monitoring 111 In-labelled polyisocyanopeptide (PIC) hydrogel wound dressings in full-thickness wounds. Biomater. Sci. 7, 3041–3050 (2019).

    Article  PubMed  Google Scholar 

  51. Plow, E. F., Haas, T. A., Zhang, L., Loftus, J. & Smith, J. W. Ligand binding to integrins. J. Biol. Chem. 275, 21785–21788 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Ligorio, C. & Mata, A. Synthetic extracellular matrices with function-encoding peptides. Nat. Rev. Bioeng. 1, 518–536 (2023).

    Article  CAS  Google Scholar 

  53. Schoenmakers, D. C., Rowan, A. E. & Kouwer, P. H. J. Crosslinking of fibrous hydrogels. Nat. Commun. 9, 2172 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bruekers, S. M. C. et al. Fibrin-fiber architecture influences cell spreading and differentiation. Cell Adhes. Migr. 10, 495–504 (2016).

    Article  CAS  Google Scholar 

  55. Jaspers, M. et al. Nonlinear mechanics of hybrid polymer networks that mimic the complex mechanical environment of cells. Nat. Commun. 8, 15478 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kumari, J. et al. Conductive polyisocyanide hydrogels inhibit fibrosis and promote myogenesis. ACS Appl. Bio. Mater. 7, 3258–3270 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, W. & Kouwer, P. H. J. Combining mechanical tuneability with function: biomimetic fibrous hydrogels with nanoparticle crosslinkers. Adv. Funct. Mater. 31, 2105713 (2021).

    Article  CAS  Google Scholar 

  58. Chen, W., Kumari, J., Yuan, H., Yang, F. & Kouwer, P. H. J. Toward tissue‐like material properties: inducing in situ adaptive behavior in fibrous hydrogels. Adv. Mater. 34, 2202057 (2022).

    Article  CAS  Google Scholar 

  59. Chen, W., Zhang, Y., Kumari, J., Engelkamp, H. & Kouwer, P. H. J. Magnetic stiffening in 3D cell culture matrices. Nano Lett. 21, 6740–6747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, W., Zhang, Z. & Kouwer, P. H. J. Magnetically driven hierarchical alignment in biomimetic fibrous hydrogels. Small 18, 2203033 (2022).

    Article  CAS  Google Scholar 

  61. Gudde, A. N. et al. Vaginal fibroblast behavior as a function of stiffness changes in a polyisocyanide hydrogel for prolapse repair. ACS Appl. Bio. Mater. 6, 3759–3767 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gudde, A. N., Van Velthoven, M. J. J., Roovers, J.-P. W. R., Kouwer, P. H. J. & Guler, Z. Polyisocyanides as a substrate to trigger vaginal fibroblast functioning in an in vitro model for prolapse repair. Biomater. Adv. 141, 213104 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, Z. et al. Chemically defined organoid culture system for cholangiocyte differentiation. Adv. Healthc. Mater. 13, 2401511 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nguyen-Ngoc, K.-V. et al. in Tissue Morphogenesis Vol. 1189 (ed. Nelson, C. M.) 135–162 (Springer, 2015).

  65. Zhang, Z. et al. TempEasy 3D hydrogel coculture system provides mechanistic insights into prostate cancer bone metastasis. ACS Appl. Mater. Interfaces 16, 25773–25787 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely mourn the recent loss of R.J.M. Nolte and express our heartfelt gratitude for his instrumental contributions to the field of PIC polymers. We thank A. E. Rowan and all others who contributed to the development of PIC hydrogels, and W. Bonger for repeating the rheology experiments. In addition, the authors gratefully acknowledge the funding support from the National Key Research and Development Program of China (2023YFF1205500, H.Y.), the National Natural Science Foundation of China (32471368, H.Y; 32201097, K.L.), the Excellent Young Scientist Fund of the Natural Science Foundation of Hebei Province (B2022202027, H.Y.), the Shenzhen International Science and Technology Cooperation Project (grant no. GJHZ20240218112602004, K.L.), the Mainland–Hong Kong Joint Funding Scheme (grant no. 2023YFE0210500, K.L.), the Fonds Wetenschappelijk Onderzoek (12A2423N, H.Y.) and the funding from Dutch Organization for knowledge and innovation in health, healthcare and well-being (ZonMw, 01142052310003, TOP grant 91218030, P.H.J.K.), the Dutch Research Council (NWO, Demonstrator 19358, Take Off I 20941, P.H.J.K.). Figures were created with support of BioRender.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to developing and writing the protocols in this manuscript. H.Y. and K.L. initiated the project, and drafted and edited the manuscript. P.H.J.K. supervised the project and edited the manuscript. H.Y. and K.L. contributed equally to this manuscript.

Corresponding authors

Correspondence to Hongbo Yuan, Kaizheng Liu or Paul H. J. Kouwer.

Ethics declarations

Competing interests

H.Y., K.L. and P.H.J.K. have commercialized PIC polymers, which are available at SBMatrices B.V. (worldwide, under the commercial name Fybrix,) and at GTI Shenzhen Ltd. (in China). The other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Kouwer, P. H. J. et al. Nature 493, 651–655 (2013): https://doi.org/10.1038/nature11839

Yuan, H. et al. Proc. Natl Acad. Sci. USA 120, e2216934120 (2023): https://doi.org/10.1073/pnas.2216934120

Van Velthoven, M. J. J. et al. Adv. Healthc. Mater. 12, 2301109 (2023): https://doi.org/10.1002/adhm.202301109

Zhang, Y. et al. Adv. Sci. 7, 2001797 (2020): https://doi.org/10.1002/advs.202001797

Liu, K. et al. Biomacromolecules 20, 826–834 (2019): https://doi.org/10.1021/acs.biomac.8b01445

Supplementary information

Supplementary Video 1

Overview of PIC preparation and cell encapsulation.

Supplementary Video 2

Overview of the procedure of fluorescence labeling PIC, matrix and cell encapsulation.

Supplementary Video 3

Overview of the cell retrieval procedure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Liu, K., van Velthoven, M.J.J. et al. Fibrous polyisocyanide hydrogels for 3D cell culture applications. Nat Protoc 20, 3339–3360 (2025). https://doi.org/10.1038/s41596-025-01159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-025-01159-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing