Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Thioether-mediated protein ubiquitination in constructing affinity- and activity-based ubiquitinated protein probes

Abstract

Protein ubiquitination, a critical regulatory mechanism and post-translational modification in eukaryotic cells, involves the formation of an isopeptide bond between ubiquitin (Ub) and targeted proteins. Despite extensive investigation into the roles played by protein ubiquitination in various cellular processes, many questions remain to be answered. A major challenge in the biochemical and biophysical characterization of protein ubiquitination, along with its associated pathways and protein players, lies in the generation of ubiquitinated proteins, either in mono- or poly-ubiquitinated forms. Enzymatic and chemical strategies have been reported to address this challenge; however, there are still unmet needs for the facile generation of ubiquitinated proteins in the quantity and homogeneity required to precisely decipher the role of various protein-specific ubiquitination events. In this protocol, we provide the ubiquitin research community with a chemical ubiquitination method enabled by an α-bromoketone-mediated ligation strategy. This method can be readily adapted to generate mono- and poly-ubiquitinated proteins of interest through a cysteine introduced to replace the target lysine, with the native cysteines mutated to serine. Using proliferating cell nuclear antigen (PCNA) as an example, we present herein a detailed protocol for generating di- and tri-Ub PCNA that contains a photo-activatable cross-linker for capturing potential reader proteins. The thioether-mediated protein ligation and purification typically takes 2–3 weeks. An important feature of our ubiquitination strategy is the ability to introduce a Michael-acceptor warhead to the linkage, allowing the generation of activity-based probes for deubiquitinases and ubiquitin-carrying enzymes such as HECT and RBR E3 ubiquitin ligases and E2 enzymes. As such, our method is highly versatile and can be readily adapted to investigate the readers and erasers of many proteins that undergo reversible ubiquitination.

Key points

  • Studying the role of protein ubiquitination requires well-characterized ubiquitinated protein derivatives. This protocol describes a semisynthetic chemical strategy that uses an α-bromoketone non-hydrolyzable linker (NHL) to connect ubiquitin to proteins of interest (POI).

  • An NHL variant containing a Michael acceptor can be used to trap deubiquitinases (DUBs) and ubiquitin-carrying enzymes. This protocol describes how to prepare the NHL and starting materials and perform reactions with POIs and ubiquitin species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical methods for PCNA ubiquitination.
Fig. 2: Synthesis of the diUb building block.
Fig. 3: Generation of pBpa-triUb-PCNA probe.
Fig. 4: TriUb-PCNA photo-activatable probe and cross-linking.
Fig. 5: Scheme for the synthesis of NHL.
Fig. 6: Scheme for the synthesis of MAL.

Similar content being viewed by others

Data availability

The data supporting the findings of this work are provided within the paper. The raw data and related files not included in the current paper can be requested from the corresponding author. Source data are provided with this paper.

References

  1. Swatek, K. N. & Komander, D. Ubiquitin modifications. Cell Res. 26, 399–422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yau, R. & Rape, M. The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18, 579–586 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Clague, M. J., Heride, C. & Urbé, S. The demographics of the ubiquitin system. Trends Cell Biol. 25, 417–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Deol, K. K., Lorenz, S. & Strieter, E. R. Enzymatic logic of ubiquitin chain assembly. Front. Physiol. 10, 835 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sun, M. & Zhang, X. Current methodologies in protein ubiquitination characterization: from ubiquitinated protein to ubiquitin chain architecture. Cell Biosci. 12, 126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Faggiano, S. & Pastore, A. The challenge of producing ubiquitinated proteins for structural studies. Cells 3, 639–656 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chatterjee, C., McGinty, R. K., Pellois, J. P. & Muir, T. W. Auxiliary-mediated site-specific peptide ubiquitylation. Angew. Chem. Int. Ed. Engl. 46, 2814–2818 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Yang, R., Pasunooti, K. K., Li, F., Liu, X. W. & Liu, C. F. Dual native chemical ligation at lysine. J. Am. Chem. Soc. 131, 13592–13593 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Ajish Kumar, K. S., Haj-Yahya, M., Olschewski, D., Lashuel, H. A. & Brik, A. Highly efficient and chemoselective peptide ubiquitylation. Angew. Chem. Int. Ed. Engl. 48, 8090–8094 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Haj-Yahya, M., Ajish Kumar, K. S., Erlich, L. A. & Brik, A. Protecting group variations of delta-mercaptolysine useful in chemical ubiquitylation. Biopolymers 94, 504–510 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Virdee, S. et al. Traceless and site-specific ubiquitination of recombinant proteins. J. Am. Chem. Soc. 133, 10708–10711 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weller, C. E., Huang, W. & Chatterjee, C. Facile synthesis of native and protease-resistant ubiquitylated peptides. Chembiochem 15, 1263–1267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weller, C. E. et al. Aromatic thiol-mediated cleavage of N-O bonds enables chemical ubiquitylation of folded proteins. Nat. Commun. 7, 12979 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pan, M. et al. Quasi-racemic X-ray structures of K27-linked ubiquitin chains prepared by total chemical synthesis. J. Am. Chem. Soc. 138, 7429–7435 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Burlina, F. et al. Auxiliary-assisted chemical ubiquitylation of NEMO and linear extension by HOIP. Commun. Chem. 2, 111 (2019).

    Article  PubMed  Google Scholar 

  18. Sun, H. et al. Diverse fate of ubiquitin chain moieties: the proximal is degraded with the target, and the distal protects the proximal from removal and recycles. Proc. Natl. Acad. Sci. Usa. 116, 7805–7812 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Layfield, R. et al. Chemically synthesized ubiquitin extension proteins detect distinct catalytic capacities of deubiquitinating enzymes. Anal. Biochem. 274, 40–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Kumar, K. S., Spasser, L., Ohayon, S., Erlich, L. A. & Brik, A. Expeditious chemical synthesis of ubiquitinated peptides employing orthogonal protection and native chemical ligation. Bioconjug. Chem. 22, 137–143 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Cardella, D., Tsai, Y.-H. & Luk, L. Y. P. Towards the use of an amino acid cleavable linker for solid-phase chemical synthesis of peptides and proteins. Org. Biomol. Chem. 21, 966–969 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Virdee, S., Ye, Y., Nguyen, D. P., Komander, D. & Chin, J. W. Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat. Chem. Biol. 6, 750–757 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Castañeda, C. et al. Nonenzymatic assembly of natural polyubiquitin chains of any linkage composition and isotopic labeling scheme. J. Am. Chem. Soc. 133, 17855–17868 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yin, L., Krantz, B., Russell, N. S., Deshpande, S. & Wilkinson, K. D. Nonhydrolyzable diubiquitin analogues are inhibitors of ubiquitin conjugation and deconjugation. Biochemistry 39, 10001–10010 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Lewis, Y. E., Abeywardana, T., Lin, Y. H., Galesic, A. & Pratt, M. R. Synthesis of a bis-thio-acetone (BTA) analogue of the lysine isopeptide bond and its application to investigate the effects of ubiquitination and SUMOylation on α-synuclein aggregation and toxicity. ACS Chem. Biol. 11, 931–942 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, K. et al. Chemical protein ubiquitylation with preservation of the native cysteine residues. Chembiochem 17, 995–998 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morgan, M. T. et al. Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science 351, 725–728 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, J., Ai, Y., Wang, J., Haracska, L. & Zhuang, Z. Chemically ubiquitylated PCNA as a probe for eukaryotic translesion DNA synthesis. Nat. Chem. Biol. 6, 270–272 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Chatterjee, C., McGinty, R. K., Fierz, B. & Muir, T. W. Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation. Nat. Chem. Biol. 6, 267–269 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Meier, F. et al. Semisynthetic, site-specific ubiquitin modification of alpha-synuclein reveals differential effects on aggregation. J. Am. Chem. Soc. 134, 5468–5471 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hemantha, H. P. et al. Nonenzymatic polyubiquitination of expressed proteins. J. Am. Chem. Soc. 136, 2665–2673 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Yang, K., Gong, P., Gokhale, P. & Zhuang, Z. Chemical protein polyubiquitination reveals the role of a noncanonical polyubiquitin chain in DNA damage tolerance. ACS Chem. Biol. 9, 1685–1691 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Weikart, N. D. & Mootz, H. D. Generation of site-specific and enzymatically stable conjugates of recombinant proteins with ubiquitin-like modifiers by the Cu(I)-catalyzed azide-alkyne cycloaddition. Chembiochem 11, 774–777 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Eger, S., Scheffner, M., Marx, A. & Rubini, M. Synthesis of defined ubiquitin dimers. J. Am. Chem. Soc. 132, 16337–16339 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Eger, S. et al. Generation of a mono-ubiquitinated PCNA mimic by click chemistry. Chembiochem 12, 2807–2812 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Trang, V. H. et al. Nonenzymatic polymerization of ubiquitin: single-step synthesis and isolation of discrete ubiquitin oligomers. Angew. Chem. Int. Ed. Engl. 51, 13085–13088 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Valkevich, E. M. et al. Forging isopeptide bonds using thiol-ene chemistry: site-specific coupling of ubiquitin molecules for studying the activity of isopeptidases. J. Am. Chem. Soc. 134, 6916–6919 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shanmugham, A. et al. Nonhydrolyzable ubiquitin-isopeptide isosteres as deubiquitinating enzyme probes. J. Am. Chem. Soc. 132, 8834–8835 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Stanley, M. & Virdee, S. Genetically directed production of recombinant, isosteric and nonhydrolysable ubiquitin conjugates. Chembiochem 17, 1472–1480 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh, S. K. et al. Synthetic uncleavable ubiquitinated proteins dissect proteasome deubiquitination and degradation, and highlight distinctive fate of tetraubiquitin. J. Am. Chem. Soc. 138, 16004–16015 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Bhat, S. et al. Hydrazide mimics for protein lysine acylation to assess nucleosome dynamics and deubiquitinase action. J. Am. Chem. Soc. 140, 9478–9485 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dixon, E. K., Castañeda, C. A., Kashyap, T. R., Wang, Y. & Fushman, D. Nonenzymatic assembly of branched polyubiquitin chains for structural and biochemical studies. Bioorg. Med. Chem. 21, 3421–3429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meledin, R., Mali, S. M., Singh, S. K. & Brik, A. Protein ubiquitination via dehydroalanine: development and insights into the diastereoselective 1,4-addition step. Org. Biomol. Chem. 14, 4817–4823 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Baumann, A. L. et al. Chemically induced vinylphosphonothiolate electrophiles for thiol-thiol bioconjugations. J. Am. Chem. Soc. 142, 9544–9552 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Fottner, M. et al. Site-specific ubiquitylation and SUMOylation using genetic-code expansion and sortase. Nat. Chem. Biol. 15, 276–284 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Raniszewski, N. R., Beyer, J. N., Noel, M. I. & Burslem, G. M. Sortase mediated protein ubiquitination with defined chain length and topology. RSC Chem. Biol. 5, 321–327 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chu, G. C. et al. Cysteine-aminoethylation-assisted chemical ubiquitination of recombinant histones. J. Am. Chem. Soc. 141, 3654–3663 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Zheng, Q. et al. An E1-catalyzed chemoenzymatic strategy to isopeptide-N-ethylated deubiquitylase-resistant ubiquitin probes. Angew. Chem. Int. Ed. Engl. 59, 13496–13501 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Gui, W., Davidson, G. A. & Zhuang, Z. Chemical methods for protein site-specific ubiquitination. RSC Chem. Biol. 2, 450–467 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kriegesmann, J. & Brik, A. Synthesis of ubiquitinated proteins for biochemical and functional analysis. Chem. Sci. 14, 10025–10040 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McGinty, R. K., Kim, J., Chatterjee, C., Roeder, R. G. & Muir, T. W. Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453, 812–816 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hejjaoui, M., Haj-Yahya, M., Kumar, K. S., Brik, A. & Lashuel, H. A. Towards elucidation of the role of ubiquitination in the pathogenesis of Parkinson’s disease with semisynthetic ubiquitinated α-synuclein. Angew. Chem. Int. Ed. Engl. 50, 405–409 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. González-Magaña, A. & Blanco, F. J. Human PCNA structure, function and interactions. Biomolecules 10, 570 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Powers, K. T. & Washington, M. T. Eukaryotic translesion synthesis: choosing the right tool for the job. DNA Repair (Amst.) 71, 127–134 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Xu, X. et al. Error-free DNA-damage tolerance in Saccharomyces cerevisiae. Mutat. Res. Rev. Mutat. Res. 764, 43–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Das-Bradoo, S. et al. Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107. Nat. Cell Biol. 12, 74–79 (2010). sup pp 1–20.

    Article  CAS  PubMed  Google Scholar 

  57. Yuan, J., Ghosal, G. & Chen, J. The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress. Mol. Cell 47, 410–421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weston, R., Peeters, H. & Ahel, D. ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response. Genes Dev. 26, 1558–1572 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ciccia, A. et al. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol. Cell 47, 396–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Saugar, I., Parker, J. L., Zhao, S. & Ulrich, H. D. The genome maintenance factor Mgs1 is targeted to sites of replication stress by ubiquitylated PCNA. Nucleic Acids Res. 40, 245–257 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Gong, P. et al. Activity-based ubiquitin-protein probes reveal target protein specificity of deubiquitinating enzymes. Chem. Sci. 9, 7859–7865 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shen, S., Davidson, G. A., Yang, K. & Zhuang, Z. Photo-activatable Ub-PCNA probes reveal new structural features of the Saccharomyces cerevisiae Poleta/PCNA complex. Nucleic Acids Res. 49, 9374–9388 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, G., Liang, Q., Gong, P., Tencer, A. H. & Zhuang, Z. Activity-based diubiquitin probes for elucidating the linkage specificity of deubiquitinating enzymes. Chem. Commun. 50, 216–218 (2014).

    Article  CAS  Google Scholar 

  64. Paudel, P. et al. Crystal structure and activity-based labeling reveal the mechanisms for linkage-specific substrate recognition by deubiquitinase USP9X. Proc. Natl. Acad. Sci. Usa. 116, 7288–7297 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Paudel, P., Banos, C. M., Liu, Y. & Zhuang, Z. Triubiquitin probes for identification of reader and eraser proteins of branched polyubiquitin chains. ACS Chem. Biol. 18, 837–847 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Komander, D., Clague, M. J. & Urbé, S. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550–563 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Bello, A. I. et al. Deubiquitinases in neurodegeneration. Cells 11, 556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. He, M. et al. The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci. 6, 62 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hehl, L. A. et al. Structural snapshots along K48-linked ubiquitin chain formation by the HECT E3 UBR5. Nat. Chem. Biol. 20, 190–200 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. Horn-Ghetko, D. et al. Ubiquitin ligation to F-box protein targets by SCF-RBR E3-E3 super-assembly. Nature 590, 671–676 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McGouran, J. F., Gaertner, S. R., Altun, M., Kramer, H. B. & Kessler, B. M. Deubiquitinating enzyme specificity for ubiquitin chain topology profiled by di-ubiquitin activity probes. Chem. Biol. 20, 1447–1455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Haj-Yahya, N. et al. Dehydroalanine-based diubiquitin activity probes. Org. Lett. 16, 540–543 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Mulder, M. P., El Oualid, F., ter Beek, J. & Ovaa, H. A native chemical ligation handle that enables the synthesis of advanced activity-based probes: diubiquitin as a case study. Chembiochem 15, 946–949 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Meledin, R., Mali, S. M., Kleifeld, O. & Brik, A. Activity-based probes developed by applying a sequential dehydroalanine formation strategy to expressed proteins reveal a potential α-globin-modulating deubiquitinase. Angew. Chem. Int. Ed. Engl. 57, 5645–5649 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Pao, K. C. et al. Probes of ubiquitin E3 ligases enable systematic dissection of parkin activation. Nat. Chem. Biol. 12, 324–331 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pao, K. C. et al. Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Nature 556, 381–385 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Xu, L. et al. An activity-based probe developed by a sequential dehydroalanine formation strategy targets HECT E3 ubiquitin ligases. Chem. Commun. (Camb.) 55, 7109–7112 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Nguyen, D. P. et al. Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J. Am. Chem. Soc. 136, 2240–2243 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chojnacki, M. et al. Polyubiquitin-photoactivatable crosslinking reagents for mapping ubiquitin interactome identify Rpn1 as a proteasome ubiquitin-associating subunit. Cell Chem. Biol. 24, 443–457.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liang, J. et al. Chemical synthesis of diubiquitin-based photoaffinity probes for selectively profiling ubiquitin-binding proteins. Angew. Chem. Int. Ed. Engl. 56, 2744–2748 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Tan, X. D. et al. A diubiquitin-based photoaffinity probe for profiling K27-linkage targeting deubiquitinases. Chem. Commun. (Camb.) 53, 10208–10211 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Mathur, S., Fletcher, A. J., Branigan, E., Hay, R. T. & Virdee, S. Photocrosslinking activity-based probes for ubiquitin RING E3 ligases. Cell Chem. Biol. 27, 74–82.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fan, L., Bi, T., Wang, L. & Xiao, W. DNA-damage tolerance through PCNA ubiquitination and sumoylation. Biochem. J. 477, 2655–2677 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Choe, K. N. & Moldovan, G.-L. Forging ahead through darkness: PCNA, still the principal conductor at the replication fork. Mol. Cell 65, 380–392 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zheng, Q. et al. A bifunctional molecule-assisted synthesis of mimics for use in probing the ubiquitination system. Nat. Protoc. 18, 530–554 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Liwocha, J. et al. Mechanism of millisecond Lys48-linked poly-ubiquitin chain formation by cullin-RING ligases. Nat. Struct. Mol. Biol. 31, 378–389 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, J. et al. Cullin-RING ligases employ geometrically optimized catalytic partners for substrate targeting. Mol. Cell 84, 1304–1320.e16 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R01GM129468, R35GM152011 and R21AG077189 to Z.Z. and National Institute of General Medical Sciences grants P30 GM110758 and P20 GM104316.

Author information

Authors and Affiliations

Authors

Contributions

G.A.D. performed the ubiquitin NHL modifications and ligation to PCNA. Z.M. performed the ubiquitin MAL modifications. A.R.S. performed the synthesis of the linker molecules. G.A.D., Z.M., A.R.S. and Z.Z. wrote the paper.

Corresponding author

Correspondence to Zhihao Zhuang.

Ethics declarations

Competing interests

Z.Z. has received a patent (US 9,605,297 B2) on the thioether linker-mediated protein ligation method.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Li, G. et al. Chem. Commun. 50, 216–218 (2014): https://doi.org/10.1039/c3cc47382a

Yang, K. et al. ChemBioChem 17, 995–998 (2016): https://doi.org/10.1002/cbic.201600042

Gong, P. et al. Chem. Sci. 9, 7859–7865 (2018): https://doi.org/10.1039/c8sc01573b

Paudel, P. et al. Proc. Natl. Acad. Sci. USA 116, 7288–7297 (2019): https://doi.org/10.1073/pnas.1815027116

Shen, S. et al. Nucleic Acids Res. 49, 9374–9388 (2021): https://doi.org/10.1093/nar/gkab646

Supplementary information

Supplementary Information

Supplementary Figures 1–7

Source data

Source Data Figs. 2–4

Unprocessed gels

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidson, G.A., Moafian, Z., Sensi, A.R. et al. Thioether-mediated protein ubiquitination in constructing affinity- and activity-based ubiquitinated protein probes. Nat Protoc 20, 3239–3269 (2025). https://doi.org/10.1038/s41596-025-01162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-025-01162-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing