Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Fluorescence-activated particle sorting for condensate purification

Abstract

Condensates are receiving increasing attention because of their ability to organize subcellular space. In eukaryotes, nuclear condensates include nucleoli and paraspeckles, and cytoplasmic ones include P-bodies (PBs) and stress granules. One approach to investigate condensate biology is through analyzing their protein and RNA content. However, purifying condensates remains a challenge because of their densities being similar to various other organelles, and the absence of protein markers accumulating exclusively in them. These limitations, combined with the generally low number of condensates per cell, necessitate new approaches to tackle their purification. Here, we present a protocol describing fluorescence-activated particle sorting (FAPS) for purifying condensates. In brief, FAPS involves fluorescently labeling condensates to identify and isolate them from other cellular components via sorting. In this Protocol, we focus on PB purification, quality control and downstream characterization of PB protein and RNA contents. Although originally developed to purify PBs from human cell lines, FAPS can be adapted to various condensates across model organisms. The procedure requires knowledge in basic cell culture, molecular biology and flow cytometry and access to a fluorescence-activated cell sorter with sufficient sensitivity. It requires ~25–30 d, including a hands-on period of 15 d, to complete. In summary, FAPS allows the characterization of the content of diverse condensates across cell types and organisms.

Key points

  • FAPS is a sorting-based method to purify fluorescently labeled condensates from a cellular lysate by taking advantage of simple sorting controls. This allows the investigation of condensate biology through characterization of their nucleic acid and protein contents.

  • FAPS overcomes limitations of approaches used in yeast, which rely on a combination of cross-linking, fractionation and affinity purification of condensate-enriched proteins, allowing the purification of condensates from mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of FAPS.
Fig. 2: Cell lines and lysates used in FAPS.
Fig. 3: Particle sorting example.
Fig. 4: Example of sample organization across a FAPS pipeline.
Fig. 5: Mass spectrometry analysis of the protein content of PBs.
Fig. 6: Analysis of the RNA content of PBs.

Similar content being viewed by others

Data availability

The raw data presented in this Protocol are available in the supporting primary research papers. Raw RNA-seq data of PBs purified across the cell cycle (used in Fig. 6) are available at ArrayExpress under the accession number E-MTAB-12923. Further details are available from the corresponding author upon request.

References

  1. Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Antifeeva, I. A. et al. Liquid-liquid phase separation as an organizing principle of intracellular space: overview of the evolution of the cell compartmentalization concept. Cell. Mol. Life Sci. 79, 251 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Holehouse, A. S. & Alberti, S. Molecular determinants of condensate composition. Mol. Cell 85, 290–308 (2025).

    Article  CAS  PubMed  Google Scholar 

  6. Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Riback, J. A. et al. Composition-dependent thermodynamics of intracellular phase separation. Nature 581, 209–214 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garcia-Jove Navarro, M. et al. RNA is a critical element for the sizing and the composition of phase-separated RNA-protein condensates. Nat. Commun. 10, 3230 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wadsworth, G. M. et al. RNA-driven phase transitions in biomolecular condensates. Mol. Cell 84, 3692–3705 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Hirose, T., Ninomiya, K., Nakagawa, S. & Yamazaki, T. A guide to membraneless organelles and their various roles in gene regulation. Nat. Rev. Mol. Cell Biol. 24, 288–304 (2022).

    Article  PubMed  Google Scholar 

  11. Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Galganski, L., Urbanek, M. O. & Krzyzosiak, W. J. Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res. 45, 10350–10368 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ivanov, P., Kedersha, N. & Anderson, P. Stress granules and processing bodies in translational control. Cold Spring Harb. Perspect. Biol. 11, a032813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pamula, M. C. & Lehmann, R. How germ granules promote germ cell fate. Nat. Rev. Genet. 25, 803–821 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Luo, Y., Na, Z. & Slavoff, S. A. P-bodies: composition, properties, and functions. Biochemistry 57, 2424–2431 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Standart, N. & Weil, D. P-bodies: cytosolic droplets for coordinated mRNA storage. Trends Genet. 34, 612–626 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Conduit, P. T., Wainman, A. & Raff, J. W. Centrosome function and assembly in animal cells. Nat. Rev. Mol. Cell Biol. 16, 611–624 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Bussi, C. et al. Stress granules plug and stabilize damaged endolysosomal membranes. Nature 623, 1062–1069 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirose, T. et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol. Biol. Cell 25, 169–183 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y. et al. Genome-wide screening of NEAT1 regulators reveals cross-regulation between paraspeckles and mitochondria. Nat. Cell Biol. 20, 1145–1158 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Crawford, R. A., Eastham, M., Pool, M. R. & Ashe, M. P. Orchestrated centers for the production of proteins or “translation factories”. Wiley Interdiscip. Rev. RNA 15, e1867 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Morales-Polanco, F. et al. Core Fermentation (CoFe) granules focus coordinated glycolytic mRNA localization and translation to fuel glucose fermentation. iScience 24, 102069 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chouaib, R. et al. A dual protein-mRNA localization screen reveals compartmentalized translation and widespread co-translational RNA targeting. Dev. Cell 54, 773–791.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Putnam, A., Thomas, L. & Seydoux, G. RNA granules: functional compartments or incidental condensates? Genes Dev. 37, 354–376 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hubstenberger, A. et al. P-body purification reveals the condensation of repressed mRNA regulons. Mol. Cell 68, 144–157.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Sheth, U. & Parker, R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805–808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bashkirov, V. I., Scherthan, H., Solinger, J. A., Beurstedde, J. M. & Heyer, W. D. A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J. Cell Biol. 136, 761–773 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aizer, A. et al. Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage. J. Cell Sci. 127, 4443–4456 (2014).

    CAS  PubMed  Google Scholar 

  29. Safieddine, A. et al. Cell-cycle-dependent mRNA localization in P-bodies. Mol. Cell 84, 4191–4208.e7 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Blake, L. A., Watkins, L., Liu, Y., Inoue, T. & Wu, B. A rapid inducible RNA decay system reveals fast mRNA decay in P-bodies. Nat. Commun. 15, 2720 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ayache, J. et al. P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. Mol. Biol. Cell 26, 2579–2595 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ernoult-Lange, M. et al. Multiple binding of repressed mRNAs by the P-body protein Rck/p54. RNA 18, 1702–1715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weidner, J., Wang, C., Prescianotto-Baschong, C., Estrada, A. F. & Spang, A. The polysome-associated proteins Scp160 and Bfr1 prevent P body formation under normal growth conditions. J. Cell Sci. 127, 1992–2004 (2014).

    CAS  PubMed  Google Scholar 

  34. Wang, C. et al. Context-dependent deposition and regulation of mRNAs in P-bodies. eLife 7, e29815 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kershaw, C. J. et al. Integrated multi-omics reveals common properties underlying stress granule and P-body formation. RNA Biol. 18, 655–673 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xing, W., Muhlrad, D., Parker, R. & Rosen, M. K. A quantitative inventory of yeast P body proteins reveals principles of composition and specificity. eLife 9, e56525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matheny, T., Rao, B. S. & Parker, R. Transcriptome-wide comparison of stress granules and P-bodies reveals that translation plays a major role in RNA partitioning. Mol. Cell. Biol. 39, e00313-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim, C. et al. Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins. Nat. Commun. 14, 1708 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lester, E. et al. Tau aggregates are RNA-protein assemblies that mislocalize multiple nuclear speckle components. Neuron 109, 1675–1691.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cardona, A. H. et al. Self-demixing of mRNA copies buffers mRNA:mRNA and mRNA:regulator stoichiometries. Cell 186, 4310–4324.e23 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Kurusu, R. et al. Integrated proteomics identifies p62-dependent selective autophagy of the supramolecular vault complex. Dev. Cell 58, 1189–1205.e11 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Courel, M. et al. GC content shapes mRNA storage and decay in human cells. eLife 8, e49708 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsanov, N. et al. smiFISH and FISH-quant—a flexible single RNA detection approach with super-resolution capability. Nucleic Acids Res. 44, e165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kwon, Y., Kim, C. & Choi, G. Isolation of phytochrome B photobodies. Methods Mol. Biol. 2795, 113–122 (2024).

    Article  PubMed  Google Scholar 

  46. Lee, K. P. et al. The m6A reader ECT1 drives mRNA sequestration to dampen salicylic acid-dependent stress responses in Arabidopsis. Plant Cell 36, 746–763 (2024).

    Article  CAS  PubMed  Google Scholar 

  47. Esposito, M. et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nat. Cell Biol. 23, 257–267 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reber, S. et al. The phase separation-dependent FUS interactome reveals nuclear and cytoplasmic function of liquid-liquid phase separation. Nucleic Acids Res. 49, 7713–7731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kami, D. et al. A novel mRNA decay inhibitor abolishes pathophysiological cellular transition. Cell Death Discov. 8, 278 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takada, S., Komatsu, M. & Morishita, H. Method to purify phase-separated p62 bodies using fluorescence-activated particle sorting. Methods Mol. Biol. 2845, 191–196 (2024).

    Article  PubMed  Google Scholar 

  51. Horste, E. L. et al. Subcytoplasmic location of translation controls protein output. Mol. Cell 83, 4509–4523.e11 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang, J. et al. Functional characterization of RNA profiles in processing bodies of human embryonic stem cells and mesodermal cells. Preprint at bioRxiv https://doi.org/10.1101/2023.11.22.568232 (2023).

  53. Shan, T. et al. m6A modification negatively regulates translation by switching mRNA from polysome to P-body via IGF2BP3. Mol. Cell 83, 4494–4508.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Kodali, S. et al. RNA sequestration in P-bodies sustains myeloid leukaemia. Nat. Cell Biol. 26, 1745–1758 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Geiger, T., Wehner, A., Schaab, C., Cox, J. & Mann, M. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol. Cell. Proteom. 11, M111.014050 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

A.S. was supported by the Agence Nationale pour la Recherche (ANR) grant no. ANR-19-CE12-0024-01 and INCa grant 2022-082. The work was supported by the grants ANR-19-CE12-0024 and INCa 2022-082 (to D.W.). We thank M. Bénard, M.-N. Benassy and M. Ernoult-Lange for critical reading of the manuscript and A. Cornu for discussions on particle sorting.

Author information

Authors and Affiliations

Authors

Contributions

A.S. and D.W. conceptualized the study. A.S. and A.M.G. set up the sorting. D.W. acquired funding. A.S. wrote the original draft. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Adham Safieddine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Safieddine, A. et al. Mol. Cell 84, 4191–4208.e7 (2024): https://doi.org/10.1016/j.molcel.2024.09.011

Hubstenberger, A. et al. Mol. Cell 68, 144–157.e5 (2017): https://doi.org/10.1016/j.molcel.2017.09.003

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munier Godebert, A., Weil, D. & Safieddine, A. Fluorescence-activated particle sorting for condensate purification. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41596-025-01216-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing