Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Targeted isolation of H2-dependent methylotrophic methanogens by a cocktail approach

Abstract

Methanogenic archaea play a crucial role in the global carbon cycle and in climate change. Recent metagenomic sequencing has revealed a considerable number of (putative) H2-dependent methylotrophic methanogens (HMMs) across the archaeal tree and in diverse environments. Traditional isolation methods, such as dilution-to-extinction and roll-tube techniques, fail to cultivate fastidious HMMs. Here, we describe a four-stage isolation strategy designed to selectively isolate HMMs by using a flexible combination of methods to systematically reduce microbial complexity to a pure culture. In the initial stage, the growth conditions for the target HMM were optimized through closed-batch cultivation encompassing >50 conditions. Second, HMM-containing cultures were serially diluted in 96-well plates combined with substrate limitation to eliminate non-target archaea. In stage 3, the bacterial diversity in the culture was further decreased to a single bacterium by treatment with antibiotics and lysozyme. Finally, a last bacterial contaminant was removed by repeated addition of antibiotic mixtures and successive dilution transfers, leading to the successful isolation of the first pure culture of Methanosuratincola petrocarbonis LWZ-6, an HMM of the phylum Thermoproteota. This protocol also describes molecular methods, including 16S rRNA gene amplicon sequencing, metagenome sequencing and quantitative PCR, to track microbial community shifts and assess the growth advantage of the target HMM, enabling monitoring of the stepwise elimination of non-target microorganisms and ultimately confirming the purification of the target HMM. The duration of the protocol will vary for different HMMs depending on their substrate utilization, growth rate and method selection.

Key points

  • This protocol details a four-stage strategy to selectively isolate H2-dependent methylotrophic methanogens by creating a relative growth advantage of target microorganism over different non-target microbial groups in each stage to eliminate non-target microorganisms.

  • This protocol advances traditional isolation methods to enable the culture of fastidious HMMs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow chart of the closed-batch cultivation process (stage 1) for primary enrichment of target HMMs.
Fig. 2: Flow chart of the non-target archaea elimination process (stage 2).
Fig. 3: Flow chart illustrating the bacterial community simplification using antibiotic and lysozyme treatment (stage 3).
Fig. 4: Flow chart of the process used for purification of the target HMM and elimination of the last bacterial contaminant (stage 4).
Fig. 5: The pre-reduced medium in serum bottles.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research paper31.

References

  1. Lyu, Z., Shao, N., Akinyemi, T. & Whitman, W. B. Methanogenesis. Curr. Biol. 28, R727–R732 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, Z. et al. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. Nature 601, 257–262 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, Y. & Whitman, W. B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci. 1125, 171–189 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Mayumi, D. et al. Methane production from coal by a single methanogen. Science 354, 222–225 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Söllinger, A. & Urich, T. Methylotrophic methanogens everywhere—physiology and ecology of novel players in global methane cycling. Biochem. Soc. Trans. 47, 1895–1907 (2019).

    Article  PubMed  Google Scholar 

  7. Sprenger, W. W., van Belzen, M. C., Rosenberg, J., Hackstein, J. H. & Keltjens, J. T. Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int. J. Syst. Evol. Microbiol. 50, 1989–1999 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Dridi, B., Fardeau, M.-L., Ollivier, B., Raoult, D. & Drancourt, M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int. J. Syst. Evol. Microbiol. 62, 1902–1907 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Sorokin, D. Y. et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol. 2, 17081 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Söllinger, A. et al. Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol. Ecol. 92, fiv149 (2016).

    Article  PubMed  Google Scholar 

  11. Borrel, G. et al. Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome. ISME J. 11, 2059–2074 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sorokin, D. Y., Merkel, A. Y. & Abbas, B. Ecology of Methanonatronarchaeia. Environ. Microbiol. 24, 5217–5229 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nobu, M. K., Narihiro, T., Kuroda, K., Mei, R. & Liu, W.-T. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J. 10, 2478–2487 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, Y. et al. A methylotrophic origin of methanogenesis and early divergence of anaerobic multicarbon alkane metabolism. Sci. Adv. 7, eabj1453 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. McKay, L. J. et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat. Microbiol. 4, 614–622 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 1, 16170 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Ou, Y.-F. et al. Expanding the phylogenetic distribution of cytochrome b-containing methanogenic archaea sheds light on the evolution of methanogenesis. ISME J. 16, 2373–2387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Borrel, G. et al. Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol. Evol. 5, 1769–1780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Borrel, G. et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat. Microbiol. 4, 603–613 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hou, J. et al. Taxonomic and carbon metabolic diversification of Bathyarchaeia during its coevolution history with early Earth surface environment. Sci. Adv. 9, eadf5069 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, Y.-F. et al. Anaerobic degradation of paraffins by thermophilic Actinobacteria under methanogenic conditions. Environ. Sci. Technol. 54, 10610–10620 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, C., Li, L., Wang, Y., Dong, X. & Zhao, F.-J. Methylotrophic methanogens and bacteria synergistically demethylate dimethylarsenate in paddy soil and alleviate rice straighthead disease. ISME J. 17, 1851–1861 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, C.-J., Pan, J., Liu, Y., Duan, C.-H. & Li, M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome 8, 94 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miller, T. L. & Wolin, M. J. Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141, 116–122 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Hanišáková, N., Vítězová, M. & Rittmann, S. K.-M. The historical development of cultivation techniques for methanogens and other strict anaerobes and their application in modern microbiology. Microorganisms 10, 412 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Borrel, G. et al. Methanomethylophilus alvi gen. nov., sp. nov., a novel hydrogenotrophic methyl-reducing methanogenic archaea of the order Methanomassiliicoccales isolated from the human gut and proposal of the novel family Methanomethylophilaceae fam. nov. Microorganisms 11, 2794 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoedt, E. C. et al. Culture-and metagenomics-enabled analyses of the Methanosphaera genus reveals their monophyletic origin and differentiation according to genome size. ISME J. 12, 2942–2953 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Eloe-Fadrosh, E. A., Ivanova, N. N., Woyke, T. & Kyrpides, N. C. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nat. Microbiol. 1, 15032 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Pace Norman, R. Mapping the tree of life: progress and prospects. Microbiol. Mol. Biol. Rev. 73, 565–576 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu, K. et al. Isolation of a methyl-reducing methanogen outside the Euryarchaeota. Nature 632, 1124–1130 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. Bräuer, S. L., Cadillo-Quiroz, H., Yashiro, E., Yavitt, J. B. & Zinder, S. H. Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442, 192–194 (2006).

    Article  PubMed  Google Scholar 

  33. Lewis, W. H., Tahon, G., Geesink, P., Sousa, D. Z. & Ettema, T. J. G. Innovations to culturing the uncultured microbial majority. Nat. Rev. Microbiol. 19, 225–240 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Berdy, B., Spoering, A. L., Ling, L. L. & Epstein, S. S. In situ cultivation of previously uncultivable microorganisms using the ichip. Nat. Protoc. 12, 2232–2242 (2017).

    Article  PubMed  Google Scholar 

  35. Ma, L. et al. Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project’s Most Wanted taxa. Proc. Natl Acad. Sci. USA 111, 9768–9773 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cross, K. L. et al. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat. Biotechnol. 37, 1314–1321 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wolfe, R. S. In Methods in Enzymology, Vol. 494 (eds Rosenzweig, A. C. & Ragsdale, S. W.) 1–22 (Academic Press, 2011).

  38. Cheng, L. et al. Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov. Int. J. Syst. Evol. Microbiol. 57, 2964–2969 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Kurth, J. M., Op den Camp, H. J. M. & Welte, C. U. Several ways one goal—methanogenesis from unconventional substrates. Appl. Microbiol. Biotechnol. 104, 6839–6854 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma. 13, 134 (2012).

    Article  CAS  Google Scholar 

  41. Cheng, L. et al. Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China. FEMS Microbiol. Lett. 285, 65–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Feldewert, C., Lang, K. & Brune, A. The hydrogen threshold of obligately methyl-reducing methanogens. FEMS Microbiol. Lett. 367, fnaa137 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wolin, E. A., Wolin, M. J. & Wolfe, R. S. Formation of methane by bacterial extracts. J. Biol. Chem. 238, 2882–2886 (1963).

    Article  CAS  PubMed  Google Scholar 

  44. Wu, K. et al. Gudongella oleilytica gen. nov., sp. nov., an aerotorelant bacterium isolated from Shengli oilfield and validation of family Tissierellaceae. Int. J. Syst. Evol. Microbiol. 70, 951–957 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Peng, J., Lü, Z., Rui, J. & Lu, Y. Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Appl. Environ. Microbiol. 74, 2894–2901 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jie Wang for the supplementary video preparation. This study was supported by the National Natural Science Foundation of China (32325002 and 92351301), the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agriculture Science (CAAS-ASTIP-2021-BIOMA-01, CAAS-CSGLCA-202301 and CAAS-ZDRW202305), the Central Public-interest Scientific Institution Basal Research Fund (Y2024PTO3) and the Sichuan Province Science and Technology Department (2024NSFTD0020).

Author information

Authors and Affiliations

Contributions

L.C. initiated this study, and L.C., K.W. and L.Z. designed the research. L.L. performed the initial cultivation. K.W., L.Z., L.L., J.L. and M.Y. performed the isolation process. L.C., K.W. and L.Z. designed the figures. L.Z. and S.M. prepared the supplementary video. K.W., L.Z., L.C. and D.Z.S wrote the manuscript with contributions from all the authors.

Corresponding author

Correspondence to Lei Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Simon Rittmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key reference

Wu, K. et al. Nature 632, 1124–1130 (2024): https://doi.org/10.1038/s41586-024-07728-y

Supplementary information

Reporting Summary

Supplementary Video 1

Preparation of sterile anoxic stock solutions

Supplementary Video 2

Preparation of pre-reduced medium in serum bottles

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Zhou, L., Liu, L. et al. Targeted isolation of H2-dependent methylotrophic methanogens by a cocktail approach. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01224-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41596-025-01224-x

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology