Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Proteome-wide profiling of S-nitrosylated proteins using the SNOTRAP probe and mass spectrometry-based detection

Abstract

Protein S-nitrosylation (SNO) is a ubiquitous post-translational modification, which regulates a broad range of functional parameters, including protein stability; enzymatic, transcriptional and ion channel activity; and cellular signal transduction. Aberrant protein SNO is associated with diverse pathophysiology, from cardiovascular, metabolic and respiratory disorders to neurodegeneration and cancer. Drugs that enhance or inhibit specific SNO reactions are being developed as potential disease-modifying therapeutics. However, owing to a lack of suitable approaches to monitor SNO proteins, which often exist at low abundance with ephemeral expression, a systematic understanding of their roles in disease remains elusive. Here we report a robust and proteome-wide approach for the exploration of the S-nitrosoproteome in human and mouse tissues, using the brain as an example, with a probe named SNOTRAP (a triphenylphosphine thioester linked to a biotin molecule through a polyethylene glycol spacer group) in conjunction with mass spectrometry (MS)-based detection. In this Protocol, we detail tissue sample preparation, synthesis of SNOTRAP under an argon atmosphere and subsequent MS-based identification and analysis of SNO proteins. In situ labeling of SNO proteins is achieved by the SNOTRAP probe, concomitantly yielding a disulfide–iminophosphorane as a labeling tag. The chemically tagged proteins can be digested, followed by streptavidin capture, release by triscarboxyethylphosphine and relabeling of the liberated free Cys with N-ethylmaleimide. This approach selectively enriches SNO-containing peptides at specific sites for label-free quantification by Orbitrap MS. It requires about 5 d for synthesis of the SNOTRAP probe, 2–2.5 d for sample preparation and about 5 d for nano-liquid chromatography–tandem MS measurement and analysis.

Key points

  • This protocol for the exploration of the S-nitrosoproteome in human and mouse tissues identifies and quantifies S-nitrosylation (SNO)-containing peptides using the SNOTRAP probe, which selectively and specifically reacts with the SNO group, followed by nano-liquid chromatography–tandem mass spectrometry analysis.

  • The approach permits efficient and high-throughput proteome-wide profiling of SNO proteins in complex mixtures of biological material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrative SNOTRAP proteome workflow to detect SNO proteins.
Fig. 2: Schematic for selective tagging of protein S-nitrosothiols using the SNOTRAP probe.
Fig. 3: Optimization and validation of the SNOTRAP strategy.
Fig. 4: Flash chromatograms of SNOTRAP and intermediate product synthesis.
Fig. 5: SNO-proteomics of 40 post-mortem AD and non-AD human brains as well as 11 post-mortem LBD and non-LBD human brains.

Similar content being viewed by others

Data availability

The raw MS data from this study have been deposited into the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset identifiers PXD020945 and PXD036703.

References

  1. Anand, P. & Stamler, J. S. Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease. J. Mol. Med. 90, 233–244 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, L. et al. Transnitrosylation mediated by the non-canonical catalase ROG1 regulates nitric oxide signaling in plants. Dev. Cell 53, 444–457 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Zhou, H. L. et al. An enzyme that selectively S-nitrosylates proteins to regulate insulin signaling. Cell 186, 812–5825 (2023).

    Article  Google Scholar 

  4. Nakamura, T. & Lipton, S. A. Enzymatic and non-enzymatic transnitrosylation: ‘SCAN’ning the SNO-proteome. Mol. Cell 84, 191–193 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, H., Premont, R. T. & Stamler, J. S. The manifold roles of protein S-nitrosylation in the life of insulin. Nat. Rev. Endocrinol. 18, 111–128 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E. & Stamler, J. S. Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Bio. 6, 150–166 (2005).

    Article  CAS  Google Scholar 

  7. Okuda, K. et al. Pivotal role for S-nitrosylation of DNA methyltransferase 3B in epigenetic regulation of tumorigenesis. Nat. Commun. 14, 621 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakamura, T., Oh, C. K., Zhang, X. & Lipton, S. A. Protein S-nitrosylation and oxidation contribute to protein misfolding in neurodegeneration. Free Radic. Biol. Med. 172, 562–577 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oh, C. K., Nakamura, T., Zhang, X. & Lipton, S. A. Redox regulation, protein S-nitrosylation, and synapse loss in Alzheimer’s and related dementias. Neuron 112, 3823–3850 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Amal, H. et al. Shank3 mutation in a mouse model of autism leads to changes in the S-nitroso-proteome and affects key proteins involved in vesicle release and synaptic function. Mol. Psychiatry 25, 1835–1848 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Tripathi, M. K. et al. The NO answer for autism spectrum disorder. Adv. Sci. 10, 2205783 (2023).

    Article  CAS  Google Scholar 

  12. Kim, K. R. et al. S-nitrosylation of cathepsin B affects autophagic flux and accumulation of protein aggregates in neurodegenerative disorders. Cell Death Differ. 29, 2137–2150 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oh, C. K. et al. Targeted protein S-nitrosylation of ACE2 inhibits SARS-CoV-2 infection. Nat. Chem. Biol. 19, 275–283 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, Y., Li, Y., Wu, T. & Yang, H. The dual roles of S-nitrosylation of proteins in cancer: molecular mechanisms and recent advancements. Cancer Insight 2, 80–101 (2023).

    Google Scholar 

  15. Chen, Y. et al. MAP4K4 exacerbates cardiac microvascular injury in diabetes by facilitating S-nitrosylation modification of Drp1. Cardiovasc. Diabetol. 23, 164 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ye, H., Wu, J., Liang, Z., Zhang, Y. & Huang, Z. Protein S-nitrosation: biochemistry, identification, molecular mechanisms, and therapeutic applications. J. Med. Chem. 65, 5902–5925 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Derakhshan, B., Wille, P. C. & Gross, S. S. Unbiased identification of cysteine S-nitrosylation sites on proteins. Nat. Protoc. 2, 1685–1691 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Hess, D. T., Matsumoto, A., Nudelman, R. & Stamler, J. S. S-nitrosylation: spectrum and specificity. Nat. Cell Biol. 3, E46–E48 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Jaffrey, S. R. & Snyder, S. H. The biotin switch method for the detection of S-nitrosylated proteins. Sci. STKE 2001, pl1 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Forrester, M. T., Foster, M. W. & Stamler, J. S. Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. J. Biol. Chem. 282, 13977–13983 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. García-Santamarina, S. et al. Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry. Nat. Protoc. 9, 1131–1145 (2014).

    Article  PubMed  Google Scholar 

  22. Guo, J. et al. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Nat. Protoc. 9, 64–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Shi, X. & Qiu, H. Post-translational S-nitrosylation of proteins in regulating cardiac oxidative stress. Antioxidants 9, 1051 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alcock, L. J., Perkins, M. V. & Chalke, J. M. Chemical methods for mapping cysteine oxidation. Chem. Soc. Rev. 47, 231–268 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Huang, B. & Chen, C. An ascorbate-dependent artifact that interferes with the interpretation of the biotin switch assay. Free Radic. Biol. Med. 41, 562–567 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Mnatsakanyan, R. et al. Proteome-wide detection of S-nitrosylation targets and motifs using bioorthogonal cleavable-linkerbased enrichment and switch technique. Nat. Commun. 10, 2195 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Seneviratne, U., Godoy, L. C., Wishnok, J. S., Wogan, G. N. & Tannenbaum, S. R. Mechanism-based triarylphosphine-ester probes for capture of endogenous RSNOs. J. Am. Chem. Soc. 135, 7693–7704 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Clements, J. L. et al. A clickable probe for versatile characterization of S-nitrosothiols. Redox Biol. 37, 101707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shuken, S. R. An introduction to mass spectrometry-based proteomics. J. Proteome Res. 22, 2151–2171 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. López-Sánchez, L. M., López-Pedrera, C. & Rodríguez-Ariza, A. Proteomic approaches to evaluate protein S-nitrosylation in disease. Mass Spectrom. Rev. 33, 7–20 (2014).

    Article  PubMed  Google Scholar 

  31. Meissner, F., Geddes-McAlister, J., Mann, M. & Bantscheff, M. The emerging role of mass spectrometry-based proteomics in drug discovery. Nat. Rev. Drug Discov. 21, 637–654 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, H. & Xian, M. Fast reductive ligation of S-nitrosothiols. Angew. Chem. Int. Ed. 47, 6598–6601 (2008).

    Article  CAS  Google Scholar 

  33. Bechtold, E. et al. Water-soluble triarylphosphines as biomarkers for protein S-nitrosation. ACS Chem. Biol. 5, 405–414 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seneviratne, U. et al. S-nitrosation of proteins relevant to Alzheimer’s disease during early stages of neurodegeneration. Proc. Natl Acad. Sci. USA 113, 4152–4157 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, H. et al. An improved sulfur-nitroso-proteome strategy for global profiling of sulfur-nitrosylated proteins and sulfur-nitrosylation sites in mice. J. Chromatogr. A 1705, 464162 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Yang, H. et al. Mechanistic insight into female predominance in Alzheimer’s disease based on aberrant protein S-nitrosylation of C3. Sci. Adv. 8, eade0764 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Andreyev, A. Y. et al. Metabolic bypass rescues aberrant S-nitrosylation-induced TCA cycle inhibition and synapse loss in Alzheimer’s disease human neurons. Adv. Sci. 11, 2306469 (2024).

    Article  CAS  Google Scholar 

  38. Doulias, P. T. et al. S-Nitrosylation-mediated dysfunction of TCA cycle enzymes in synucleinopathy studied in postmortem human brains and hiPSC-derived neurons. Cell Chem. Biol. 30, 965–975 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guil-Luna, S., Sanchez-Montero, M. T. & Rodríguez-Ariza, A. S-nitrosylation at the intersection of metabolism and autophagy: implications for cancer. Biochim. Biophys. Acta Rev. Cancer 1878, 189012 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Qu, Z. et al. Proteomic quantification and site-mapping of S‑nitrosylated proteins using isobaric iodoTMT reagents. J. Proteome Res. 13, 3200–3211 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Forrester, M. T. et al. Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat. Biotechnol. 27, 557–559 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Landino, L. M., Koumas, M. T., Mason, C. E. & Alston, J. A. Ascorbic acid reduction of microtubule protein disulfides and its relevance to protein S-nitrosylation assays. Biochem. Biophys. Res. Commun. 340, 347–352 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Sinha, V. et al. Proteomic and mass spectroscopic quantitation of protein S-nitrosation differentiates NO-donors. ACS Chem. Biol. 5, 667–680 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Doulias, P. T. et al. Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation. Proc. Natl Acad. Sci. USA 107, 16958–16963 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bonesi, S. M., Protti, S. & Albini, A. Reactive oxygen species (ROS)-vs peroxyl-mediated photosensitized oxidation of triphenylphosphine: a comparative study. J. Org. Chem. 81, 11678–11685 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Tamara, S., den Boer, M. A. & Heck, A. J. R. High-resolution native mass spectrometry. Chem. Rev. 122, 7269–7326 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Kleifeld, O. et al. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat. Protoc. 6, 1578–1611 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, C. & Qi, C. Theoretical study on mechanism of reactions of triarylphosphines with S-nitrosated proteins. Comp. Theor. Chem. 1027, 11–18 (2014).

    Article  CAS  Google Scholar 

  49. Bains, W., Petkowski, J. J., Sousa-Silva, C. & Seager, S. Trivalent phosphorus and phosphines as components of biochemistry in anoxic environments. Astrobiology 19, 885–902 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, R. & Mabury, S. A. Organophosphite antioxidants in indoor dust represent an indirect source of organophosphate esters. Environ. Sci. Technol. 53, 1805–1811 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Block, E., Ofori-Okai, G. & Zubieta, J. 2-Phosphino- and 2-phosphinylbenzenethiols: new ligand types. J. Am. Chem. Soc. 111, 2327–2329 (1989).

    Article  CAS  Google Scholar 

  52. Iftikhar, I. & Brajter-Toth, A. Solution or gas phase? Oxidation and radical formation in electrospray ionization mass spectrometry (ESI MS). Electroanal. 27, 2872–2881 (2015).

    Article  CAS  Google Scholar 

  53. Berkel, G. J., McLuckey, S. A. & Glish, G. L. Electrochemical origin of radical cations observed in electrospray ionization mass spectra. Anal. Chem. 64, 1586–1593 (1992).

    Article  Google Scholar 

  54. Canal-Martín, A. & Pérez-Fernández, R. Biomimetic selenocystine based dynamic combinatorial chemistry for thiol-disulfide exchange. Nat. Commun. 12, 163 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Altinbasak, I., Arslan, M., Sanyal, R. & Sanyal, A. Pyridyl disulfide-based thiol-disulfide exchange reaction: shaping the design of redox-responsive polymeric materials. Polym. Chem. 11, 7603–7624 (2020).

    Article  CAS  Google Scholar 

  56. Boja, E. S. & Fales, H. M. Overalkylation of a protein digest with iodoacetamide. Anal. Chem. 73, 3576–3582 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Darula, Z. & Medzihradszky, K. F. Carbamidomethylation side reactions may lead to glycan misassignments in glycopeptide analysis. Anal. Chem. 87, 6297–6302 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Roberts, D. S. et al. Top-down proteomics. Nat. Rev. Methods Primers 4, 38 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nickerson, J. L. et al. Recent advances in top-down proteome sample processing ahead of MS analysis. Mass Spectrom. Rev. 42, 457–495 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Pauwels, J., Fijalkowska, D., Eyckerman, S. & Gevaert, K. Mass spectrometry and the cellular surfaceome. Mass Spectrom. Rev. 41, 804–841 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the discussion and work of multiple members of the Tannenbaum laboratory at the Massachusetts Institute of Technology and the Lipton laboratory at The Scripps Research Institute, including U. Seneviratne, T. Nakamura, C.-k. Oh and X. Zhang, without whose work the production of this protocol would not have been possible. This work was funded in part by the National Institutes of Health grants (U01 AG088679, R01 AG056259, R35 AG071734, RF1 AG057409, R01 AG056259, R56 AG065372, R01 DA048882, and DP1 DA041722), a California Institute of Regenerative Medicine award (DISC4-16292 ReMIND-L) and the Science and Technology Development Planning Project of Jilin Province in China (grant no. 20240305022YY).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: H.Y., S.R.T. and S.A.L. Methodology: H.Y., H.A., S.R.T. and S.A.L. Data collection and analysis: H.Y. and H.A. Investigation: H.Y., H.A., S.R.T. and S.A.L. Writing—original outline: S.A.L.; original draft: H.Y. Writing—reviewing and editing: H.A., S.R.T. and S.A.L. Visualization: H.Y. and S.A.L. Supervision: S.R.T. and S.A.L. Funding acquisition: S.R.T., H.A., H.Y. and S.A.L.

Corresponding authors

Correspondence to Hongmei Yang or Stuart A. Lipton.

Ethics declarations

Competing interests

H.A. is the scientific founder of Point6 Bio, a biotechnology company focusing on multiomics discoveries, including S-nitrosylated proteins, for molecular insight into autism spectrum disorder. S.A.L. serves on the scientific advisory board of Point6 Bio. The other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Per Hägglund, Wei-Jun Qian and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Yang, H. et al. Sci. Adv. 8, eade0764 (2022): https://doi.org/10.1126/sciadv.ade0764

Andreyev, A. Y. et al. Adv. Sci. 11, 2306469 (2024): https://doi.org/10.1002/advs.202306469

Doulias, P. T. et al. Cell Chem. Biol. 30, 965–975 (2023): https://doi.org/10.1016/j.chembiol.2023.06.018

Yang, H. et al. J. Chromatogr. A 1705, 464162 (2023): https://doi.org/10.1016/j.chroma.2023.464162

Extended data

Extended Data Fig. 1 Photographs of equipment setup for SNOTRAP synthesis.

Photographs of equipment setup during SNOTRAP synthesis. a, Argon balloon and a rubber septum. b, The vacuum pump. c, The argon tank.

Extended Data Fig. 2 UPLC-MS of the SNOTRAP probe.

1H, 13C, and 31P NMR of 2-(diphenylphosphino)-benzenethiol. a, 1H NMR. b, 13C NMR. c, 31P NMR.

Extended Data Fig. 3 1H, 13C, and 31P NMR of 2-(diphenylphosphino)benzenethiol.

UPLC-MS of the SNOTRAP probe. a, Total ion chromatography of 2.5 µm SNOTRAP in methanol. I: oxidized SNOTRAP, II: SNOTRAP. b, Mass spectrum of peak I from panel a in positive ion mode. c, Mass spectrum of peak II from panel a in positive ion mode.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Amal, H., Tannenbaum, S.R. et al. Proteome-wide profiling of S-nitrosylated proteins using the SNOTRAP probe and mass spectrometry-based detection. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41596-025-01282-1

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research