Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Acoustic separation and isolation of viruses, small extracellular vesicles and other nanoscale bioparticles

Abstract

The isolation of small extracellular vesicles (sEVs), viruses and other nanoscale lipid particles from biofluids offers actionable possibilities for advancing disease diagnosis, drug delivery, regenerative medicine, personalized medicine and immunotherapy. Several methods are available to isolate sEVs from biofluids and acoustic techniques provide distinct advantages. Challenges constraining its wider application encompass the absence of adequate procedures for fabrication, implementation and performance validation. These issues impede the development of protocols applicable to nanoscale bioparticles experiencing acoustic isolation effects. Here we present a detailed protocol for acoustic separation of nanoscale bioparticles from biofluids, including plasma and saliva, achieving both high purity and throughput suitable for routine application. This protocol offers a comprehensive, step-by-step guide for the design and fabrication of the acoustic separation device, the establishment of the experimental setup and the isolation of bioparticles. To ensure reliability, rigor and reproducibility, we delineate essential procedures, including acoustic field optimization, channel fabrication and biofluid preparation, subsequently validating the protocol and its performance across different operators. Our protocol further encompasses procedures for data collection and analysis, which are essential for characterizing viruses and sEVs, as well as for evaluating their quality and integrity. This protocol enables researchers to perform high-quality isolation of nanoscale bioparticles, providing access to reliable acoustic separation techniques. Standardizing this technique will pave the way for discoveries in virology and intercellular communication research, with applications in medicine, biology, and materials science.

Key points

  • This protocol provides a guide for designing and fabricating the acoustic separation device, including channel fabrication, the experimental setup and acoustic field optimization, and the biofluid preparation and isolation of nano-sized biological particles.

  • Alternative approaches for biological nanoparticle separation include differential ultracentrifugation; however, this has a low yield and is time consuming and labor intensive. Another alternative is size exclusion chromatography, which has drawbacks such as sample dilution and limited resolution below 70 nm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of the fabrication and sample processing for the acoustic nanoparticle-separation device, corresponding to the protocol steps.
Fig. 2: Fabrication of the microfluidic channel with Bessel interdigital transducers and the setup for the acoustic separation device.
Fig. 3: Sample preparation steps for tissue, plasma, saliva or cell culture medium.
Fig. 4: Evaluation of the rigor and reproducibility of the acoustic EV separation device.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article. The sequencing data generated in this study have been deposited in the Gene Expression Omnibus (GEO) under accession number GSE235349. Further information is available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Witwer, K. W. & Théry, C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J. Extracell. Vesicles 8, 1648167 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. El Andaloussi, S., Mäger, I., Breakefield, X. O. & Wood, M. J. A. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. Dai, J. et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct. Target. Ther. 5, 145 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Drosten, C. et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967––1976 (2003).

    Article  PubMed  Google Scholar 

  7. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gire, S. K. et al. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science 345, 1369–1372 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Su, J. et al. Cell–cell communication: new insights and clinical implications. Signal Transduct. Target. Ther. 9, 196 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  PubMed  CAS  Google Scholar 

  15. Théry, C., Ostrowski, M. & Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593 (2009).

    Article  PubMed  Google Scholar 

  16. Gonzales, P. A. et al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J. Am. Soc. Nephrol. 20 (2009).

  17. Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Fang, T. et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat. Commun. 9, 191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Al-Nedawi, K. et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624 (2008).

    Article  PubMed  CAS  Google Scholar 

  21. Liu, M., Hu, S., Yan, N., Popowski, K. D. & Cheng, K. Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. Nat. Nanotechnol. 19, 565–575 (2024).

    Article  PubMed  CAS  Google Scholar 

  22. Wang, Z. et al. Inhalation of ACE2-expressing lung exosomes provides prophylactic protection against SARS-CoV-2. Nat. Commun. 15, 2236 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Margolis, L. B. & Sadovsky, Y. When extracellular vesicles go viral: a bird’s eye view. Pathog. Immun. 10, 140–158 (2024).

    Article  PubMed  Google Scholar 

  24. Momen-Heravi, F. in Extracellular Vesicles: Methods and Protocols (eds Kuo, W. P. & Jia, S.) 25–32 (Springer, 2017).

  25. Jia, Y. et al. Small extracellular vesicles isolation and separation: current techniques, pending questions and clinical applications. Theranostics 12, 6548–6575 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sugita, Y., Noda, T., Sagara, H. & Kawaoka, Y. Ultracentrifugation deforms unfixed influenza A virions. J. Gen. Virol. 92, 2485–2493 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gias, E., Nielsen, S. U., Morgan, L. A. F. & Toms, G. L. Purification of human respiratory syncytial virus by ultracentrifugation in iodixanol density gradient. J. Virol. Methods 147, 328–332 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bergqvist, M., Lässer, C., Crescitelli, R., Park, K.-S. & Lötvall, J. A non-centrifugation method to concentrate and purify extracellular vesicles using superabsorbent polymer followed by size exclusion chromatography. J. Extracell. Vesicles 14, e70037 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sidhom, K., Obi, P. O. & Saleem, A. A review of exosomal isolation methods: is size exclusion chromatography the best option? Int. J. Mol. Sci. 21, 6466 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Stott, S. L. et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl Acad. Sci. USA 107, 18392–18397 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhang, P. et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat. Biomed. Eng. 3, 438–451 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Rabe, D. C. et al. Ultrasensitive detection of intact SARS-CoV-2 particles in complex biofluids using microfluidic affinity capture. Sci. Adv. 11, eadh1167 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sunkara, V. et al. Fully automated, label-free isolation of extracellular vesicles from whole blood for cancer diagnosis and monitoring. Theranostics 9, 1851–1863 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hu, J. & Gao, D. Recent advances in aptamer-based microfluidic biosensors for the isolation, signal amplification and detection of exosomes. Sensors 25, 848 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Im, H. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 32, 490–495 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Reátegui, E. et al. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat. Commun. 9, 175 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Huang, L. R., Cox, E. C., Austin, R. H. & Sturm, J. C. Continuous particle separation through deterministic lateral displacement. Science 304, 987–990 (2004).

    Article  PubMed  CAS  Google Scholar 

  38. Wunsch, B. H. et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat. Nanotechnol. 11, 936–940 (2016).

    Article  PubMed  CAS  Google Scholar 

  39. Shi, J., Huang, H., Stratton, Z., Huang, Y. & Huang, T. J. Continuous particle separation in a microfluidic channelvia standing surface acoustic waves (SSAW). Lab Chip 9, 3354–3359 (2009).

    Article  PubMed  CAS  Google Scholar 

  40. Ding, X. et al. Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl Acad. Sci. USA 111, 12992–12997 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl Acad. Sci. USA 112, 4970–4975 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wu, M. et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc. Natl Acad. Sci. USA 114, 10584–10589 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wu, M. et al. Acoustofluidic separation of cells and particles. Microsyst. Nanoeng. 5, 32 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang, Z. et al. Acoustofluidic salivary exosome isolation: a liquid biopsy compatible approach for human papillomavirus–associated oropharyngeal cancer detection. J. Mol. Diagn. 22, 50–59 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gu, Y. et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Sci. Adv. 7, eabc0467 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Xia, J. et al. Acoustofluidic virus isolation via bessel beam excitation separation technology. ACS Nano 18, 22596–22607 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Naquin, T. D. et al. Acoustic separation and concentration of exosomes for nucleotide detection: ASCENDx. Sci. Adv. 10, eadm8597 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wang, Z. et al. Acoustofluidic separation enables early diagnosis of traumatic brain injury based on circulating exosomes. Microsyst. Nanoeng. 7, 20 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Choi, W. et al. CDK1-loaded extracellular vesicles promote cell cycle to reverse impaired wound healing in diabetic obese mice. Mol. Ther. 33, 1118–1133 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Welsh, J. A. et al. MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J. Extracell. Vesicles 9, 1713526 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Welsh, J. A. et al. A compendium of single extracellular vesicle flow cytometry. J. Extracell. Vesicles 12, e12299 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rozowsky, J. et al. exceRpt: a comprehensive analytic platform for extracellular RNA profiling. Cell Syst. 8, 352–357.e353 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hinestrosa, J. P. et al. Early-stage multi-cancer detection using an extracellular vesicle protein-based blood test. Commun. Med. 2, 29 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sigdel, S., Swenson, S. & Wang, J. Extracellular vesicles in neurodegenerative diseases: an update. Int. J. Mol. Sci. https://doi.org/10.3390/ijms241713161 (2023).

  56. Zarà, M. et al. Circulating small extracellular vesicles reflect the severity of myocardial damage in STEMI patients. Biomolecules 13, 1470 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cruz, C. G., Sodawalla, H. M., Mohanakumar, T. & Bansal, S. Extracellular vesicles as biomarkers in infectious diseases. Biology 14, 182 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sun, M. et al. Extracellular vesicles: a new star for gene drug delivery. Int. J. Nanomed. 19, 2241–2264 (2024).

    Article  CAS  Google Scholar 

  59. Lundstrom, K. Viral vectors in gene therapy. Diseases https://doi.org/10.3390/diseases6020042 (2018).

  60. Berumen Sánchez, G., Bunn, K. E., Pua, H. H. & Rafat, M. Extracellular vesicles: mediators of intercellular communication in tissue injury and disease. Cell Commun. Signal. 19, 104 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Xu, J. et al. Human perivascular stem cell-derived extracellular vesicles mediate bone repair. eLife 8, e48191 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Walker, L. M. & Burton, D. R. Passive immunotherapy of viral infections: ‘super-antibodies’ enter the fray. Nat. Rev. Immunol. 18, 297–308 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Raab-Traub, N. & Dittmer, D. P. Viral effects on the content and function of extracellular vesicles. Nat. Rev. Microbiol. 15, 559–572 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Li, P., Kaslan, M., Lee, S. H., Yao, J. & Gao, Z. Progress in exosome isolation techniques. Theranostics 7, 789–804 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yang, Y. et al. Extracellular vesicles isolated by size-exclusion chromatography present suitability for RNomics analysis in plasma. J. Transl. Med. 19, 104 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Rezeli, M. et al. Comparative proteomic analysis of extracellular vesicles isolated by acoustic trapping or differential centrifugation. Anal. Chem. 88, 8577–8586 (2016).

    Article  PubMed  CAS  Google Scholar 

  68. Alexandre, L. et al. Effect of sample preprocessing and size-based extraction methods on the physical and molecular profiles of extracellular vesicles. ACS Sens. 9, 1239–1251 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Chen, J. et al. Review on strategies and technologies for exosome isolation and purification. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2021.811971 (2022).

  70. Wullenweber, M. S., Kottmeier, J., Kampen, I., Dietzel, A. & Kwade, A. Simulative investigation of different DLD microsystem designs with increased Reynolds numbers using a two-way coupled IBM-CFD/6-DOF approach. Processes 10, 403 (2022).

    Article  CAS  Google Scholar 

  71. Zhang, J. et al. Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16, 10–34 (2016).

    Article  PubMed  CAS  Google Scholar 

  72. Nguyen, K. T. et al. Integrated techniques for extracellular particle separation and single-particle multiparametric characterization to track cancer biomarkers from tissue to biofluids. Preprint at bioRxiv https://doi.org/10.1101/2025.01.09.632270 (2025).

  73. Cai, S. et al. Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease. Proc. Natl Acad. Sci. USA 118, e2100697118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Yeager, M., Wilson-Kubalek, E. M., Weiner, S. G., Brown, P. O. & Rein, A. Supramolecular organization of immature and mature murine leukemia virus revealed by electron cryo-microscopy: Implications for retroviral assembly mechanisms. Proc. Natl Acad. Sci. USA 95, 7299–7304 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Wu, M. et al. Separating extracellular vesicles and lipoproteins via acoustofluidics. Lab Chip 19, 1174–1182 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Xie, Y. et al. Acoustic cell separation based on density and mechanical properties. J. Biomech. Eng. https://doi.org/10.1115/1.4046180 (2020).

  77. Friend, J. & Yeo, L. Y. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83, 647–704 (2011).

    Article  Google Scholar 

  78. Del Campo Fonseca, A. et al. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat. Commun. 14, 5889 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Collins, D. J., O’Rorke, R., Neild, A., Han, J. & Ai, Y. Acoustic fields and microfluidic patterning around embedded micro-structures subject to surface acoustic waves. Soft Matter 15, 8691–8705 (2019).

    Article  PubMed  CAS  Google Scholar 

  80. Cai, H. et al. Brain organoid reservoir computing for artificial intelligence. Nat. Electron. 6, 1032–1039 (2023).

    Article  Google Scholar 

  81. Drinkwater, B. W. Dynamic-field devices for the ultrasonic manipulation of microparticles. Lab Chip 16, 2360–2375 (2016).

    Article  PubMed  CAS  Google Scholar 

  82. Wiklund, M., Green, R. & Ohlin, M. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. Lab Chip 12, 2438–2451 (2012).

    Article  PubMed  CAS  Google Scholar 

  83. Yang, S. et al. Acoustic tweezers for high-throughput single-cell analysis. Nat. Protoc. 18, 2441–2458 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Yang, S. et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat. Mater. 21, 540–546 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wu, M. et al. Sound innovations for biofabrication and tissue engineering. Microsyst. Nanoeng. 10, 170 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhao, S. et al. Topological acoustofluidics. Nat. Mater. 24, 707–715 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Rufo, J., Cai, F., Friend, J., Wiklund, M. & Huang, T. J. Acoustofluidics for biomedical applications. Nat. Rev. Methods Primers 2, 30 (2022).

    Article  CAS  Google Scholar 

  88. Rufo, J., Zhang, P., Zhong, R., Lee, L. P. & Huang, T. J. A sound approach to advancing healthcare systems: the future of biomedical acoustics. Nat. Commun. 13, 3459 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. He, Y. et al. Acoustic technologies for the orchestration of cellular functions for therapeutic applications. Sci. Adv. 11, eadu4759 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Yang, S. et al. Acoustic tweezers for advancing precision biology and medicine. Nat. Rev. Methods Primers 5, 49 (2025).

    Article  CAS  Google Scholar 

  91. Comfort, N. et al. Nanoparticle tracking analysis for the quantification and size determination of extracellular vesicles. J. Vis. Exp. 169, e62447 (2021).

    Google Scholar 

  92. Kim, J. et al. Comparison of EV characterization by commercial high-sensitivity flow cytometers and a custom single-molecule flow cytometer. J. Extracell. Vesicles 13, e12498 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Shared Materials Instrumentation Facility (SMIF) at Duke University. We used ChatGPT (OpenAI) to help improve the clarity and readability of part of the manuscript after the initial draft was completed. We acknowledge support from the National Institutes of Health (R01HD103727, R01AG084098, R01GM141055, R01GM143439, R01GM145960, R01GM144417, U18TR003778 and UH3TR002978), and the National Science Foundation (CMMI-2104295). This publication includes data generated at the UC San Diego IGM Genomics Center utilizing an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of Health SIG grant (no. S10 OD026929).

Author information

Authors and Affiliations

Authors

Contributions

J.X., L.P.L. and T.J.H. designed the research. J.X., B.L., A.G., C.C., J.P.N. and L.C.L. performed the research. J.X., B.L., A.G., C.C., S.Y., J.P.N. and L.C.L. analyzed data. J.X., B.L. and L.P.L. drew the figures. All authors wrote and edited the manuscript.

Corresponding authors

Correspondence to David T. W. Wong, John P. Nolan, Louise C. Laurent, Ming Dao, Yoel Sadovsky, Luke P. Lee, Subra Suresh or Tony Jun Huang.

Ethics declarations

Competing interests

T.J.H. has cofounded a start-up company, Ascent Bio-Nano Technologies Inc., to commercialize technologies involving acoustofluidics and acoustic tweezers. J.P.N. is founder of Cellarcus Biosciences, which provides products and services for EV research. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Stephanie Descroix and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Xia, J. et al. ACS Nano 18, 22596–22607 (2024): https://doi.org/10.1021/acsnano.4c09692

Wu, M. et al. Proc. Natl Acad. Sci. USA 114, 10584–10589 (2017): https://doi.org/10.1073/pnas.1709210114

Wang, Z. et al. Microsyst. Nanoeng. 7, 20 (2021): https://doi.org/10.1038/s41378-021-00244-3

Shi, J. et al. Lab Chip 9, 3354–3359 (2009): https://doi.org/10.1039/B915113C

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Figs. 1–8 and Table 1.

Reporting Summary

Source data

Source Data Fig. 1 and Fig. 4

NTA results in Fig. 1d is provided. Vesicles flow cytometry results in Fig. 4f and 4g are provided. RNA sequencing results in Fig. 4h–j are provided.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, J., Lu, B., Yang, S. et al. Acoustic separation and isolation of viruses, small extracellular vesicles and other nanoscale bioparticles. Nat Protoc (2026). https://doi.org/10.1038/s41596-025-01286-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41596-025-01286-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing