Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Testing, quantification, in situ characterization and calculation simulation for electrocatalytic nitrate reduction

Subjects

Abstract

The electrocatalytic nitrate reduction reaction (NO3RR) has emerged as a promising approach for sustainable nitrogen management, enabling the selective conversion of nitrate into targeted nitrogen-containing compounds, such as ammonia and hydroxylamine. However, the efficiency and selectivity of the NO3RR are highly dependent on the physicochemical properties of the electrocatalysts, necessitating a standardized and comprehensive characterization protocol. Here we provide a detailed methodology for the structural, chemical, electronic and electrochemical characterization of the materials used in the NO3RR. We outline procedures for evaluating catalyst morphology, composition and redox states, as well as methodologies for quantifying reaction products to determine nitrate conversion efficiency and selectivity. To track catalyst evolution and reaction pathways under reaction conditions, we present real-time monitoring strategies that capture structural changes, key reaction intermediates and electronic transformations associated with chemical bond formation and cleavage. In addition, we incorporate theoretical calculations to comprehensively evaluate the reaction pathways and their interplay with the electronic structures of electrocatalysts, providing deeper mechanistic insights into the reaction kinetics, active site evolution and selectivity-determining factors. This Protocol is designed for researchers in electrocatalysis, environmental chemistry and energy conversion, offering a reproducible workflow for catalyst assessment. The step-by-step methodology ensures reliable data collection and interpretation, enabling direct comparisons across different catalysts and facilitating the development of more efficient NO3RR catalysts. The entire workflow requires ~8–10 days, depending on sample preparation and measurement duration.

Key points

  • Ex situ characterization of the materials and products of electrochemical reactions provides valuable information but does not track intermediates and their evolution. This Protocol integrates bulk and surface characterization techniques with in situ/operando spectroscopies, electrochemical measurements and density functional theory calculations to better understand the reaction mechanism.

  • We describe the characterization workflow for the analysis of electrocatalytic nitrate reduction; this workflow can be adapted to study other electrocatalytic processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the physicochemical and functional characterization techniques for the electrocatalytic NO3RR.
Fig. 2: 1H NMR spectra for ammonia-14N quantification.
Fig. 3: UV–Vis absorption spectroscopy for indophenol blue spectrophotometry.
Fig. 4: UV–Vis absorption spectroscopy for ammonia quantification.
Fig. 5: UV–vis calibration curve for NH3 determination via Nessler’s reagent spectrophotometry.
Fig. 6: UV–Vis absorption spectroscopy for nitrite-N quantification using diazotization spectrophotometry.
Fig. 7: In situ XAS analysis of the RuCo catalyst under electrochemical conditions.
Fig. 8: Assembly of the Raman cell and in situ electrochemical Raman measurement.
Fig. 9: In situ XRD analysis of the RuCo catalyst under electrochemical conditions.
Fig. 10: Gold plating on silicon ATR crystal and in situ electrochemical ATR-FTIR measurements.
Fig. 11: Electrochemical DEMS setup and product analysis.
Fig. 12: In situ electrochemical EPR setup and hydrogen radical detection.
Fig. 13: Quantification of 15NH4+ using 1H NMR spectroscopy.
Fig. 14: Free energy diagram and reaction intermediates for NO3RR on Pd and Bi1Pd.
Fig. 15: Minimum energy pathway and activation energies for N–O bond-breaking steps in NO3RR.
Fig. 16: Electrochemical performance and mechanistic insights into NO3RR on Ru-Co catalysts.

Similar content being viewed by others

Data availability

The data in this Protocol are available in the supporting primary research papers or the Mendeley database (https://doi.org/10.17632/dz3zy7vb3c.2)56. The Origin files can be opened using https://www.originlab.com/viewer/ if Origin is not installed on your computer.

References

  1. Langevelde, P. H., van, Katsounaros, I. & Koper, M. T. M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 5, 290–294 (2021).

    Article  Google Scholar 

  2. Han, S. et al. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat. Catal. 6, 402–414 (2023).

    Article  CAS  Google Scholar 

  3. Chen, F. Y. et al. Electrochemical nitrate reduction to ammonia with cation shuttling in a solid electrolyte reactor. Nat. Catal. 7, 1032–1043 (2024).

    Article  CAS  Google Scholar 

  4. Wang, Y. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 142, 5702–5708 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Park, C. et al. Activity-drop of hydrogen evolution reaction in LiNO3 based ‘hydronium-in-salt’ acidic electrolytes on platinum enables electrochemical nitrate reduction. J. Am. Chem. Soc. 147, 687–700 (2025).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, J. et al. Evidence for distinct active sites on oxide-derived Cu for electrochemical nitrate reduction. J. Am. Chem. Soc. 146, 30708–30714 (2024).

    Article  CAS  PubMed  Google Scholar 

  7. Jang, W. et al. Homogeneously mixed Cu–Co bimetallic catalyst derived from hydroxy double salt for industrial-level high-rate nitrate-to-ammonia electrosynthesis. J. Am. Chem. Soc. 146, 27417–27428 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, J. J., Lou, Y. Y., Wu, Z., Huang, X. J. & Sun, S. G. Spatially separated Cu/Ru on ordered mesoporous carbon for superior ammonia electrosynthesis from nitrate over a wide potential window. J. Am. Chem. Soc. 146, 24966–24977 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Zhao, D. et al. A TiO2−x nanobelt array with oxygen vacancies: an efficient electrocatalyst toward nitrite conversion to ammonia. Chem. Commun. 58, 3669–3672 (2022).

    Article  CAS  Google Scholar 

  10. Han, Y. et al. Facet-controlled palladium nanocrystalline for enhanced nitrate reduction towards ammonia. J. Colloid Interface Sci. 600, 620–628 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Li, P., Jin, Z., Fang, Z. & Yu, G. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 14, 3522–3531 (2021).

    Article  CAS  Google Scholar 

  12. Lan, Y., Chen, J., Zhang, H., Zhang, W. X. & Yang, J. Fe/Fe3C nanoparticle-decorated N-doped carbon nanofibers for improving the nitrogen selectivity of electrocatalytic nitrate reduction. J. Mater. Chem. A 8, 15853–15863 (2020).

    Article  CAS  Google Scholar 

  13. Fu, X. et al. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Appl. Mater. Today 19, 100620 (2020).

    Article  Google Scholar 

  14. Wang, Y. et al. Boosting NH3 production from nitrate electroreduction: via electronic structure engineering of Fe3C nanoflakes. Green. Chem. 23, 7594–7608 (2021).

    Article  CAS  Google Scholar 

  15. Chen, K. et al. Boosted nitrate electroreduction to ammonia on Fe-doped SnS2 nanosheet arrays rich in S-vacancies. Dalton Trans. 51, 10343–10350 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Li, X. et al. Mo2C for electrocatalytic nitrate reduction to ammonia. Dalton Trans. 51, 17547–17552 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Y. H. et al. In situ electrochemical Raman spectroscopy and ab initio molecular dynamics study of interfacial water on a single-crystal surface. Nat. Protoc. 18, 883–901 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Y., Zhou, W., Jia, R., Yu, Y. & Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem. Int. Ed. 59, 5350–5354 (2020).

    Article  CAS  Google Scholar 

  19. Yang, K. et al. Unveiling the reaction mechanism of nitrate reduction to ammonia over cobalt-based electrocatalysts. J. Am. Chem. Soc. 146, 12976–12983 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, G. et al. Tandem electrocatalytic nitrate reduction to ammonia on MBenes. Angew. Chem. Int. Ed. 62, e202300054 (2023).

    Article  CAS  Google Scholar 

  21. Li, X., Shen, P., Li, X., Ma, D. & Chu, K. Sub-nm RuOx clusters on Pd metallene for synergistically enhanced nitrate electroreduction to ammonia. ACS Nano 17, 1081–1090 (2023).

    Article  CAS  Google Scholar 

  22. Chen, F. Y. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 17, 759–767 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Fan, K. et al. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 13, 7958 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, S. et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat. Commun. 14, 3634 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, H. et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew. Chem. Int. Ed. 61, e202202556 (2022).

    Article  CAS  Google Scholar 

  26. Wen, W. et al. Modulating the electrolyte microenvironment in electrical double layer for boosting electrocatalytic nitrate reduction to ammonia. Angew. Chem. Int. Ed. 63, e202408382 (2024).

    Article  CAS  Google Scholar 

  27. Feng, X. et al. Hydrogen radical-induced electrocatalytic N2 reduction at a low potential. J. Am. Chem. Soc. 145, 10259–10267 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Qi, K. et al. Unlocking direct CO2 electrolysis to C3 products via electrolyte supersaturation. Nat. Catal. 6, 319–331 (2023).

    Article  CAS  Google Scholar 

  29. Gao, J. et al. Electrochemical synthesis of propylene from carbon dioxide on copper nanocrystals. Nat. Chem. 15, 705–713 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, P. et al. Directed urea-to-nitrite electrooxidation via tuning intermediate adsorption on Co, Ge Co-doped Ni sites. Adv. Funct. Mater. 33, 2300687 (2023).

    Article  CAS  Google Scholar 

  31. Katsounaros, I., Figueiredo, M. C., Chen, X., Calle-Vallejo, F. & Koper, M. T. M. Interconversions of nitrogen-containing species on Pt(100) and Pt(111) electrodes in acidic solutions containing nitrate. Electrochim. Acta 271, 77–83 (2018).

    Article  CAS  Google Scholar 

  32. Yu, W. et al. Spontaneous reaction of electrocatalyst resulted in a NH3 faraday efficiency of more than 100 % in electrochemical nitrate reduction. Adv. Energy Mater. 14, 2401591 (2024).

    Article  CAS  Google Scholar 

  33. Bai, L., Hsu, C., Alexander, D. T. L., Chen, H. M. & Hu, X. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 6, 1054–1066 (2021).

    Article  CAS  Google Scholar 

  34. Liu, H. et al. Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia. ACS Catal. 11, 8431–8442 (2021).

    Article  CAS  Google Scholar 

  35. Bai, L. et al. Electrocatalytic nitrate and nitrite reduction toward ammonia using Cu2O nanocubes: active species and reaction mechanisms. J. Am. Chem. Soc. 146, 9665–9678 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun, X. et al. Corrosion-resistant NiFe anode towards kilowatt-scale alkaline seawater electrolysis. Nat. Commun. 15, 10351 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi, J. et al. Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat. Commun. 11, 5546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Timoshenko, J. & Cuenya, B. R. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121, 882–961 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Pérez-Gallent, E., Figueiredo, M. C., Katsounaros, I. & Koper, M. T. M. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions. Electrochim. Acta 227, 77–84 (2017).

    Article  Google Scholar 

  40. Shen, H. et al. Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide. Nat. Commun. 14, 2843 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, T., Li, H., Ma, H. & Koper, M. T. M. Surface modification of Pt(100) for electrocatalytic nitrate reduction to dinitrogen in alkaline solution. Langmuir 31, 3277–3281 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Shen, J., Birdja, Y. Y. & Koper, M. T. M. Electrocatalytic nitrate reduction by a cobalt protoporphyrin immobilized on a pyrolytic graphite electrode. Langmuir 31, 8495–8501 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Pack, J. D. & Monkhorst, H. J. Special points for Brillonin-zone integrations. Phys. Rev. B 16, 1748 (1977).

    Article  Google Scholar 

  46. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  47. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  PubMed  Google Scholar 

  48. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  PubMed  Google Scholar 

  49. Wang, V., Xu, N., Liu, J. C., Tang, G. & Geng, W. T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article  CAS  Google Scholar 

  50. Momma, K. & Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008).

    Article  CAS  Google Scholar 

  51. Dronskowski, R. & Blochl, P. E. Crystal orbital hamilton populations (COHP). Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    Article  CAS  Google Scholar 

  52. Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott–Hubbard insulators. Phys. Rev. B 52, 5467–5471 (1995).

    Article  Google Scholar 

  53. Henkelman, G., Uberuaga, B. P. & Jónsson, H. Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  54. Larsen, A. H. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  Google Scholar 

  55. Liang, J. et al. Advances in ammonia electrosynthesis from ambient nitrate/nitrite reduction. Chem 9, 1768–1827 (2023).

    Article  CAS  Google Scholar 

  56. Dong, K. Characterization for electrocatalytic nitrate reduction (Nat. Protocol.). Mendeley Data https://doi.org/10.17632/dz3zy7vb3c.2 (2025).

  57. Dong, K. et al. H2O2-mediated electrosynthesis of nitrate from air. Nat. Synth. 3, 763–773 (2024).

    Article  CAS  Google Scholar 

  58. Chen, K. et al. Single-atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia. Adv. Funct. Mater. 33, 2209890 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the High-Level Talent Start-Up Fund of Huaibei Normal University (grant no. 03106369 to D.M.), the Excellent Scientific Research and Innovation Team of the Education Department of Anhui Province (grant no. 2024AH010027 to D.M.) and the National Natural Science Foundation of China (grant nos. 22271213 to B.Z. and 52225308 to L.-M.L.). K.D. acknowledges financial support from the Chinese CSC Scholarship Program. Moreover, we extend our gratitude to X. Wang from Gaossunion Corporation for illustrating the schematic diagram of the in situ electrochemical electrolytic cell.

Author information

Authors and Affiliations

Authors

Contributions

K.D. was primarily responsible for writing the protocol. S.H. contributed to the development of methodologies for product analysis, in situ electrochemical XRD, in situ electrochemical XAS and isotopic labeling techniques. Y.L. developed the electrochemical mass spectrometry methodology. Z.W. established the theoretical calculation framework. X.S., Y.Y. and X.W. contributed to protocol refinement and data validation. C.X. and H.L. participated in discussions on theoretical calculations. D.M., L.-M.L. and B.Z. provided overall oversight and contributed to discussions on protocol development.

Corresponding authors

Correspondence to Dongwei Ma, Li-Min Liu or Bin Zhang  (张兵).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Uttam Kumar Ghorai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Han, S. et al. Nat. Catal. 6, 402–414 (2023): https://doi.org/10.1038/s41929-023-00951-2

Wang, Y. et al. Angew. Chem. Int. Ed. 59, 5350–5354 (2020): https://doi.org/10.1002/anie.201915992

Zhang, G. et al. Angew. Chem. Int. Ed. 62, e202300054 (2023): https://doi.org/10.1002/anie.202300054

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, K., Han, S., Li, Y. et al. Testing, quantification, in situ characterization and calculation simulation for electrocatalytic nitrate reduction. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41596-025-01289-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing