Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Putting mammalian early embryonic cells into dormancy

Abstract

Mammalian development starts at fertilization and continually progresses until birth, except in cases in which an interruption is favorable to the embryo and the mother. Many mammals have the ability to pause development in case of suboptimal resources or routinely as part of their reproductive cycle—a phenomenon called ‘embryonic diapause’. Diapause can be mimicked in vivo in mice via surgical removal of the ovaries or hormone injections. This procedure is laborious and invasive, ruling out its use across species. We have developed in vitro protocols through which mouse blastocysts, human blastoids and pluripotent stem cells from both species can be induced to enter a diapause-like dormant state via pharmacological inhibition of mTOR. Here, we describe in detail how embryos, blastoids and stem cells can be transitioned into and out of dormancy under different culture conditions. We further explain critical parameters to ensure success and propose experimental readouts. These in vitro embryonic dormancy setups can be used to uncover molecular mechanisms of dormancy, to test environmental or pharmacological effectors and to further innovate culture systems for species in which in vitro reproductive technologies are limited. We anticipate that researchers with ~1 year of embryo- and stem cell-handling experience should be able to achieve consistent results and evaluate outcomes. Altogether, inducing dormancy in vitro offers the possibility to slow down embryonic development for exploratory investigations of molecular mechanisms and eventually to expand the time window before implantation for clinical assays.

Key points

  • This set of in vitro protocols details the steps through which mouse and human pluripotent stem cells, mouse blastocysts and human blastoids can be reversibly induced to enter a diapause-like dormant state via pharmacological inhibition of mTOR.

  • Compared to traditional, surgery-based approaches, these protocols are simple and noninvasive and enable higher throughput analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology and cell type composition of proliferative and dormant human blastoids.
Fig. 2: Schematic overview of the protocol.
Fig. 3: Mouse and human ESCs in proliferative culture.
Fig. 4: Suboptimal hPSC dormancy cultures with differentiating colonies.
Fig. 5: Reprogramming of primed hPSCs in RSeT culture.
Fig. 6: Overview of mESC colonies in serum/LIF culture during mTORi-mediated dormancy transition.
Fig. 7: Overview of hPSC colonies in PXGL and RSeT culture during mTORi-mediated dormancy transition.
Fig. 8: Morphological evaluation of normal and diapaused mouse blastocysts.
Fig. 9: Overview of human blastoid morphology over 8 d of mTORi treatment.

Similar content being viewed by others

Data availability

All datasets can be found in the primary publications cited in the legends. Statistical source data for Fig. 6 are provided with this paper.

References

  1. Bardot, E. S. & Hadjantonakis, A.-K. Mouse gastrulation: coordination of tissue patterning, specification and diversification of cell fate. Mech. Dev. 163, 103617 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yamanaka, Y., Ralston, A., Stephenson, R. O. & Rossant, J. Cell and molecular regulation of the mouse blastocyst. Dev. Dyn. 235, 2301–2314 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Kirkeby, A., Main, H. & Carpenter, M. Pluripotent stem-cell-derived therapies in clinical trial: a 2025 update. Cell Stem Cell 32, 10–37 (2025).

    Article  CAS  PubMed  Google Scholar 

  4. Renfree, M. B. & Fenelon, J. C. The enigma of embryonic diapause. Development 144, 3199–3210 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. van der Weijden, V. A. & Bulut-Karslioglu, A. Molecular regulation of paused pluripotency in early mammalian embryos and stem cells. Front. Cell Dev. Biol. 9, 708318 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hunter, S. M. & Evans, M. Non‐surgical method for the induction of delayed implantation and recovery of viable blastocysts in rats and mice by the use of tamoxifen and Depo‐Provera. Mol. Reprod. Dev. 52, 29–32 (1999).

    Article  Google Scholar 

  7. Paria, B. C., Huet-Hudson, Y. M. & Dey, S. K. Blastocyst’s state of activity determines the “window” of implantation in the receptive mouse uterus. Proc. Natl Acad. Sci. USA 90, 10159–10162 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ye, J., Xu, Y., Ren, Q., Liu, L. & Sun, Q. Nutrient deprivation induces mouse embryonic diapause mediated by Gator1 and Tsc2. Development 151, dev202091 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Iyer, D. P. et al. mTOR activity paces human blastocyst stage developmental progression. Cell 187, 6566–6583.e22 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bulut-Karslioglu, A. et al. Inhibition of mTOR induces a paused pluripotent state. Nature 540, 119–123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kagawa, H. et al. Human blastoids model blastocyst development and implantation. Nature 601, 600–605 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. van der Weijden, V. A. et al. FOXO1-mediated lipid metabolism maintains mammalian embryos in dormancy. Nat. Cell Biol. 26, 181–193 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stötzel, M. et al. TET activity safeguards pluripotency throughout embryonic dormancy. Nat. Struct. Mol. Biol. 31, 1625–1639 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  14. McCallie, B. R., Parks, J. C., Griffin, D. K., Schoolcraft, W. B. & Katz-Jaffe, M. G. Infertility diagnosis has a significant impact on the transcriptome of developing blastocysts. Mol. Hum. Reprod. 23, 549–556 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Molè, M. A., Weberling, A. & Zernicka-Goetz, M. Comparative analysis of human and mouse development: from zygote to pre-gastrulation. Curr. Top. Dev. Biol. 136, 113–138 (2019).

    PubMed  Google Scholar 

  16. Fan, R. et al. Wnt/Beta-catenin/Esrrb signalling controls the tissue-scale reorganization and maintenance of the pluripotent lineage during murine embryonic diapause. Nat. Commun. 11, 5499 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, R., Fan, R. & Bedzhov, I. Protocol for induction maintenance and exit from embryo dormancy in mice. STAR Protoc. 6, 103813 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Iyer, D. P. et al. Combinatorial microRNA activity is essential for the transition of pluripotent cells from proliferation into dormancy. Genome Res 34, 572–589 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Duy, C. et al. Chemotherapy induces senescence-like resilient cells capable of initiating AML recurrence. Cancer Discov. 11, 1542–1561 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rehman, S. K. et al. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell 184, 226–242.e21 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Ramponi, V. et al. H4K20me3-mediated repression of inflammatory genes is a characteristic and targetable vulnerability of persister cancer cells. Cancer Res 85, 32–51 (2025).

    Article  CAS  PubMed  Google Scholar 

  22. Scognamiglio, R. et al. Myc depletion induces a pluripotent dormant state mimicking diapause. Cell 164, 668–680 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khoa, L. T. P. et al. Histone acetyltransferase MOF blocks acquisition of quiescence in ground-state ESCs through activating fatty acid oxidation. Cell Stem Cell 27, 441–458.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, W. M. et al. Let-7 derived from endometrial extracellular vesicles is an important inducer of embryonic diapause in mice. Sci. Adv. 6, eaaz7070 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Canton, I. et al. Mucin-inspired thermoresponsive synthetic hydrogels induce stasis in human pluripotent stem cells and human embryos. ACS Cent. Sci. 2, 65–74 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khoei, H. H. et al. Generating human blastoids modeling blastocyst-stage embryos and implantation. Nat. Protoc. 18, 1584–1620 (2023).

    Article  PubMed Central  Google Scholar 

  27. Ying, Q.-L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo, G. et al. Epigenetic resetting of human pluripotency. Development 144, 2748–2763 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Theunissen, T. W. et al. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell 19, 502–515 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bayerl, J. et al. Principles of signaling pathway modulation for enhancing human naive pluripotency induction. Cell Stem Cell 28, 1549–1565.e12 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. González, I. M. et al. Leucine and arginine regulate trophoblast motility through mTOR-dependent and independent pathways in the preimplantation mouse embryo. Dev. Biol. 361, 286–300 (2012).

    Article  PubMed  Google Scholar 

  34. Martin, P. M. & Sutherland, A. E. Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev. Biol. 240, 182–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Rivron, N. C. et al. Blastocyst-like structures generated solely from stem cells. Nature 557, 106–111 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, C. et al. A comprehensive human embryogenesis reference tool using single-cell RNA-sequencing data. Nat. Methods 22, 193–206 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yanagida, A. et al. Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell 28, 1016–1022.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Durkin, M., Qian, X., Popescu, N. & Lowy, D. Isolation of mouse embryo fibroblasts. Bio Protoc. 3, e908 (2013).

    PubMed  Google Scholar 

  39. Rivron, N. C. et al. Tissue deformation spatially modulates VEGF signaling and angiogenesis. Proc. Natl Acad. Sci. USA 109, 6886–6891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vrij, E. et al. Directed assembly and development of material‐free tissues with complex architectures. Adv. Mater. 28, 4032–4039 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Vrij, E. J. et al. 3D high throughput screening and profiling of embryoid bodies in thermoformed microwell plates. Lab Chip 16, 734–742 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Özgüldez, H. Ö. & Bulut-Karslioğlu, A. Dormancy, quiescence, and diapause: savings accounts for life. Annu. Rev. Cell Dev. Biol. 40, 25–49 (2024).

    Article  PubMed  Google Scholar 

  43. Kamemizu, C. & Fujimori, T. Distinct dormancy progression depending on embryonic regions during mouse embryonic diapause. Biol. Reprod. 100, 1204–1214 (2019).

    Article  PubMed  Google Scholar 

  44. Arena, R. et al. Lipid droplets in mammalian eggs are utilized during embryonic diapause. Proc. Natl Acad. Sci. USA 118, e2018362118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Neagu, A. et al. In vitro capture and characterization of embryonic rosette-stage pluripotency between naive and primed states. Nat. Cell Biol. 22, 534–545 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.P.I. was supported by the German Academic Exchange Service (DAAD) PhD Fellowship (91730547). H.H.K. was supported by the Austrian Science Fund (FWF), Lise Meitner Programme M3131-B and Marie Sklodowska-Curie grant agreement no. 101026451. The Rivron Lab is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC-Co grant agreement no. 101002317 ‘BLASTOID: a discovery platform for early human embryogenesis’) and the Institute for Molecular Biotechnology (IMBA), Vienna. The Bulut-Karslioglu Lab is supported by the ERC (ERC-StG grant agreement no. 101117421, ‘DOR CODE’) and the Max Planck Society (to A.B.-K.). We thank members of the Bulut-Karslioglu and Rivron labs for discussions and especially Henrik Chrzanowski for images and cell counts.

Author information

Authors and Affiliations

Authors

Contributions

D.P.I., H.H.K., N.R. and A.B.-K. conceived the study and designed the experiments. D.P.I. and H.H.K. performed the experiments. N.R. and A.B.-K. supervised the project. D.P.I., H.H.K., N.R. and A.B.-K. wrote and revised the manuscript.

Corresponding author

Correspondence to Aydan Bulut-Karslioglu.

Ethics declarations

Competing interests

The Institute for Molecular Biotechnology, Austrian Academy of Sciences holds a patent application (EP21151455.9) describing the protocols for human blastoid formation and for the blastoid–endometrium interaction assay. H.H.K. and N.R. are the inventors on this patent. Dawn-Bio, a biotechnology company co-founded by N.R., has licensed the technologies described in this patent. The other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Robert Froemke, Ann Sutherland and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Iyer, D. P. et al. Cell 187, 6566–6583.e22 (2024): https://doi.org/10.1016/j.cell.2024.08.048

van der Weijden et al. Nat. Cell Biol. 26, 181–193 (2024): https://doi.org/10.1038/s41556-023-01325-3

Bulut-Karslioglu, A. et al. Nature 540, 119–123 (2016): https://doi.org/10.1038/nature20578

Supplementary information

Source Data Fig. 6

Statistical source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, D.P., Heidari Khoei, H., Rivron, N. et al. Putting mammalian early embryonic cells into dormancy. Nat Protoc (2026). https://doi.org/10.1038/s41596-025-01303-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41596-025-01303-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing